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CORRELATION AMONG PARTIAL ORDERS*
P. M. WINKLER’

Abstract. If A is a poset and P is a (finite) poset whose underlying set contains the elements of A,
then A is said to occur in a linear extension L of P if each relation in A is realized in L; if L is chosen at
random, A can be regarded as an event whose probability is the number of linear extensions in which it
occurs divided by the total number of linear extensions of P.

We give a complete characterization of the pairs of partial orders which are never negatively correlated,
i.e., the pairs A, B with the following property: for any poset P whose underlying set contains the elements
of A and of B, Pr (A and B) -> Pr (A) Pr (B).

1. Introduction. In the study of algorithms for sorting, a poset P (henceforth
always assumed finite) may be thought of as the set of known relations (at some point
in an algorithm) among a set of elements which have an unknown linear order. Thus,
if x and y are elements of P, it is natural to define the probability of the poset {x < y }
to be the number of linear extensions of P in which the relation x < y occurs, divided
by the total number of linear extensions of P. Thus, if A is a poset whose underlying
set is contained in the underlying set of P, then Pr (A) in P is the probability that all
of the relations in A will occur in a random permutation of the elements of P, subject
to the constraints in P.

Ivan Rival and Bill Sands [2] conjectured that if x, y and z are three elements
of a poset P, then the occurrence of x < y could never diminish the probability that
x is below z; this means that the posets {x < y} and {x <z} are never negatively
correlated, i.e.,

Pr (x < y and x < z) >_- Pr (x < y) Pr (x < z) in any poset P

and has become known as the xyz conjecture. Since a very clever proof was found
recently by Shepp [4], it will be referred to here as the xyz inequality.

Shepp, in [4], asked the following more general question: for which posets A, B
is it always the case that

Pr (A and B) _-> Pr (A) Pr (B)?

Such a pair A, B will be said to be universally correlated, denoted by AB, so that
the xyz inequality becomes simply {x < y}’{x < z}. We give below a complete (and
easily implemented) characterization of the universally correlated pairs of posets,
which shows that all nontrivial cases are ultimately deducible from the xyz inequality.

It should be noted that certain other correlations, which are not universal but
hold in some important special cases, have been proved by Graham, Yao and Yao
[1] and Shepp [3]. Some consequences of the xyz inequality can be found in [5].

2. Terminology. We may assume that the posets A and B are defined on a
common underlying set S, so that A and B are each subsets of S2. The intersection
AB will then be a poset, and the transitive closure (A 1.3B)* of the union A t.JB
will be a poset unless A and B are inconsistent. If P is a poset whose underlying set
contains S, and L is a linear extension of P, then clearly A I.J B occurs in L if and
only if A and B both occur in L; thus Pr (A and B) could be written Pr (A t.J B). We
will do this even though it conflicts with the notion of the union of events, for which
we reserve the written disjunction "or".

* Received by the editors November 13, 1981, and in final form December 28, 1981.
t Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia 30322.
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If P is a poset let A(p) be the set of covering pairs in P, i.e., the set of pairs (x, y)
of elements of/9 such that x < y in P but there is no z with x < z and z < y both in
P. Note that (A(p))* p; and if A and B are posets then

A((A t.J B )*) A(A t.J B (A(A) A(B )) U (A(A t_J B A(B )) (A(A U B) A(A))

since covering pairs cannot arise from transitive closure.

3. The characterization.
THEOREM. Let A and B be finite posets. Then A and B are universally correlated

if and only irA UB is consistent andfor every pair (x, y) (A(A B)-A(B)) and every
pair (u, v) (A(A B)-A(A)), either x u or y v.

Several lemmas concerning correlation of events will be useful; in each case the
proof requires only elementary probability theory, and is trivial whenever any of the
relevant conditional probabilities is undefined.

LEMMA 1. If C, D and E are events with Pr (C and DIE)>_-Pr (CIE) Pr (DIE)
and C E andD E, then Pr (C and D) >- Pr (C) Pr (D).

Proof. Pr(C andD)=Pr (C andD andE)=Pr (C and DIE)Pr (E)_>-Pr (C and
DIE) Pr (E) Pr (E) >- Pr (C[E) Pr (E) Pr (DIE) Pr (E) Pr (C and E) Pr (D and E)
Pr (C) Pr (D).

LEMMA 2. If C, D and E are events with Pr (C and D)>-Pr (C) Pr (D) and (C
and D) -E -D, then Pr (C and E) >= Pr (C) Pr (E).

Proof. Pr (C and E) Pr (C and D) -> Pr (C) Pr (D) -> Pr (C) Pr (E).
LEMMA 3. If C, D and E are events with Pr (C and D) >= Pr (C) Pr (D and Pr (C

and EID >- Pr (CID) Pr (E[D then Pr (C and (D and E)) >- Pr (C) Pr (D and E).
Proof. Pr (C andD andE) Pr(C andEID) Pr (D)>-Pr (CID) Pr (EID) Pr (D)=

Pr(C andD) Pr (D andE)/Pr(D)>=Pr (C) Pr (D) Pr (D and E)/Pr (D)= Pr (C) Pr (D
and E).

4. Proof of the theorem. We begin by assuming the condition of the theorem
holds, with the object of showing that A ’B. Let S be the common underlying set of
A and B, and let P be an arbitrary finite poset whose underlying set contains S; we
wish to show that

Pr (A UB) _-> Pr (A) Pr (B) in P,

which we abbreviate by ApB.
Let A’ A(A CI B)- A(B) and B’ A(A B)- A(A). The condition of the

theorem forces at least one of the following three cases to hold:
Case 1. A’ or B’ is empty.
Case 2. For some fixed x S, the pairs in A’t_J B’ are all of the form x < y or all

of the form y < x.
Case 3. One of the sets A’, B’ contains just one pair x < v, and all of the pairs

in the other are of form x < y or u < v.
Case 4. There exist u, v, x, y such that A’= {u < v, x < y } and B’ {x < v, u < y }.
Cases 2, 3 and 4 are diagrammed in Figs. 1, 2, 3. The diagrams are unique up

to duality and exchange of A and B.
Case 1 is easy. If, say, A’ is empty, then A(A B)= A(B), thus B =(A tAB)* so

that Pr (A U B) Pr (B) and it follows that ApB.
For Cases 2, 3 and 4 let Q (Pt.J(A(A)’f’IA(B)))*, and suppose we can show that

A’’oB’. Since (A’ and B’ and (A(A) A(B))) is equivalent to A(A kJ B) and hence to
A tAB, we have that (A’ and B’)AA’ and (A’ and B’)BB’ in Q. Using these
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implications two applications of Lemma 2 yields A’oB. Now we observe that in P,
A -* Q and B * Q; thus ApB as required.

To show that A’’oB’ we prove that in fact A’ and B’ are universally correlated.
Note that if C, D and P are arbitrary posets then C’pD and C’puoE together imply
Cp(D I,.J E) by Lemma 3, thus (CD and CE) implies C(D IA E).

In Case 2, we have {x < y}’{x < zj} for each and/’, directly from the xyz inequality.
One multiple application of the above argument now yields {x < y}’B’ for each i, and
a second multiple application yields A’I’B’.

In Case 3, we have {x < v}{x < yi} and {x < v}{ui < v} for each and j via the
xyz inequality and its dual, and thus {x < v}’A’ but B’ {x < v}.

In Case 4 again {u < v}{u < y} and {u < v}{x < v} by the xyz inequality, thus
{u < v}B’; similarly {x < y}’B’ and hence finally A’B’.

We now assume that A and B are universally correlated, with the intent of proving
that the condition of the theorem holds. First, note that A UB must indeed be
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consistent; otherwise let P be the totally unordered poset on S. Then A and B each
have positive probability but Pr (A t3 B) 0, forcing a negative correlation.

For the condition of the theorem to fail when A (3 B is consistent, at least one
of the following two cases would have to obtain"

Case 5. There are distinct elements x, y, u, v S such that x < y is in A’ and
u < v is in B’.

Case 6. There are distinct elements x, y, z S such that x < y is in A’ and y < z
is in B’ (or symmetrically, x < y is in B’ and y < z is in A’).

The proof proceeds in each case by constructing a poset P which provides a
counterexample to the presumed universal correlation of A and B. P will be chosen
so as to satisfy every relation in (A (3 B)* except the two specified in each case; thus
negative correlation of A and B will be reduced to negative correlation between the
two relations.

In Case 5, let C (A OB)*-{x < y, u < v}. Since the two excluded relations are
both covering relations in (A 13 B)*, C is already closed under transitivity. By duality
we may assume that the relation u <x is not in C; in that case also v < x is not in
C. Assume the poset D (see in Fig. 4) on {x, y, u, v} is consistent with C.

FIG. 4

and

We partition S-{x, y, u, v} as follows:

S={wS: w<x orw<y isin C},

S2={w S: u <w orv <w is in C}

S3 =S-(S US2 U{x, y, u, v}).

Notice that S1 and S2 must be disjoint, otherwise a forbidden relation is implied
in C. For 1, 2, 3 let Li be a linear ordering of Si which is consistent with C, and
let z S. We construct a poset P with underlying set S t3 {z } according to the Hasse
diagram in Fig. 5. It is easily checked that every relation in C already holds in P, thus
in P the event A is equivalent to {x < y} and the event B to {u < v}; therefore we
need only show {x < y} and {u < v} are negatively correlated in P. Letting k IL21
and counting the places into which z can fall, we have Pr (x < y)= Pr (u <v)=
(2k+3)/(4k+8) and Pr(x<yandu<v)=(k+l)/(4k+8)=(4k2+2k+8)/
(4k +8)2=((2k +3)2-1)/(4k +8)2 thus Pr(x <y and y <v)<Pr(x <y)Pr(u <v)
as required.
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If C is not consistent with D then C must contain the relation u < y. If v < y is
also in C then no further relation among x, y, u, v can appear in C, so the dual of
the above argument suffices here and also when only u < y appears.

The only other possibility is that the restriction of C to {x, y, u, v} is exactly
{u < y, x < v}. In that case we partition $-{x, y, u, v} as follows:

S={w S: w <x or w <u in C},

S2 {w S" x < w and w < v in C},

$3 {w S: u < w and w < y in C},

S S (S O $2 USU {x, y, u, v }).

No element of S is between x and y or between u and v in C, hence there is nothing
in C to prevent all of S4 from lying above {x, y, u, v}. As before let L be a linear
ordering of S consistent with C, 1 <-i <= 4, and this time P will have underlying set S
and the Hasse diagram shown in Fig. 6. Again all relations of C are true in P so it
suffices to show {x < y } and {u < v } are negatively correlated in P. But at least one of
these events must occur in P; hence Pr (x < y and u < v)= 1- Pr (x > y or u > v)=
1-Pr (x>y)-Pr (u>v)=Pr (x<y)+Pr (u<v)-l=Pr (x<y) Pr (u<v)-(1-
Pr (x <y))(1-Pr (u <v))=Pr (x <y) Pr (u <v)-Pr (x>y) Pr (u >v)<Pr (x <y)
Pr (u < v), and Case 5 is completed.

In Case 6, where x <y is in A’ and y <z in B’, the relation z <x cannot be in
C nor is there any element of S between x and y or between y and z in C; else x < y
and y < z could not both be covering relations in (A O B)*. Therefore in this case we
partition S-{x, y,z} into S ={wlw <x or w <y in C}, S={wlw >z or w >y in C},
and S3=S-(SI.JSzU{x, y, z}); let L, L2 and La be as before, and take P to have
underlying set S and the Hasse diagram shown in Fig. 7.
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Here there are only k + 1 linear extensions, where k IL31; and Pr (x < y <z)=
(k-1)/(k +l)=(k:-l)/(k +l):Z<k2/(k +l)Z=Pr (x <y) Pr(y <z), so the proof of
the theorem is complete.
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5. Some examples. It follows from the theorem that the following pairs of posets
are universally correlated (Cases 1, 2, 3 and 4 respectively):

A ={x < y <z},

A ={x <y,x <z},

A ={u <v,x <y,x <z},

A ={u <v,x <y},

n={x <z};

B={x <u,x <v};

B {x < v};

B ={x <v,u <y}.

On the other hand the following reasonable-looking pairs are not universally
correlated:

A ={x <y},

A ={x <y <z,u <w},

A={x <u, y <u},

n={x <u <v};

B ={x <z, u <v < w};

B ={x <v, y <v}.

In each of the last three cases the proof of the theorem constructs a simple counter-
example; in fact we have the following’

COROLLARY. If A and B are posets on a common underlying set of n elements
and A and B are not universally correlated, then there is a poset P having at most n + 1
elements on which A and B are negatively correlated.

This is best possible, since for example the pair

A ={x <u,x <v, y <u, y <v,x <y}, B ={x <u,x <v, y <u, y <v, u <v}

is not universally correlated but has no 4-element counterexample.

Aeknowledgmelat. The author wishes to express his gratitude to Ivan Rival and
Larry Shepp for bringing this problem to his attention, and to the referee for correc-
tions.
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ON LEVEL NUMBERS OF t-ARY TREES*

J. W. MOONt

Abstract. The level numbers of a t-ary tree are the distances from the root to the exterior nodes of
the tree. Ruskey and Hu [SIAM J. Comput., 6 (1977), pp. 745-758] have considered certain problems
involving these level numbers. Alternate derivations and generalizations of some of their results are given
here.

1. Introduction. A t-ary tree is a rooted plane tree each node of which is incident
with 0 or t edges that lead away from the root, where >-2; the nodes of these two
types are called exterior and interior nodes, respectively. If a t-ary tree T, has n interior
nodes then it has n (t- 1)+ 1 exterior nodes for n 0, 1,. .. The/th level number of
a t-ary tree T, is the distance d from the root to the ]th exterior node of T, (counting
from left to right).

Ruskey and Hu [7] and Ruskey [8], [9] have considered some enumeration
problems involving level numbers of binary and t-ary trees that arose in analyzing
algorithms for generating and ranking these trees. They derived certain formulae by
developing recurrence relations and then appealing to identities for binomial
coefficients. Our object here is to give alternate derivations and generalizations of
some of their results by means of generating functions. Our arguments lean heavily
on the well-known facts that if

y =y(x)=Y.y,x",
0

where y, denotes the number of t-ary trees T, with n interior nodes, then

y=l+xy

and

o tn "+ k x

for k 1, 2,.... Relation (1) follows immediately from the definition of t-ary trees
(see [4] or [5, p. 584]), and (2) follows from (1) by induction [2, p. 30] or by applying
the Biirmann-Lagrange formula [6, p. 348].

Our main result in 2 is a formula for the expected position of the first level
number that concludes a run of h equal consecutive level numbers, where 1 <-h <-t.
In 3 we determine the asymptotic behaviour of the expected value of the ]th level
number for fixed / as n --,

2. Equal consecutive level numbers. If n >- 1 and 1 <= h <= t, let 3’h 3’h (T.) denote
the least integer / such that d =d_ di_+; that 3’h exists follows from the
fact that any interior node at maximum distance from the root of T, is joined to
exterior nodes which perforce determine equal consecutive level numbers. Let tz (n, h)
denote the expected value of 3’h(T,,) over all the y, t-ary trees T,. Ruskey [8, p. 439]
derived a formula for tz (n, t)- + 1; this quantity provided an estimate for the average
running time of an algorithm he was considering. (Ruskey and Hu [7, p. 758] dealt

* Received by the editors October 23, 1981. The preparation of this paper was assisted by a grant
from the Natural Sciences and Engineering Research Council of Canada.

f Mathematics Department, University of Alberta, Edmonton, Alberta, Canada, T6G 2G1.
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with the case 2 earlier.) We shall derive a formula for/x (n, h) from a relation for
the generating function

Fak(X, Z) , f(n, /; h, k)zx ",
n,jl

where f(n, ]; h, k) denotes the number of t- ary trees T/1 such that /h (T/l) =/" and dj k,
for positive integers ] and k; let Fh(X, z) and f(n, ]; h) denote the corresponding
quantities when the value of dj is not specified.

THEOREM 1.

(3) Fhk(X, Z xkzhyt-h{yt-14" Zy t-2

and

q" q" z h-lyt-h}k-1,

(y Z )(y --1)Z h

(4) Fh(x, z)=
(y 1)zh --(Z 1)y h"

Proof. Consider the path P from the root to the jth exterior node in any tree
such that Yh (T/l) =/" and d k. There are k interior nodes in P; these contribute the
factor x k to the right-hand side of (3). Each of these k nodes is joined to t-1 other
nodes not in P, and these other nodes are either exterior nodes or the roots o nontrivial
subtrees. There can be no nontrivial subtrees nor more than h- 1 exterior nodes
joined to any of the k interior nodes of P from the left side of P; for, if there were,
it would follow that yh(T/1)<[, contrary to our hypothesis. Hence, each of the first
k- 1 interior nodes of P is joined to some number of exterior nodes on the left,
where 0-< =< h- 1, and to the roots of t-1- (trivial or nontrivial) subtrees on the
right. This accounts for the factor {y,-1 + zy,-2 +... + zh-lyt-h}k-1 in (3). Finally, since

Yh (T/l)= , the kth interior node of P must be joined to h- 1 exterior nodes on the
left of P and to the roots of t- h additional subtrees on the right of P; this accounts
for the factor zhy t-h in (3). It is not difficult to see that when the factors in the
right-hand side of (3) are multiplied out, each tree of the required type contributes
one to the coefficient of zlx

Equation (3) may be rewritten as

(X, Z Z
h (Xy t-h kl yFh

Y

When we sum this over k 1, 2,... and appeal to (1) we obtain (4). As a partial
check notice that Fh (x, 1)=y- 1, the trivial tree To being the only tree not counted.

Before deriving a formula for/z (n, h) we give some other results that can be
deduced as corollaries of Theorem 1; they can also be derived readily from first
principles, but separate arguments using generating functions would be somewhat
repetitious.

Let T(n, k, h) denote the number of t-ary trees T/1 such that dl dh k;
we assume, as usual, that n, k >= 1 and 1 <-h <-t. The following result was given by
Ruskey [8, p. 431].

COROLLARY 1.

=tk-k-h +1 [tn-k-h +1’T(n, k, h)
m-k-h + l \ n-k }"

Proof. Since T(n, k, h) f(n, h; h, k), it follows that T(n, k, h) is the coefficient
of zhx in (3), or the coefficient of x/1 in xky k(t-1}-h/l. This implies the required result
upon appealing to (2).
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Notice, in particular, that

(5) T(n, k, 1)-tn_k n-k

The case 2 of this formula was given earlier by Ruskey and Hu [7, p. 752].
Let R (n, ]) denote the number of t-ary trees T, for which ] is the least integer

such that di= di-1.
COROLLARY 2.

R (n, ])
(t-1)(]- l) (t; -] +:)tn-]+l -]+

Proof. If we appeal to (1) we find that, when h 2, (4) may be rewritten as

FE(X, z)=
(y 1)z z2xY’-I

,-1 E z(xy’-)-.
y z (y 1) 1 zxy -2

Since R(n,j)=f(n,i;2), it follows that R(n,l) is the coefficient of x in (xy’-)i-x.
This implies the required result upon appealing to (2).

If we compare Corollary 2 with (5), we find that

(6) R (n, ]) T(n, i 1, 1).

The case t 2 of this relation was given in [7, p. 757].
Let G (n, ) denote the number of t-ary trees Tn such that d <. <di.
COROLLARY 3.

O(n,])=
t]-i + l (tn -] + l)tn -] + 1 n -]

Proof. Since G(n, ]) R (n, ] + 1) +R (n, ] + 2) +..., it follows from the proof of
Corollary 2 that G(n, ]) is the coefficient of x" in., (xyt-)i= (xyt-)i(1-xy’-)- y(xyt-)i,

where we have used (1) again. This implies the required result upon appealing to (2).
If we compare Corollaries 1 and 3 we find that

(7) G(n, j) T(n + 1, j + 1, t- 1).

The case 2 of this relation was given in [7, p. 756].
We now derive a formula for/z (n, h). We adopt the convention that (X)o 1 and

that (x)i =x(x-1).. (x-]+l) for/’= 1, 2,....
THEOREM 2.

(tn +h 1)_x
i(n,h)=h

(tn n + h )h_"

Proof. It follows readily from the definitions of/z (n, h) and Fh (x, z) and Theorem
1 that

Iz(n, h)y,,x" Fh(x, z y 1.
z=l

This implies the required result upon appealing to (2).
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Notice, in particular, that

(tn + t- 1)_
and (n, 2)tx(n,t) Y"+I-

Yn (-t n + t)t-

It follows from Theorem 2 that

lira x (n, h) h"h-

2tn +2
tn-n +2"

for fixed values of h and t, where -= t(t-1)-1. Furthermore, if tr2(n, h) denotes the
variance of Yh (Tn), then it can be shown that

o.2(n, t)=2y.+ (2t-1)y,,+x_(y.+x)2

Yn Yn \-n/

and that

lim tr2(n, h) [h 2_ 2(h t)2]z2h-2- 2t(h t)’rh-2- h (2h 1)z h-1.

3. The expected value of dj. Let e (n,/’) denote the expected value of the ]th level
number dj over all the yn t-ary trees T.. It follows from (6) and Theorem 2 that

e(n, 1)= t(n, 2)- l
nt+n

nt-n +2’

as was shown by Ruskey and Hu [7, p. 758] when 2. Ruskey [9] derived a formula
for

e (]) lim e (n, ])

for fixed positive integers/" when 2. Let

Pk (X, Z )= Z Pki.Y.Z iX ",
n,]

where Pki. denotes the probability that di(T.)= k over all the y. t-ary trees T.; we
shall assume until further notice that 2 so that y 1 + xy 2, whence

{1 -(1-4x)x/z}
(8) Y 2x

LEMMA 1.

ek(X, z)-- zxk{zy(zx)+ y(x)}k.

Proof. We may assume that k => 1 since the result certainly holds when k 0.
Consider the path P from the root to the/’th exterior node u in any binary tree T,
such that dr(Tn) k, for any fixed positive integer/’; there are k interior nodes in this
path and these contribute the factor x k to Pk (X, Z). Furthermore, each of these nodes
is joined to the root of a subtree lying either to the left or to the right of P. We must
take into account the number of exterior nodes in the subtrees that lie to the left of
P. Since a binary tree with rn interior nodes has m + 1 exterior nodes, it follows that
the contribution of these k subtrees to Pk (X, Z) is {zy (ZX) + y (x)}k. Finally, the exterior
node u itself contributes the factor z to Pk(X, Z). It is not difficult to see that when
these factors are multiplied out, each binary tree Tn such that d(T,)= k contributes
one to the coefficient of zx".
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We now give an alternate derivation of the formula for e(]) given in [9]. We let
,{/’} denote the coefficient of x" in the power series f(x).

THEOREM 3.

e(j) =-1 + 2j(!)/4i-1.

Proof. When we expand the expression for Pk (x, z) in Lemma 1 and pick off the
coefficient of zix’, we find that

(9) pkinyn ()i-l{(Xy)/} c,_i+{(xy)k-t}.
/=0

(We remark that this relation is equivalent to [9, Lemma 1].) It is not difficult to see,
upon appealing to (2) with 2, that

{(xy)k-} l)(1/2)k-t+2i-(10) lim c,_j+ (k
OO Yrt

for fixed 1, k and ], and that

{(XY)k-l}= k-/+2]-4(11) =_j+ <(k- )(g)
y.

when 2/" -< n + 1.
If p denotes the limit of Pkin as n -, oo for fixed values of k and/’, then (9) and

(10) imply that

pk lim (kl)i_{(xy)}
’-J+l{(xy)k-t}

n.-.oo l=O Yn

(12)

4-i%_l{k (21- + xy)k-}.

It now follows from Tannery’s theorem [1, p. 136] and (10)-(12) and (8) that

e(])+ 1 (k + 1)p 4-J_ (k + 1)k(1/2+xy)-k--O

(13) 4-%_{(1 2xy)-} 4-N_{(1 4x)-/}

2,({)/4’-1,

as required.
It can be shown that the limiting value v (]) of the variance of di, for fixed values

of ] as n , is given by the formula

v(.i) 24]-(e(])+ 1)(e () + 2)

but we shall not pursue this further here.
We also point out that the foregoing argument can be extended to t-ary trees for

arbitrary fixed values of t. The details are rather more complicated, but in the general
case the factors zy (zx)+ y (x) in the formula for Pk (X, Z) in Lemma 1 are replaced by
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factors

and (13) becomes

(14)

(zy (xz ’-))’- + y (x )(zy (xz ,-1)),- +... + Y ’-(x)

{r"-xy (-1)}e(/)+ 1 2rJCdj_l
(r-x

where z t(t- 1)-1 and r (t- 1)t-’/(’-1). It follows from (14) that

(15) e() + 1 2{- E’((/" 1)- m(t 1))y,p m},

where p r t-1 and the sum is over all nonnegative integers rn such that re(t- 1) <- 1.
(We remark that p is the radius of convergence of y (x) and - y (p).) It can be shown
that

e (/’)+ 1---(2t)l/2t--i- 4j_/’(2/!) ---’
4 ()

for large j and arbitrary fixed values of t.
In conclusion we mention, for purposes of comparison, three related results that

hold when 2. Let , denote the average value of all the level numbers of a binary
tree T,, A, denote the [(n + 2)]nd level number of a binary tree T,, and D, denote
the maximum level number of a binary tree T,. Finally, let E(8,), E(A,) and E(D,)
denote the expected values of these parameters over all the y, binary trees T,. It
follows from a result of Knuth [5, p. 590] that

E(8,).-.(zrn)1/2= (1.77. .)n

It follows from [9, Thm. 1], upon passing to the limit and approximating the resulting
sum by an integral, that

1/2

Finally, Flaolet and Odlyzko [3] have shown that

E(Dn) 2(zrn) 1/2 (3.54. .)n 1/2.
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ON SYMMETRIC REPRESENTATIONS
OF FINITE FIELDS*

G. SEROUSSI" AND A. LEMPELt

Abstract. This paper presents a complete characterization of symmetric representations of finite fields,
and representations that are closed under transposition. It is also shown that every finite field has a symmetric
representation, and conditions are given under which closure under transposition is equivalent to symmetry.

Key words, representations of finite fields, symmetric representations, trace-dual bases

1. Introduction. LetF GF(q) be a finite field of q elements, and let q GF(qn)
be an extension of degree n of F. A set R of square matrices of order n over F is
called a representation of if, under the operations of matrix addition and matrix
multiplication, R forms a field isomorphic to . Characterizations of fields of matrices
over finite fields can be found in [1], [2], and [3], where the order of the matrices is
not restricted to the degree n of the extension. However, the results of [3] imply that
the case where the matrix order is other than n amounts, essentially, to direct-sum
constructions of matrices of order n. In this paper, the term "representation" is used
only for a field of matrices of order n.

R is called a symmetric representation if every element of R is a symmetric matrix;
R is closed under transposition if for every element B of R, B’, the transpose of B,
is also in R. Clearly, every symmetric representation is closed under transposition,
but the converse is not always true.

Representations of are closely related to bases of when this field is viewed
as a vector space over F. In 2 this relation is shown to be a many-to-one correspon-
dence under which every basis fI gives rise to a representation R(fl) and every
representation corresponds to a subset of bases.

The main result of this paper is a complete characterization of the representations
of which are closed under transpositio0. The characterization utilizes the concept
of trace-dual bases. A basis A (A 13,2" An) is called a trace-dual (or a complementary
basis) of fI= (colca2... con), denoted by A fl*, if for 1 _-<i,/"-<n,

1, =],
T(tohj) 8ij

0, # ],

where T" q-F is the trace operator defined by T(cz) =’.i__0 cz for every cz . 1) is
called a trace-orthonormal basis if 1" 1)*. The main properties of trace-dual bases
are presented in 3.

In 4 we show that a representation R (fl) is symmetric if and only if 1* czf-
(otto1 czto2 cton) for some cz q. If q has a trace-orthonormal basis over F, cz must
be a quadratic residue, and x/ f is such a basis. This result is used to show that
every finite extension q of a finite field F has a symmetric representation. Note that
this is not necessarily true when F is infinite; the field of complex numbers does not
have a symmetric representation over the reals.

In 5 we deal with representations that are closed under transposition. We show
that if q is even or both q and n are odd, then a representation of q is closed under
transposition if and only if it is symmetric; if q is odd and n is even, then R (1") is

* Received by the editors May 6, 1981, and in revised form January 12, 1982.

" Department of Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.
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closed under transposition and asymmetric if and only if for some
((aol)q"/2(ao.)q/2... (aon)q’/2), where fl=(oloa’’’ on). We end the section with
an example of such a representation of GF(32) over F GF(3).

In the sequel we shall make free use of basic results in algebra such as can be
found in any standard textbook, e.g., [4].

2. Bases and representations. For every element/ the mapping m" -->
defined by ma fl.c, c , is a linear transformation on (viewed as a vector
space over F). Let ll be a basis of over F, and let M(/, fl) be the matrix of the
linear transformation m with respect to the basis l’l. It can be readily verified that
the set R (I)= {M(/3,  )lfl is a representation of . (R (f) is called a regular
representation.) The following theorem and corollary are direct consequences of the
results of [3].

TI-IEOREM 1. R is a representation of dO if and only if there exists a basis f of dp

over F such that R R ().
COROLLARY 1. If R is a representation of gP then for every a F, the image of a

in R is aI, where I is the identity matrix.
The correspondence between bases and representations of is many-to-one.

The following theorem establishes the conditions under which two bases give rise to
the same representation of (I). Given a vector X (xx2" x,), we denote by Xk the
vector resulting from raising each component of X to the kth power, namely, Xk=
(x k k k

lX2 Xn).
THEOREM 2. Let fl and A be bases of dp over F. Then R (II)= R (A) if and only

if there exist a dp {0} and an integer 0 <-_ k <- n 1 such that A (afl)"k.
The proof of this theorem is relegated to the Appendix so that we can proceed

without diversion to our main topic of symmetric representations.

3. Trace-dual bases.
THEOREM 3. Every basis fl of over F has a unique trace-dual. Moreover, if W

is the matrix over gp defined by

W

then W is nonsingular and its inverse is o the [orm [A’(Aq)’. (Aq"-)’] where A
A proof of the above theorem can be found in [5, pp. 13-15]. Another proof,

valid for fields of characteristic 2 only, can be found in [6, pp. 117-118]. The following
lemma summarizes the main properties of trace-duality.

LF.MMA 1. Let ll=(ooa...o,) be a basis o[ over F and let 1"*=
(o’o * o * ). Then

(dl) (1*)*
(d2) Let a -{0}. Then (aI)* a-lf*.
(d3) Let k be an integer, 0 <= k <= n- 1. Then (Ik)*= (f*)q.
(d4) Let a Yi--1 aitoi and [3 Y.i__ bito.*, be arbitrary elements of dp. Then T(a[3)

Y.__ ab a’a,, where XA denotes the column-vector representation ofx dp

with respect to a basis A.
(d5) For every dp, ,i= to*iT(toil3).
(d6) Let L be a nonsingular matrix of order n over F. Then (fIL)* I)*(L-1)’.

This notation does not imply that to * depends solely on
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Proof. (dl) to (d5) follow directly from the definition of trace-duality, and from
the basic properties of the trace operator [5, p. 13], [6, p. 116]. To prove (d6), let

u-- (n.

By Theorem 3, (ILL)* is the first row of (U-)’. Since ([IL) (2L, it follows that
U WL, where W is the same as in Theorem 3. Since lq* is the first row of (W-l)’,
and (U-l)’= (L-W-X)’= (W-X)’(L-X)’, we have (ilL)* fl*(L-1)’. Q.E.D.

In the sequel we shall often refer to a trace-orthonormal basis. The conditions
under which such bases exist were derived in [7] and are stated here in the form of
the following theorem.

THEOREM 4. = GF(q") has a trace-orthonormal basis over F GF(q) if and
only if either q is even or both q and n are odd.

4. Symmetric representations.
THEOREM 5. (i) Every finite extension of a finite field F has a symmetric

representation.
(ii) R (f) is a symmetric representation of over F if and only if there exists an

element a such that 12" tx f.
(iii) /f has a trace-orthonormal basis over F then a and satisfy f*= czf if

and only if =/3 2 for some [3 , and/312 is trace-orthonormal.
The proof of this theorem is presented in a different order. First, we prove (ii),

then (iii) and then (i). We begin with the following lemma.
LEMMA 2 Let f (to,to2" to,), f* (to*to*2 "’tO*,), and let B be the image

of [3 E in R (f). Then

a T(o, o,), 1 < i,/<

Proof. Since B M(/3, 1), we have

(fltOi)la M(fl, [)(tOi)fl B (toi)fl B/.,

where/., 1 _-<] _-< n, is the/’th column of the identity matrix. By (d4) of Lemma 1, we
obtain

T(tO*BtOj) T(BtOjtO.*, )= (BtOj)’n(tO)n.=IB’Ii =Bi, l <-_i, / _n. Q.E.D.

Proof of (ii). Assume fl* cz 1 for some cz E , and let B be an arbitrary element
of R (f). B is the image of some/3 E and, by Lemma 2,

B, T(o ao) T(ao,Bo)= T(aoBo,) T(tOfltOi) Bii, 1 <-i, j <-n.

This implies that R (f) is symmetric.
For the "only if" part, assume that R (f) is symmetric. Then Bi B for every

1 -<_ i,/’ -<_ n and every B R (f). Thus, by Lemma 2,

T(tO’Btoj)= T(tOBtO,) or T(B(tO*tOj-tOtO,))=0, l <-i, ] <-_n,

Since this equality holds for every/3 , and since contains elements with a nonzero
trace [6, p. 116], we have

tOtOi-tOtOi=O or l<i,j <.-..no
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Hence, for a =o’/o, we have f* =nO. Q.E.D.
Proof of (iii). By Theorem 4 we are dealing with the case where q is even or

both q and n are odd. Assume that a and /3f is trace-orthonormal. Then,
(/f)* =/f, and by (d2) of Lemma 1,

Assume now that f is a basis of over F such that f*= af for some a . First,
we shall show that a is a quadratic residue. If q is even then for/3 a

q-/2 we have
2 qn

a a. Suppose that both q and n are odd, and consider the matrices

Since l’l* =aft, we have XW=! and therefore Ixllwl x, where IMI denotes the
l+q+...+qn-1determinant of a matrix M. Observing that Ixl- Wl, we obtain

IxI=. Since both q and n are odd, 1 + q + + q
,-x

is odd, and therefore
a must be a quadratic residue of . Let/ be such that a Then, by (d2) of
Lemma 1, we obtain

(Bfl)* t3-fl* t3-afl =/3ft.

Hence,/f is trace-orthonormal. Q.E.D.
We need the following two lemmas for the proof of (i).
LEMMA 3. Let y be a primitive element of d, let F denote the basis (1

of d overF, and lets be the symmetric matrix oforder n overFdefined by So T(y/- ),
1 <= i, <= n. Then F -F*S.

Proof. We have for all 1 <=/=< n,

i=1 i=1 i=1

where the last equality follows from (d5) of Lemma 1. Hence, y-lF*S F. Q.E.D.
LEMMA 4. If q is odd and n is even then the matrix S ofLemma 3 can be factored

into S LL’, where L is a nonsingular matrix with entries from F.
Proof. By Lemma 3, S transforms the basis y-F* into the basis F, and, therefore,

S is nonsingular. By Theorem 2 of [7], S can be factored, over F, into S LL’ if and
only if IS[ is a quadratic residue of F. Clearly, since S is nonsingular, L must be
nonsingular when S is so factorable. Let V be the square matrix of order n with
V0 y,_lj-1, 1 =< i, / <- n, and let D be the diagonal matrix with D, y’-I 1 <_- <- n.
It can be readily verified that $ VDV’ and therefore Isl- vv’lol. It was proved
in [7] that VV’ is a matrix over F, and that when q is odd and n is even, its determinant
[VV’I is a nonresidue of F. The determinant of the diagonal matrix D is given by

Thus, IDI"- =I and IDI F. Since y is
primitive in , IDI is primitive in F and, therefore, it is a nonresidue of F. Finally,
since the product of two nonresidues of F is a quadratic residue of F, it follows that
Isl vv’l ol is a quadratic residue of F. Q.E.D.

Proof of (i). By (ii), it suffices to prove the existence of a basis f of over F
such that f* af for some a .
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If q is even or both q and n are odd, has a trace-orthonormal basis fl which
satisfies the required equality with a 1.

For the case where q is odd and n is even, let S, L, and F be as defined in Lemmas
3 and 4, and let fl- F*L. Since L is nonsingular fl is a basis of over F. Also, by
(dl) and (d6) of Lemma 1, we have

12" (F’L)* F(L-)’= F(L’)-.
By Lemma 3, we obtain

fl* F(L’)- y-F*S(L’)- y-F*LL’(L’)- y-r*L 3’-fl.
-1Thus, the required equality is satisfied with a 3’ Q.E.D.

5. Representations closed under transposition.
THEOREM 6. If q is even or both q and n are odd then a representation of dp is

closed under transposition if and only if it is symmetric; if q is odd and n is even then
a representation R (fl) is closed under transposition but is not symmetric if and only if
fl* (afl)"/2 for some a e .

Again, we prove a few lemmas first.
LEMMA 5. Let fl be a basis of dp over F, and let R’(fl)={B’iB eR(fl)}. Then

R’(fl) R (fl*).
Proof. Let B and B be the images of/3 in R (fl) and R (fl*), respectively.

Then, by Lemma 2, and by (dl) of Lemma 1, we have

Bfi-- T(to’fltoi) l<=i,]<=n.

Thus B’ B, and since this holds for everyB R (fl), we have R’(fl) R ([1"). Q.E.D.
LEMMA 6. R (fl) is closed under transposition if and only if fl* (a I-l)qk for some

a dp and some integer 0 <-k <-n 1.
Proof. This lemma follows directly from Lemma 5 and Theorem 2.
LEMMA 7. ff fl* (afl)qk then either k O, or k n/2 and a GF(qn/2).
Proof. Assume fl* (all). By (d3) of Lemma 1, we have

or

(aft)* "-.
By (d2) of Lemma 1, a-fl* 12"- f* ft"-or =a (a D)q"-k. Thus, we can
assume, without loss of generality, that k n/2 and, since the trace-dual of is unique
(Theorem 3), we must have (a O)q= aO"-. Raising both sides of this equality to
the q th power we obtain

qZk

where a-. Let fl b be an arbitrary element of . Then

=n’q2k (i)
q2k

fl bii bi(i bi flq2k.
i=1 i=1 i=1

Hence, every element of is a root of the polynomial Cx -x, which implies that
x q" x divides cx -x. Recalling that 0 k n/2, this is possible only if 1 and

q/2_either k 0 or k n/2. If k n/2 then the equality 1 implies that a 1 and
therefore a GF(qn/2). Hence, either k 0 or k n/2 and a a GF(q"/2). Q.E.D.
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LEMMA 8. _If q is even or both q and n are odd, then k O.
Proof. When n is odd, Lemma 7 implies k -0. Therefore, it remains to consider

only the case where both q and n are even. Assume, contrary to our claim, that k 0.
Then, by Lemma 7, we must have k n/2 and a GF(q"/Z). Hence f*= (aft)q"/2,
and we have

1 T(to,to.*,)= T(aq"/2to’TM).

Observing that (to"/+l)(o"/-) to"- 1, we can see that toTM e GF(q/2) which,
together with GF(q"/), implies that o- q"/2oTM belongs to GF(q"/). There-

qn/2fore, ri ri, and recalling that we are dealing with a field of characteristic 2, we have

n-1 n/2-1 n/2-1
qi qiT(o-)= 2 o-, 2 o-, + o- =0.

=o =o =0

This contradicts the previous result of T(tr) T(toto* 1, and invalidates the assump-
tion that k rs 0. Q.E.D.

Proof of Theorem 6. By Lemmas 6 and 7, R (lq) is closed under transposition if
and only if f*= (aO)k for some a and k 0 or k n/2. If q is even, or both q
and n are odd then, by Lemma 8, k 0 and, by Theorem 5(ii), R (l) is symmetric.
On the other hand, it is obvious that if R (f) is symmetric, R (ft) is closed under
transposition. This proves the first part of Theorem 6.

If q is odd and n is even, then both values of k are possible (k 0 and k n/2).
If k =0, R(fU is symmetric by Theorem 5(ii). If k n/2, R(fU is closed under
transposition, and we claim that R () cannot be symmetric in this case. If it were
symmetric, then, by Theorem 5(ii), there would exist an element / such that
f* =/f and, hence,/3f (a f)q"/ a f"/. As in the proof of Lemma 6, this would
imply that every element of = GF(q") is a root of ot[-lxO"/2-x, contradicting the
fact that this polynomial cannot have more than q,/2 roots in . This completes the
proof of Theorem 6. O.E.D.

We conclude this section with an example of a representation of GF(32) over
F GF(3) which is closed under transposition but is not symmetric.

Let a be a root of the polynomial X2-[ 1 F[x]. Then =F(a), and f=(1 a) is
a basis of over F. The representation R (l) of takes the form

(1 + a) -- (l+2a)o (2+2a)o (2 + a) --1 2 2 1 2

This representation is closed under transposition and, as expected from
Theorem 6, f*= 2I3.

Appendix.
Proofof Theorem 2. Assume first that A (a f)k for some a {0} and 0 _<- k =<

n- 1. Since a lq is also a basis of over F, there exists a nonsingular matrix V
[VIV2"" V,] with entries from F, such that aD.=D.V, or (mtoi)n=(atoi)n= Vi,
1 =< -< n, where, as before, xn denotes the column-vector representation of x with
respect to f.

Let/ be an arbitrary element of , and let (bib2"" b,)’ =/a. Then, (md3)n= bi(m,toi)n = biVi Vn. It follows that V M(a, lq). Now, for every/
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we have

M(, an)= V-1M(, I))V M(3, l),

where the rightmost equality follows from the fact that both V and M(3, f) belong
to R (I) and the commutativity of R (f). Since this holds for every 3 , we have
R (f) R (aft).

To complete the proof of the "if" part, it remains to show that R (A)= R (c f).
Let / and let /n (c xc2" c,)’. Then

qk

i=1 i=1

which implies (y"k)h Yn for all y . Therefore, for every y, 3 , we have

M(13, a f),,n (3y),,n (3"ky), M(13, A)(V")a M([3, A)yn,

which implies M(13, aft)= M([3, A) which, in turn, implies M(3, af)R (A). Since
R (a I1) and R (A) have the same number of elements, we obtain R (A) R

To prove the "only if" part, assume R (A)= R (11), and denote both by R. Let
denote the/th column of the unit matrix. For any/, 1 <_- _-< n, we have

M(tot, f)I, M(tot, f)(to)n =(tOltO)n (to,tot)n M(tol, f)(tot)n,

and therefore

M-l(tol, f)M(tot, 1))11 M-l(tol, ).)M(tol, )(tot)a (tOl)a =//.

Similarly, one can show that

M-(A 1, A)M(At, A)I1 =/’, 1 -< -< n.

Hence, M-l(tol, f)M(tot, fl) and M-I(A 1, A)M(A/, A) have identical first columns, and
being elements of the same representation R of , they must be equal (or else their
difference would be a nonzero matrix in the representation without an inverse). Thus,

M-1(1, 12)M(t, 12)= M-I(A 1, A)M(A, A)

or

M(,t, A) AM(tot, f), 1 <- <- n,

where A M(A 1, A)M-l(to, ). Since R (A) R (f) R, A is an element of R ()
representing some ct e , i.e., A M(a, f). Let ffA and a be the isomorphisms from

into R such that A(3t)=M(, A) and n(3,)=M(3,, f) for every 3’ e , and let
xffn. is an automorphism of that leaves F fixed, since for every a e F we

have fin(a)=ffh(a)=aI, where ! is the identity matrix. Hence, ff is of the form
qff(x)=x for some integer 0-<_k =<n 1. Recalling that M(ht, A)=AM(tot, f)=

M(atot, l), we have At 4(ato,) (ato)q for 1 =< <- n and thus, A (a I)q for some
aeCandk, 0-<_k-<n-1. Q.E.D.
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PARTITIONS OF Z *

PETER TANNENBAUMt

Abstract. Let G Z. (n > 1) denote the additive group of the Galois field GF(2n) and G* denote
the nonzero elements in G. We consider partitions of G* into disjoint subsets $1, $2, ",S of cardinalities
kl, k2,’" ,kt respectively such that the sum of the elements in each of the sets Si is 0. We prove by
constructive methods that such partitions exist if and only if: (1) k + k2 +" + k 2 1 and (2) ki => 3 for
all i.

Applications of these constructions to the construction of single error correcting perfect mixed codes
are discussed.

1. Introduction. Let G be a finite abelian group of order m (written additively),
with the property that the sum of all of the elements in G is 0. It is easy to verify
that either G is of odd order or it has more than one element of order two. Let G*
denote the nonzero elements of G and let $ be a subset of G* such that the sum of
the elements of S is 0. Clearly, ISI >= 2 unless S contains an element of order two in
G, in which case IS[--> 3. If zr: $1, S2,’’’, Sl is a partition of G* such that each set Si
has zero sum then we have the following two necessary conditions on ISil ki"

(1) kl+k2+’’ .+k=m-1,
(2) ki->_ 2 unless $i contains an element of order two in G, in which case ki >- 3.
We now make some observations concerning the sufficiency of conditions (1)

and (2).
(a) If G is a group of odd order then G has no elements of order two and

condition (2) becomes: k _-> 2 for all i. In this case conditions (1) and (2) are known
to be sufficient. This result was proved in [2] for cyclic groups and in [7] for (noncyclic)
abelian groups.

(b) If G is a group of even order m with s elements of order two (s -> 2), condition
(2) has the following numerical interpretation: k->2 and if k kt- 2 then
<- (m 1 s)/2. The following example illustrates the fact that in this case conditions

(1) and (2) are not sufficient: Let G--Z4XZEXZ2, k=kE=k3=2, k4=ks=k6=3.
G* consists of seven elements of order two in G (say h 1, , hT) and eight elements
not of order two (say gt, -g, g2, -g2, g3, -g3, g4, -g4). The desired partition of G*
has to be of the form: S={gl,-g}, S2={g2,--g2}, S3={g3,--g3}, $4={g4, h,h2},
,.5={-g4, h3, h4} and ,6={hs, h6, hT}, where ht+h2=-g4;h3+h4=g4 and hs+h6+
h7 0. Clearly this is impossible.

When G is an abelian group of even order, the problem of finding a necessary
and sufficient set of conditions for the existence of a partition of G* into parts with
zero sums is still open.

(c) Let G be the elementary abelian 2-group G Z2" x Z2 (n times, n > 1).
We will write G Zz and identify the elements of G with binary vectors (words) of
length n. Since every element of G* is of order two, condition (2) becomes: k-> 3
for all i. We will prove in 2 of this paper that in this case conditions (1) and (2) are
sufficient by actually constructing the desired partitions.

For a finite abelian group G, the following kind of "partition" of G is of particular
interest: G G [.J G2 [,.J" I,.J Gt, Gi is a subgroup of G, Gi Gi {0}. We call such a
"partition" a group partition of G. Herzog and Schonheim [3], Lindstrom [5] have
proved that the existence of a group partition of G is equivalent to the existence of
a single error correcting perfect code in the group G1 . Gt. Moreover it is known
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[6], [3] that if G has a group partition then G must be an elementary abelian p-group.
In 3 of this paper we construct group partitions of G Z using some of the methods
developed in 2. The problem of determining necessary and sufficient conditions for
the existence of a group partition in an abelian group G is still open.

2. Partitions of (Z)* into parts with zero sums. The main result of this section
is:

THEOREM 2.1. Let G =Z. Then G* can be partitioned into disjoint subsets
S, $2, ", St of cardinalities k, k2, kt respectively and such that the sum of the
elements in each Si is 0 if and only if the following two conditions hold"

(1) kx+kE+...+kt=2"-l,
(2) k >_-3 for all i.
Since the necessity of these conditions has been established in 1, we only need

to prove their sufficiency. To do so, we will restrict our attention to the case in which
the sets $ are "small", i.e., k- 3, 4 or 5. Once the existence of such zero-sum
partitions is established, it is easy to see that any other zero-sum partition can be
obtained by judiciously grouping together "small" zero-sum sets as needed to obtain
larger ones.

Suppose now that r" Sl," ", S is a partition of (Z)* such that [Sil ki 3, 4 or
5. To each such r we will associate an ordered triple (p, q, t), where p, q, are the
number of S’s of cardinality 5, 4 and 3 respectively, and we will say that r is a
partition of type (p, q, t).

It is clear from the above considerations that Theorem 2.1 is a direct corollary
of the following theorem"

THEOREM 2.2. Let (p, q, t) be any nonnegative integral solution of the equation
5p +4q + 3t 2 1. Then there exists a zero-sum partition of (Z2 of type (p, q, t).

Before giving the proof of Theorem 2.2, we will need a few preliminary lemmas
and remarks.

LEMMA 2.3. If n is even, then 2n- 1 =-0 (mod 3) and there exists a zero-sum
partition of (Z’)* of type (0, 0, (2- 1)/3).

Proof. Lemma 2.3 is a special case of [4, Lemma 2]. The following proof is
consistent with the other constructions developed in this section. We use induction.
The lemma is clearly true for n 2. We assume the lemma is true for n -2. For each
zero-sum triple ={a, b 6} (a +/7+6 0) in Z-2 form the following four triples
inZ --ZxZ-2"

T1 {00a, 00b, 006}, T2 {01, 10b, 116},

T={Olb, 106, 11a}, T4 {016, 10& 11b}.

In addition, we form the triple To {010, 100, 110}.
Clearly, the above triples are disjoint, have zero sum and partition (Z)*, as can

be seen from Fig. 1.

00

z 01
10
11

0 a b 6

FG.



24 PETER TANNENBAUM

LEMMA 2.4. If n is odd (n >-3) then 2" 1 - 1(mod 3) and there exists a zero-sum
partition of (Z)* of type (0, 1, (2"-5)/3). Moreover, one of the zero-sum triples (say
To) and the zero-sum quadruple (Qo) can be chosen so that To[3Qo=(Z)* (i.e.,
To {ao, bo, Co ao + bo}, Oo {do, ao + do, bo + do, Co + do}).

Proof. For n 3 set To ={001,010, 011}, Oo ={100, 101,110, 111}. Assume the
lemma is true for n- 2, with the partition of (Z-2 )* consisting of o {rio,/70, 6o},
o {d-o, ao + d-o, b-o + d-o, o+ d-o} and 2i {a,, b-, t,} (i 1,. ., (2"-2- 8)/3). Let
o ao + do, fo bo + do, o to + do.

We form the following sets in Z (see Fig. 2)"

To {01io, 10bo, 11o},

T1 {00to, 00do, 00go},

Ta {01go, lOao, 1 l/to},
Ts {00o, llbo, llgo},

77={110, Olfo, lOfo},

Oo {100, lltio, 00bo, 015o},

T2 {01bo, 10go, 11o},

T4 {OOfo, 10eo, l 0’o},

T6 {00ao, 0ldo, 01o},

T8 {010, 10do, lldo}.

00

z 01 Ta
10 Qo
11 T7

T6 Qo T1 T Ts T4 T as in
Lemma 2.3To T_ Oo T6 T6 T7 T3

T To T4 Ts T4 T7 T:
Oo Ts To Ta T2 T3 T5

Z
FIG. 2

A straightforward check shows that these sets have zero sums and partition the
nonzero elements of Zz

2 x (0 LI t0 LI {0}). The remaining elements of (Z)* can be
partitioned into zero-sum triples using the construction of Lemma 2.3.

In addition to Lemmas 2.3, 2.4, the following two remarks are essential.
Remark 1. A key construction we will exploit in the proof of Theorem 2.2 is

based on the fact that under certain "favorable" circumstances, it is very easy to
)* of type (p, q, t) into a zero-sum partition ,change a zero-sum partition r of (Z2

of (Zz)* of type (p + 2, q 1, t- 2). What are these "favorable" circumstances?
Suppose that ,r contains a pair of triples T1 ={xl, x2, xa}, T2={yl, Y2, Y3} and a
quadruple Q {z 1, z2, z3, z4} which satisfy the relation:

(*) Xl+Yl=Zl+Z2.
In this case we can rearrange the elements in T113 T2 I3Q to form the sets P1
{xl, y2, y3, zl, z2} and P2 {x2, x3, yl, za, z4}. Since y2 + ya yl and x2 + x3 xl, it fol-
lows from (.) that P1 and P2 have zero sum.

When the sets T1, T2 and Q satisfy the relation (.) we will say that they form a
pivotal configuration in ,r and will call the operation ,r 9 ({T1, T2, Q} {P1, P2}) a
pivot.

Essential to the proof of Theorem 2.2 will be the fact that we will be able to
construct zero-sum partitions having a large number of disjoint pivotal configurations.
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Remark 2. Let 0-, be the set of all nonnegative integral solutions (p, q, t) of the
equation 5p+4q +3t=2"-1. Define the following equivalence relation on 0-,"

(Pl, ql, t)---(p2, q2, t2) if and only if p2-px 2(q-q2) tx-t2. This equivalence
relation induces a partition of 0-, into equivalence classes. A typical equivalence class
E can be listed in increasing lexicographic order as follows"

E {(po, qo, to), (po + 2, qo- 1, to- 2),..., (po + 2h, qo- h, to- 2h)},

where h min {qo, to/211} (xll denotes integer part of x) and po 0 or 1. The smallest
(in the lexicographic order) element of the equivalence class will be called the class
leader.

Example. The equivalence classes in 0"6 (with class leaders underlined) are:

E1 {(0, 0, 21)},

E2 {(0, 3, 17), (2, 2, 15), (4, 1, 13), (6, 0, 11)},

E3 {(0, 6, 13), (2, 5, 11), (4, 4, 9), (6, 3, 7), (8, 2, 5), (10, 1, 3), (12, 0, 1)},

E4 {(0, 9, 9), (2, 8, 7), (4, 7, 5), (6, 6, 3), (8, 5, 1)},

E5 {(0, 12, 5), (2, 11, 3), (4, 10, 1)},

E6 -{(1, 1, 18), (3, 0, 16)},

E7 {(1, 4, 14), (3, 3, 12), (5, 2, 10"), (7, 1, 8), (9, 0, 6)},

E8 {(1, 7, 10), (3, 6, 8), (5, 5, 6), (7, 4, 4), (9, 3, 2), (11, 2, 0)},

E9 {(1, 10, 6), (3, 9, 4), (5, 8, 2), (7, 7, 0)},

Elo {(1, 13, 2), (3, 12, 0)}.

We are now ready to proceed with the proof of Theorem 2.2.
Proof of Theorem 2.2. Let (Po, qo, to) be the class leader in an equivalence class

")* of type (po, qo, to) andE of 0",. We will construct a zero-sum partition zr of (Z2
having h =min {qo, Ilto/2]l} disjoint pivotal configurations. By Remark 1, performing
h successive pivots will yield zero-sum partitions corresponding to each of the remain-
ing h types in E.

Since (po, qo, to) is a class leader, we have po 0 or 1 (if po => 2, (Po- 2, qo + 1, to + 2)
would precede (Po, qo, to) in the equivalence class). We will consider four cases.

Case 1A. po 0,n even. Here 4qo+ 3to 2" 1. Since n is even, 2" 1 0 (mod 3)
and 2" 1 --- 3 (mod 4). This implies qo =- 0 (mod 3) and to 1 (mod 4). Let qo 3r and
to 4s + 1. Then 2" 1 12r + 12s + 3 and 2"-2-1 3(r + s). We now use Lemma 2.3

,-2). into s +r zero-sum triples 71,to obtain a zero-sum partition of (Z2
Ts+l, Ts+,..

For each i (i 1,... ,s)we construct four zero-sum triples T, Tz, T/, T4
")* using the same construction as in Lemma 2.3 (see Fig. 3). For every otherin (Z
_

element &i in tA=++ 7 we form the zero-sum quadruple Oi {00&i, 01&i, 10&i, 1
It is easy to see that any two triples T#, T (k, 1, 2, 3, 4, k l) can be combined
with any quadruple Oi to form a pivotal configuration and that this procedure can be
repeated as many as rain {3r, 2s} rain {qo, to/211} h times.

It is worth noting that the triple To {010, 100, 110} has yet to be accounted
for in the construction, but since to 4s + 1 is odd, To will never need to appear as
part of a pivotal configuration.
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O0 Til Til Ti

Z 01 To T/2 Ti3 Ti4
10 To T/4 T/2 Ti3
11 To Ti3 Zi4 Zi2

Z-
FIG. 3

Case lB. po 0, n odd, n > 3. (If n 3 then the theorem holds vacuously.) Again,
4qo + 3to 2" 1. Since n is odd, 2" 1 -= 1 (mod 3) and 2" 1 3 (mod 4). This implies
qo-= 1 (mod 3) and to 1 (mod 4). Let qo 3r + 1 and to 4s + 1. We consider two
subcases.

(i) qo 1. We use the partition of (Z)* constructed in Lemma 2.4 and observe
that T1, T2 and Oo form a pivotal configuration (choose x 006o, y 01bo, z 00bo,
Z2-" 010 to satisfy (,)).

,-2 ), into one quadruple (o and triples(ii) qo --> 4. Using Lemma 2.4, partition (Z2
T. We now use an identical construction as in Case 1A, choosing s of the triples Ti

n), and the remaining 3r + 1 > 4 elementsto obtain 4s triples T/1 T/2 T/3 T/4 in (Z2

Z")*a of : to obtain quadruples Oi ={00(i, 01i, 10&i, l l&i}. As in Case 1A, this
construction yields as many as min {3r + 1, 2s} min {qo, Ilto/211} A pivotal configur-
ations.

Case 2A. po 1,n even. Here4qo + 3to= 2"- 6. Sincen is even, 2"-6-= 1 (mod 3)
and 2" -6-=2 (mod 4). This implies qo-= 1 (mod 3) and to=2 (mod 4). Let qo 3r + 1
and to 4s + 2. Using Lemma 2.3 we partition (Z,"-: )* into triples (i 0, 1, , s +
r). We choose one of these triples (say To {a, b, }) and form the following zero-sum
sets in (Z)* (see Fig. 4)"

To1= {10a, 01a, 110}, To {10e, Olb, 11a},

Oo {00e, 01e, 10b, 11b}, Po {00a, 00b, 010, 100, 11e}.

To, To and Oo form a pivotal configuration (10a + 11a 10b + llb). The remaining
qo- 1 3r quadruples and to-2 4s triples are obtained as in Case 1A.

z
O0
O1
10
11

Po Po
Po To1 TOE
Po To Oo
To To2 Oo

Qo

Oo
To:
Po

Z-2

as in Fig. 3

FIG. 4

Case 2B. po 1, n odd, n >3. Here 4qo+3to= 2"-6. Since n is odd, 2"-6--2
(mod 3) and 2"-6-=2 (mod4). This implies qo--2 (mod 3) and to-=2 (mod4). Let
qo =3r+2 and to=4S +2. Using Lemma 2.4, partition (Z-2)* into (o and
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(i=l,...,r+s). Suppose that O0={d,,]’,g}, (d++f+g=0). We form the
following zero sum sets in (Zz)* (see Fig. 5)"

Q0 {00d, 01d, 10d, lid}, Oo2 {00, 01g, 10, lle},

Tox {01f, 100, 11f}, ToE {01g, lOg, 110},

Po={OOf, OOg, 010, lOf, llg}.

Oo
0 f g

O0
O1z
10
11

Qol Qo2 Po Po
Po Qo 002 To To2
To1 Qol 002 Po To2
To2 Qol 002 Tol Po

as in Fig. 3 -
FIG. 5

To1, To2 and Ool form a pivotal configuration (100+ll0=00d+01d), and Qo2
can form a pivotal configuration with any pair of triples Tk, T, (i- 1,..., s;k, l-
1, 2, 3, 4, k #l).

This completes the proof of Theorem 2.1.

3. Partitions of Z. and single error correcting perfect codes. Let G1, , Gt be
finite abelian groups and let W be their direct product W G1 x... Gt. A mixed
group code C is simply a subgroup of W. (If the G’s (i 1,..., l) are known to be
isomorphic then C is usually referred to as a group code.) In the remainder of the
section, C will always denote a mixed group code in W G1 " x Gt. If there exists
a positive integer e such that W is the disjoint union of all spheres with centers in C
and radii e, then C is called an e-error correcting perfect code. (Here the distance
function is the traditional Hamming distance d(,)=l{ilx#y}l where
(x,..., x), f (y,"., y).)

We now restrict our attention to single error correcting perfect codes which we
will refer to as SECP codes. The following theorem establishes the connection between
SECP codes and partitions of a group.

THEOREM 3.1. Let G1, G2, Gt be finite abelian groups, W G
There exists an SECP code in Wifand only if there exist abelian groups G; $1, $2, , Sl
satisfying the following conditions:

(i) G=SlUS2’"U
(ii) S, S {0},
(iii) G isomorphic to S.
A nontrivial decomposition of G satisfying conditions (i), (ii), (iii) is called a group

partition of G of type {G, G2,"’,
The "if" part of Theorem 3.1 was proved by Herzog and Schonheim [3], the

"only if" part by Lindstrom [5].
The following result was originally proved by G. A. Miller [6] and subsequently

by J. W. Young [8] and Herzog and Schonheim [4]:
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THEOREM 3.2. If a finite abelian group G has a group partition G=
$1 t.JSEt.J. .tASt, then G -Z, Si-Z’ (i 1,..., l) ]:or some prime p. (We continue
using the notation Z Zp x... Zp.)

It is easy to see that the following two conditions are necessary for the existence
of a group partition of Zp o type Zp

(A) p"-l=Ei=l(p -1),
(B) mi+mt<-n, (ij,i,f=l,.",l).
Condition (A) follows from a simple counting argument, condition (B) from the

fact that since
is o order

At the end of this section we give an example to show that conditions (A) and
(B) are not sufficient. The problem of finding necessary and sufficient conditions for
the existence of a group partition of Z, is open.

There is a natural connection between group partitions of G and zero-sum
partitions of G*. If G S t.J.. St is a group partition of G then, by Theorem 3.2,
G -Z,, S Z’ and therefore $* is a zero-sum set unless S Z2. In this latter case
Si {0, a} for some a G* and we must have that for all such S’s the union of the
corresponding S/* ’s is itself a zero-sum set.

We will now restrict our attention to the binary case (p- 2) and consider group
partitions of Z"2 Of typeZ’1 Z such that m > 1 (i 1, l). By the previous

Z")*observation, if Z2 S tA U $ is one such partition then 2 S* t3. LI S* is
")* into zero-sum parts. The following two statements are the "groupa partition of (Z

partition" versions of Lemmas 2.3, 2.4 respectively.
COROLLARY 3.3. If n is even then Z has a group partition of type Z,. ., Z

((2" 1)/3) terms).
COROLLARY 3.4. If n is odd thenZ has a group partition of type Z; Z, Z22

((2" 8)/3 terms).
Both of these corollaries follow from the observation that every zero sum triple

")* is isomorphic to (Z22)*, and that a set S in (Zz)* is isomorphicT {a, b, a + b } in (Z2

to (Z2s )* if and only if S is the union of a zero sum triple T {a, b, a + b} and a zero
sum quadruple of the form Q {d, a + d, b + d, a + b + d}.

Using the methods of 2, we have determined all possible group partitions of
Z2 for 2 <_-n <-6 when m > 1.

For n 2 and 3, Z has no nontrivial group partition. For n -4 and 5, Z has
a unique nontrivial group partition and it is given by Corollaries 3.3 and 3.4 respec-
tively. For n 6, Z"2 has nontrivial group partitions for the following five types:

(1) Z,." ",Z (21 terms),

(2) Z3,Z,Z,Z, ,Z22 (14 terms),

(3) Z23, Z23 (6 terms), Z22, Z (7 terms),

(4) Z,..., Z32 (9 terms),

(5) z.., :(16terms).

We conclude this section with the following example’ From conditions (A) and
(B) it would be possible for Z: to have a nontrivial group partition of type Z;
Zs:,.. Z (36 terms). With a simple counting argument we will show, using some
of the concepts developed in this section, that this is impossible. Let g a...a
(a 0 or 1) denote a typical element in Z2 and let X {a s (zS2)*[ax 0}. If So Z22

then we must have So* ={a,/, 6 a +/}. For some (i 1,..., 8) we must have
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that ai, bi and c are not all 0. Without loss of generality assume 1. Since a, b and
6 do not all belong to X, only one of them does, say a. For S--Z32 (i 1,. ,36),
it is easy to see that IS/* XI 3 or 7. Thus, the remaining 126 elements of X (other
than a) must be partitioned into h sets of cardinality 3 and (36-h) sets of cardinality
7. Clearly this is impossible.
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THE OPTIMAL LATTICE QUANTIZER IN THREE DIMENSIONS*

E. S. BARNES" AND N. J. A. SLOANE$

Abstract. The body-centered cubic lattice is shown to have the smallest mean squared error of any
lattice quantizer in three dimensions, assuming that the input to the quantizer has a uniform distribution.

1. Introduction. Let A be a lattice in real three-dimensional Euclidean space R3.
Around each lattice point tea is its Voronoi (or nearest neighbor) region S(t),
consisting of all points of the space that are at least as close to t as to any other lattice

.nt
([1], [2], [5], [14]). The Voronoi regions $(t) are all congruent, and have volume
where D is the determinant of A, i.e. the square of the volume of a fundamental

cell of A. If A is used as a quantizer, for quantizing data that is uniformly distributed
over a large region of R3, its average mean squared error per symbol is given by

1 .[so) ,r.’r d’r

see [5]-[7], [9], [15]. (This formula ignores the fact that points near the boundary
of the input region have irregular Voronoi regions, and so applies to the case when
the number of output levels of the quantizer is very large.) G(A) is a normalized
second moment of $(0), the Voronoi region around the origin, the denominator being
determined by the condition that G(A) should be dimensionless.

It was conjectured by Gersho in [9] that the body-centered cubic lattice D* has
the smallest value of G(A) of any three-dimensional lattice. It is the goal of this paper
to establish that conjecture. Furthermore, we shall see that there is no other lattice
for which G(A) is even a local minimum. Thus our main result is the following:

THEOREM 1. For any three-dimensional lattice A, G(A) >_-19/(192 21/3)
0.0785433 ., with equality if and only if A is equivalent to the body-centered cubic
lattice D. Furthermore, for no other lattice is G(A) a local minimum.

Three (of the infinitely many) lattices which compete with the body-centered
cubic lattice are the face-centered cubic lattice D3, for which G=2-11/3=

0.0787451...; the lattice x/A20)x/7/, where A2 is the hexagonal lattice in the
plane with minimum norm 2, for which G 52/3/36 0.0812227...; and the cubic
lattice 7/3, with G 1/12 =0.0833333.... However, as we shall see, these three
values of G can all be reduced by perturbing the lattices slightly. The Voronoi regions
for D3*, D3, x/A2(x/7/, and 7/3 are respectively truncated octahedra, rhombic
dodecahedra, hexagonal prisms, and cubes (see [5], [9]).

Finally, it is worth pointing out that our results have wider application than to
just uniformly distributed data, because (i) Zador (see [8], [9], [15]) has reduced the
problem of finding the minimal quantization error for data with any integrable density
function to that of solving the uniformly distributed case, and (ii) the so-called
companding techniques for quantizing (see [9], [10]) handle nonuniform data by first
applying a nonlinear transformation, then a uniform quantizer, and finally the inverse
transformation.

The proof of Theorem 1 will be given in 2 and 3. In 2 we first recall some
properties of lattices in 3, in particular the fact that a lattice A can be represented

* Received by the editors December 29, 1981, and in revised form March 22, 1982.
f Department of Pure Mathematics, The University of Adelaide, Adelaide, S.A. 5001, Australia.
$ Mathematics and Statistics Research Center, Bell Laboratories, Murray Hill, New Jersey 07974.

30



OPTIMAL LATTICE OUANTIZER 31

by a vector [pox, P02, P03, P12, P13, P23] with six nonnegative real components. We then
derive a fundamental formula (Theorem 2) which expresses G(A) in terms of the pij.

In 3 we complete the proof by showing that the only local minimum of this expression
for G(A) occurs when the Oq are all equal, which is precisely the case when A is a
body-centered cubic lattice.

2. A formula for G(A). In this paper all vectors are column vectors, written for
example as t=(tl, rE, t3)tr, where tr denotes transpose. As is customary, we shall
represent lattices by their associated quadratic forms (see [4], [11]). If a lattice A in
R3 is spanned by three vectors t(1)=(t,t,ta)tr, ",t(3)=(t,t,t)tr, then f(x)-
f(xl, xE, xa)=xtr Ax is a quadratic form associated with A, where A- Ttr T and T
has columns t(, t (2), ’(3). A typical lattice point can be described in three ways, either
by its Euclidean coordinates t (h, t2, t3)tr, its x-coordinates x (x 1, x2, x3)tr, where
xl, x2, x3 are integers satisfying t- Tx, or by its y-coordinates y (yl, Y2, Y3)tr, given
by y Ax. The norm, or squared distance from the origin, of this point is

(2) t" t ttrt xtrAx f(x) f-l(y ),

where f-l(x)= xtrA-lx is the inverse form of f.
Two lattices A and M are equivalent, written A M, if one can be obtained from

the other by a rotation and change of scale. Two forms [(x)= xtrAx and g(x)= xtrBx
are equivalent if B UtrAU, where U is integral and det U +/- 1 [4], [11].

If A is a lattice in R3, Voronoi (see [1], [11], [13, p. 150]) has shown that A has
a quadratic form of the shape

f(Xl, X2, X3)-- P01X -[- P02X -["iO03X 32 +1012(Xl-- X2)2 +P13(Xl--X3)2 d-lO23(X2-- X3)2

associated with it, where the pij are nonnegative. If we define Xo 0, Pii 0, and pij

for >/’, this may be written more symmetrically as

(3) f(xl, X2, X3) [gij(Xi X])2.

Thus A is represented by the six nonnegative parameters [po, po2, po3, p2, p3, p23].
In general A has 24 such representations, corresponding to the 4! permutations of
the subscripts of the pi [1, Lem. 2.1]; multiplying f by a scalar leads to an equivalent
lattice. For example, applying the permutation (01), we find that [pol, p12, p3, po2,

po3, p23] also represents A.
For later reference we mention that the body-centered cubic lattice D3* may be

represented by the parameters [1, 1, 1, 1, 1, 1], D3 by [0, 1, 1, 1, 1, 0] (more generally
with any pair pq Pkt O, where i,/" and k, are disjoint subscripts, and all other pij

equal), 7/3 by [1, 1, 1, 0, 0, 0] for example, and x/A20)/-7/by [3, 3, 5, 3, 0, 0].
Our main result in this section is the following"
THEOREM 2. The average mean squared error of A (or the normalized second

moment of the Voronoi region S(0)) is given by

(4) G(A)

where

D’SI+2S2+K
36D4/3

(4) (3)

D det A Y. Jg01Jg02O03 + X P01jgE3(P02 + J903 "+" J912 "+" 013),

S1 p01 --b p02 + p03 + p12 +p13 + p23,

$2 polpo2013p23 + polpo3012p23 at- po2po3012p13,
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and

(4)
g ,, 0olPo20o3(012.4- 013 q- 023).

We are using the standard notation for symmetric functions, so that E(4)
001002003,

for example, is an abbreviation for p01002003 + p010203 + p0202023 +p03013023, and
the superscript indicates the number of distinct summands. The formula for det A
was given in [1], and the quantity K also occurs there. In the proof of Theorem 2 we
shall make considerable use of the information about the Voronoi regions of A given
in [1], and in 3 the proof of Theorem I is modeled on the proof of the main
result in [1] (although the techniques used are quite different).

Proof of Theorem 2. The matrix A associated with the quadratic form (3) is

A -012 002+012+023 -023

013 --023 P03 + 013 q- 02

and det A det A D gives (5). The norm of a vector (see (2)) is best expressed in
terms of its y-coordinates, and is given by

=-{(oo+oo+oo)yo + (oooo +ooo+ooo)y/-l(r

(6) q-(Oolpo3 -’t- P01013 "1- 003013)Y 2 -I-(001002 "t" 001012 "F’ 002012)Y 32

+P03P 12(Y -F y2)2 -F P02P 13(Y + Y3)2 -b P01P23(Y2 q-

where we have set y0 =-yl-y2-y3.
The Voronoi region S(0) is described in [1]. It is a (possibly degenerate) truncated

octahedron, with in general 14 faces, given by
(3)

F/:2yi Y. Pi,
li

(2)

Fii :2(yi + yi) (Pi + Pi),

(1)

F/ik :2(yi+yi+yk) Y. (Pi+PiI+Pk),
li,i,k

where all subscripts and summations run from 0 to 3, and the subscripts on F are
unordered. There are in general 24 vertices Vik, where the subscripts are an ordered
3-subset of {0, 1, 2, 3}. For example, the vertex 1)123 lies at the intersection of the faces
El, F12 and F123 (see [1, Eq. (2.4)]). The Voronoi region is sketched in Fig. 1.

If P is any polyhedron in R3, we define its unnormalized second moment U(P),
its moment of inertia I(P), and its normalized second moment G(P) (all about the
origin) by

U(P)= Ip ’" ’d’,

I(P)
u(P)

Volume (P)’
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FI3

FI2

FI23

FOI3

FI

130

310

312

FOI
013

012

F3 321

301

120

31

Y302
201

I0

320

230

021

FO

023

203 F02

FOI2

023

F2

F23

FIG. 1. Voronoi region S(O) for a three-dimensional lattice, showing the 14 faces Fi, Fii, Fiik and the 24
vertices viik (only the subscripts are given). The faces Fi, Fkl and the faces Fii, Fk are parallel, where i, j, k,
is any permutation of 0, 1, 2, 3.

and

1 U(P)
G(P)

Volume (p)5/3.

Then the theorem asserts that G(S(O)) is given by (4). To compute G(S(O)) we shall
dissect S(0) into 60 tetrahedra, and use the fact that there is an explicit formula (see
for example [5]) for the moment of inertia of a tetrahedron. In fact, if T is a tetrahedron
with vertices 0, Pl, P2, P3 then its barycenter is q (Pl -I-P2 +p3)/4, and

(7) I(T) q. q + 2-(]91 ]91 -J-V2 "i2 -l-V3

If 0, ]Wl, l2, lW3 are the y-coordinates of the vertices, then T has volume
(6x/)-’ det (P, P2, P3).

We first consider a hexagonal face, say Fx, and divide it into six triangles meeting
at the center (m 1) of the face. By joining these triangles to 0 we form six tetrahedra.
Let us analyze one of these tetrahedra, say the tetrahedron T12 with vertices
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0, m :1, v:1.o, v:123. The y-coordinates for its vertices are easily found to be

0: (0, 0, 0),

m :1" 1/2(po:1 +012 +p:13, -012, -p:13),

13120" 21-(1001 -F p12-F p13, Po2-P12-F p23, --003--013--023),

/3123" &(Pol-Fp12-Fp13, Po2--P12-Fp23, P03--P13--P23).

(The x-coordinates for m are (1/2, 0, 0).) The norms of these vectors can be obtained
from (6). It turns out that

t/l //I 41-(P01 q- 012 q- P13),

I
(8) v:1o v :1.o {D. S:1-K 4A2A3},

1
(9) v:123" v:123 -/ {D ’:1-K -4AIA3},

where D, S’ and K have already been defined (see Theorem 1) and

A P01023, A 2 Po2P :13, A 3 P030:12.

(Formulas (8) and (9) are given in [1].) To find the moment of inertia/(T12), we
compute the barycenter q 1/4(m + v:12o + v:123) and use (7), eventually obtaining

1
1(T:12) {D(60o1+30o2+po3+60:12+6013+3023)

40D

--001002003(3012 + 013 + 023) 3001002012(013 + 023)

--1001003(012013 -t-41012023 + 1013023)--/902003(4012013 -t-/912023 "+" 1013023)

30120:13023(001 + 002 + 003)}.

Also the volume of T:12 is

1

24/ 003(002 + 023)(0o:1 + 0:12 + 0:13).

The six tetrahedra meeting at the face F:1 are"

Name

T12

Tlo

T13
TI6

Vertices

(0, 111, 11120, I)123)
(0, m, Vo2, V,2o)
(0, ml, Vo3, Vlo2)
(O, ml, Vl3O, VlO3)
(0, m,, v3z, V,3o)
(0, ml, I)123, 1)132)

We find that I(T:1:) I(T:12), I(T:1x) I(T:13) ’n’23I(T:12), I(T16) I(T:1o) "n’o2I(T12),
where crab denotes the transposition (ab) applied to the subscripts of the Pit (e.g.
ro2(023) 003). Up to this point the calculations may be performed by hand. But to
proceed further a computer is desirable. We used the symbolic manipulation program
Altran [3]. The contribution to the unnormalized second moment U($(O)) from all
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six tetrahedra meeting the face F1 is

(6)

Y’. Volume (Tij)I (Tij) U1 (say).

The total contribution from all eight hexagonal faces is then

Uhex 2(U1 "- "//’01U1 q- "/]’12 U1 - ’r/’13 U1).

It remains to consider the quadrilateral faces. It is simplest to divide each of them
into two triangles. For example, we divide the quadrilateral face F12 into the triangles
13123, /)120, 13213 and 13120, 13213, 13210. Proceeding as before, we find that the moments
of inertia of the corresponding tetrahedra 0, 13123, 13120, 13213 and 0, 13120, 13213, 13210 are
both equal to

1
20D

{D (3pOl + 3po2 +Po3 +/)12 -I- 3013 + 3023) -K 2A 1A3- 2A2A3},

and that both tetrahedra have volume

1

12x/
O0301.(p01 + 002 + 013 + 023).

Twice the product of these two expressions gives the contribution U12 to U(S(O))
from the face F12. The total contribution from all six quadrilateral faces is then

Uquad 2(U12 + U23 -I- U13) 2(U12 + 71" 13 U12 -t- ,/r23 U12).

Finally we use Altran to compute U(S(O))=Uhx+Uqu,d, and G(S(0))=
U(S(O))/3D 5/6. After a factor D is removed from the numerator, the result is the
right-hand side of (4), which proves Theorem 2. [3

3. Minimizing G(A). We complete the proof of Theorem 1 by establishing the
following result:

THEOREM 3. The only local minimum of the right-hand side of (4) subfect to the
constraints Oi >-- 0 (for all i, ]) and D 0 occurs when all the Pi are equal.

Proof. Our method is the one used in [1], namely, to exhibit small variations in
the Oi which will reduce the right-hand side of (4) unless all the Oi are equal. For
convenience we define

[1001, 1002, 1003, 012, 1013, 023],

G(O) (D $1 + 2S2 +K)/36D4/3,
N =D. Sl+2S2+K.

The proof will be divided into several steps.
Step 3.1. D3, 4A2 (497] and R3

ale not local minima. In fact, with e small
and positive, when

0 =[e, 1, 1, 1, 1, e],

[3, 3, 5, 3, e, 0],

O [1, 1, 1, e, 0, 0],
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So in each case a small variation in 0 will reduce G().
Step 3.2. D is a local minimum. Since the pj are homogeneous coordinates

for A, the effect of any variation of the 0j on G is the same as the effect of a
variation in which one of the &j, say pol, is held constant. Temporarily setting
p02=x2, po3=X3,’", 023=x6, we find that the first partial derivatives
OG/Oxi (i 2,..., 6) vanish at [1, 1, 1, 1, 1, 1], while the matrix of second partial
derivatives, (02G/OxOxj)(i, 2,. ., 6), is equal to a constant times

2! -1 -1 -16 -1
20 -16 -1 -1

-16 20 -1 -1
-16 -1 -1 20 -1
-1 -1 -1 -1 20

Since the eigenvalues of this matrix are positive, the matrix itself is positive definite,
and [1, 1, 1, 1, 1, 1] is a local minimum of G.

It remains to show that there is no other local minimum. From now on we assume
that # ol,’ ", t523] is a local minimum, and eventually deduce that all the tS must
be equal.

Step 3.3. Not more than two may be zero. There are essentially only two cases
in which three or more of the tS may be zero while D is nonzero, namely (a)
01 02 12 0, and (b) t5ol 02 ff23 0.

Case (a) Suppose ti [0, 0, 1, 0, y, z] with y > 0, z > 0. At/i we must have

OG OG
OP03 OP13 0P23

Now OG/Opla-OG/OpEa=yz(y-z)(y+z+l) at ti, so y=z. Then OG/Opo3
-2(y 1)y 4, so y z 1, and therefore i [0, 0, 1, 0, 1, 1]. But this is 7/3, which we
have already seen is not a local minimum. Case (b) is almost identical and is omitted.

Step 3.4. Some variations of the Psi that fix D. We shall generally use 3R to denote
the first order variation in a function R (p) resulting from small variations 8pi. Let
Vo denote the following variation of the pj"

pol-> pol,

P02 ’’> P02- ep01,

P03 -’> P03 d- ePo1,

P12 " P12 q- e (PO1-1- 012 -b P13),

013 - P13 e (001 q- 012 q- 013),

023 "> 023 h- e (/912- 013),

where e is small. When applying Vo, we must be careful to ensure that the pi remain
nonnegative. For example, we may not apply Vo with e positive if poE 0 and 0ol > 0,
since the new value of POE would be negative. The variation Vo has the useful property
that it fixes D to the first order in e. To see this, we note that

OD
17"0 +0"1 + hE -1-

00ol

etc., where

O’i PikPil q" PikPkl nt" PilPkl,
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i,/’, k, being a permutation of 0, 1, 2, 3 (see [1, p. 297]). Then the fact that

(6) OD

is an immediate consequence of the identity

O’2/912 -[- h 2(P01 + P12) 0"30 13 "+- h 3(/901 + P13).

Thus the denominator of G is fixed by Vo to the first order. The numerator is
increased by

(o) a(N) -2e]o,

where

(11)
Jo p03p12{(p01 + p13)2- pl2(pol + p13)}

-p02p 13{(p01 + p2)2 p3(p01 + p2)} -+- p0p12p3(p3

Although this formula (and others such as (4), (12) and (19)) could have been obtained
by hand, it was actually derived with the aid of the interactive symbolic manipulation
program Macsyma [12]. Nevertheless, the computer did not produce (11) in its present
form. Considerable manipulation by hand is almost always required to transform the
computer’s output into the most appropriate form. This is especially true of (4), (12)
and (19).

The expression J0 is linear in p02 and 003, does not involve 023, and goes into -Jo
under 7r23. Other variations of the pij can be obtained from Vo by applying suitable
permutations of the subscripts. We shall require the transformations

which are obtained by applying the permutations

"/7’12, 71"01, "7/’02, rro2rrol=(012), (021), (132),

respectively to Vo. Under V(i 1, , 6) we have 6(N) -2eJ, where J is obtained
from Jo by applying the permutation that produced V from Vo. To be quite explicit
we write out V1 and J in full:

V Po Po ep02,

P02 "-) P02,

P03 "+ P03 + EP02,

P2 012 + e (Po2 + P2 + 023),

013 " 013 + 8 (P 12 023),

P23 "-> P23 e (P02 + 012 + P23),

I1 003012{(P02 + 023)2 012(002 + 023)}

--001023{(002 +P 12)2 023(002 -]" P 12)} "+" 002012023(/923 P 12).

Step 3.5. Two fij cannot be simultaneously zero. Again there are essentially only
two cases" (a) tSo t5_3 0, with disjoint subscripts, or (b) tim t5o2 0, with overlap-
ping subscripts.
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Case (a). We assume t5ol "/23"-0, with the remaining tij >0. V1 is a valid
variation if e < 0, and then

8 (N) (-2e)/02ff03/12(/02 --/12).

V4 is also valid if e < 0, and

Since these variations have opposite signs, t is not a local minimum unless to:
Applying the permutations (23) and (03)(12) (which leave the assumption t5ol t:3 0
invariant) we obtain the further necessary conditions to3 t3 and 53 t52. Thus
is a multiple of [0, 1, 1, 1, 1, 0], which we have seen is not a local minimum.

Case (b). With to tSo: 0 and the other if, > 0, we may apply the variation Vo
with an e of either sign, and so t(N)=-2efo=-2eo323(133-2)=O, hence
12 ff13. Similarly Vx leads to 12 23. Then OG/Opo3 0 gives 12 , SO [ is a
multiple of [0, 0, 1, 53-, , 53-]. But this is x/A2094Z, which is also not a local minimum.

Step 3.6. No single may be zero. We may assume t5ol 0, the other tSi >0.
Using Vo we obtain Jo 0, or 12 ff13, and similarly t502 fro3 from V2. But
[0,/02,/02,/12,/12,/23] is not a local minimum. For ifwe evaluate G at [e, v, v, 1, 1, z]
we find G Go- eG1 "" higher order terms, where

(v + 1)z 2 + (v 1):(v + 3z + 1)
G1 108" 21/3/34/3(/2 q-2z + 1)4/3

>0.

Step 3.7. The path lemma and its consequences. We may now assume that all
are greater than zero. Then all the variations Vo,"’, V6 may be used without
restriction. Certainly we must have E _a__ (J3 +Y4)= 0 at t. But E may be written as

E o .(Oo +oo)(o3 +o)(oo +oo-o
(12)

+o6oo+)6Oo-)+o6Oo+)(o-).
Therefore if tox 13 we must have if02 23, while tSoa <--t53 implies 02 13. We
express this in words by saying that, of the two paths 0-1-3 and 0-2-3 in Fig. 2, one
must rise and the other must fall (where rise means <=, and fall means -> ). This holds
between any pair of nodes, and so we may deduce"

LEMMA 1. (the path lemma). In Fig. 2, of the two paths i-k-f and i-l-j between
any pair of nodes i, f, one must rise and the other must fall.

Let

be an abbreviation for the inequalities >_-1:, >--o, o: >--. and 5o->-o.

0 2

3

FIG. 2
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LEMMA 2. Without loss of generality we may assume that

Pro@ Without loss of generality, no 0 is larger than 53. By applying Lemma
1 to the paths between nodes 0&l, 0&3, 1&2, and 2&3 we deduce that

Consideration of the remaining pairs 0&2 and 1&3, and applying the transposition
(13) if necessary, then leads to the desired conclusion.

LEMMA 3. By suitably hbeling the i, we may assume that either

a o2 12 oa 23 o
or

Proof. We may assume that ff13 is the largest tij, and then by Lemma 2 the second
largest is t502, corresponding to the edge in Fig. 2 that does not meet 13. Using (02)
(13) we may assume that t523=>tol, and finally there are two possibilities for the
ranking of t12 and t5o3. U

Step 3.8. Two cannot be equal unless A is equivalent to D’. The subscripts
either overlap or are disjoint.

Case (a). If they overlap, we may assume that tSox=tSx3 =1. Let ti=
[1, v, w,x, 1, z]. Then E =0 becomes (z-v)(vxz +vx +2vz +xz +x)=0, so v =z;
J6=v(v-1)(v+4w+l)=O implies v=l; J2=0 implies wx+w-2x=O; Jx=0
implies wx 2w + x 0; and hence v w x z 1, which is D.

If the equal pi have disjoint subscripts, we shall invoke Lemma 3, and therefore
there are three possibilities to consider.

Case (b), tSox t523. Let [1, v, w, x, y, 1], where by Lemma 3 we have y >= v ->

{x, w} >-1. If any of these are equal we can apply Case (a), and so we may assume
that y >v >{x, w}>l. By solving J3=0 we express v in terms of x and y, and
substituting this into J4 0 leads to the equation

(13) (y- 1)((y -x)(xy +y +x)+y +x)(x2y2+3xy2+2x2y +2y2-2y +x2-x) 0

(found by Macsyma). However, all three factors in (13) are visibly positive, so this
case cannot occur.

Case (c), to2 t513. Let ti [u, 1, w, x, 1, z], where by Lemma 3 and Case (a) we
may assume 1 >{x, w} > z > u >0. Applying the permutation (032) to (13) (or alterna-
tively eliminating w and z from Jo 0, J3 0 and J_ 0) leads us to

-(1 -x)(ux(x u) + u(1- u) +x + x)
(14)

x (uZx z + 3ux z + 2u’x + 2x z 2x + u z u) O.

The first two factors in (14) are visibly positive, so

(15) uZx 2 + 3ux z + 2uZx + 2x:- 2x + u-u O.

Similarly applying the transposition (03) to (13) (or eliminating w and z from Jo 0,
J3 0 and J4 0) leads us to

(16) u2x 2 + 2ux 2 + 3u2x +x2 x + 2u 2 2u O.
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Then (15)-(16) gives (x u)(ux + x + u 1) 0, hence x (1 u)/ (1 + u), and from
(16) we obtain u 0 or u 1, a contradiction.

Case (d), tio3 t512. Let [u, v, 1, 1, y, z], where we may assume y > v > 1 > z >
u >0. Applying (0321) to (13) (or eliminating y and z from J2=0, J5=0, J0=0)
leads us to

(v 1)(uv (v u + (v 2- u 2) + v + u )(u2v + u (3v- 1) + 2uZv + 2v (v 1) + u) 0,

which is impossible since all three factors are positive.
Step 3.8. The remaining cases,

(17) t513 > t502 > t52 > t503 > t523 > tS0 > 0

and

(18) 3>t02 >03 > >z3 >o > 0,

are impossible. By Lemma 3 these are the only remaining cases. We set /i
[u, v, w, x, y, 1] where y > x > 1 > u > 0. By showing that this is impossible, we rule
out both (17) and (18). As in Case (b) of the previous step, we solve J3--0 for v and
substitute into J4 0. The numerator of the resulting expression is equal to -u (y -u)
times

{( y4X4-- y3X5 + (2y4X 3U 2y 3X4U + (3y4X 3- 3y:x 5)
+(6y 4xu 2y 3x 3u 2- 3yg-x4u -t- (y3x3- y :Zx 4)
+(3yx-3yx 5) + (6y 4xu -6y 3x 2u 2) + (6y 3x :u -4yx3u :z) + (8y 2x 3u -6y3xu 2)
+(2y 3X :z- 2yx 4) + (y4X X 5) + (9yxu xZu 3 3yxu) + (7y 3xu 2y2u 3 3yxu 3)

(19) +(2y4U--y:ZXU:)+(y3X3U + 2yX4U + yX3U:z+X’U + 5yX3U +X3U:Z)}.
The terms in parentheses are all visibly positive, and so 8(N) cannot vanish, a
contradiction.

This completes the proof of Theorem 3 and therefore of Theorem 1.
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University at Columbus and Bell Laboratories for their hospitality and support during
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AN OPTIMAL DIAGONAL TREE CODE*

S. CHAIKEN,’ A. K. DEWDNEY: AND P. J. SLATER

Abstract. It has been observed that not all the entries of M(T), the distance matrix for a tree T, are
necessary to determine T uniquely. For example, the submatrix of distances between end-vertices uniquely
determines T. In this paper it is shown when T is canonically ordered, 2n- 3 of the distances between the
n end-vertices suffice for this determination. It is shown that 2n- 3 is the minimum number of distances
with this property.

Linear algorithms for finding such a set of distances (encoding), given the tree, and for finding a tree
(decoding), given the distances, are described.

1. Introduction. The matrix M of intervertex distances of a graph has a number
of interesting properties. As Smolenskii [6] and Zaretskii [8] observed, if the graph,
is a tree then the submatrix of M consisting only of the distances between end-vertices
suffices to determine the tree uniquely. In [2] it was observed by one of us that if n

2is the number of end-vertices in a canonically ordered tree, then all but 2n of the n
entries can be removed from the latter matrix, and the ordered tree would still be
uniquely determined. A natural question to ask is the following. What is the fewest
number of entries from M upon which one can base a code to uniquely represent T?
Here it is shown that 2n -3 entries are sufficient and, in a sense, necessary.

In the next section, an optimal diagonal code for a tree is defined and proved to
be minimal. In the following section we describe two algorithms. The first algorithm,
called CODE, labels the end-vertices of an arbitrary tree T in a canonical way. The
resulting labelling, by the integers 1, 2,..., n results in the set of distances

d(1, 2), d(2, 3), d(1, 3), d(3, 4), d(1, 4),..., d(i, + 1), d(1, + 1), ,
d(l, n 1), d(n 1, n), d(1, n).

These (2n- 3) distances comprise a "diagonal" code [2] since they form one super-
diagonal and the top row of the distance matrix based on this labelling. The second
algorithm, called DECODE, converts a set of distances of this type into a tree. Both
algorithms have linear worst-case time complexity.

In the concluding section of the paper, we compare the improved diagonal tree
code with the other codes discussed in Read’s survey article [5]. A case is made for
the superiority in compactness of the improved diagonal code over all of these.

2. Definitions and theory. Let the end-vertices of a tree T be labelled with the
integers 1, 2,..., n, where n is the number of end-vertices. Where convenient, we
shall refer to these vertices by their labels. Otherwise, these and other vertices will
be given names such as u, v, w, and so on.

Any two vertices u and v of T are joined by a unique path, denoted by P(u, v).
The distance, d(u, v), between u and v in T is the number of edges in P(u, v). The
matrix of distances

D (T) (d,i),
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where dij d (i,/’), 1 _-< i,/" _-< n, will be called the distal matrix to distinguish it from the
(larger) distance matrix consisting of all the distances in T. Note that dij dii and d 0.

Given any three end-vertices i,/’, k of a tree labelled as above, there is a single
vertex which lies on all three paths P(i, ), P(i, k), P(j, k). This vertex is called the
hub of i,/’, k. Given a single end-vertex of T, there is, moreover, at most one vertex
closest to and having degree 3 or more. This vertex, if it exists, is called the vertex

of attachment of i.
In Fig. 1 below is shown an end-labelled tree T and its distal matrix. Only the

upper triangular portion of D (T) is shown, the matrix being symmetric and the main
diagonal consisting only of zeros.

4

4 5 2 5 5

3 4 3 3

5 2 2

5 5

2

FIG. 1. An end-labelled tree and its distal matrix.

In [2], a diagonal ordering for the vertices 1, 2, , n was defined as a permutation
P1, P2, , P, of 1, 2, , n such that the hub of each triple Pi-1, P, P/I is the vertex
of attachment of Pi for 1, 2,..., n, subscripts being taken modulo n. Evidently,
the ordering 1, 2, 3, 4, 5, 6 above is not a diagonal ordering since the hub v of 2, 3,
4 is not the vertex of attachment w of 3. However, if the end-vertices are listed in
the order

1,3,6,5,2,4

then it is easy to check that this is, in fact, a diagonal ordering of the end-vertices
of T. The diagonal code to which this ordering gives rise is

4,2,4,2,4,3,3,3,2.

As shown in [2], if a tree is embedded in the plane and its vertices numbered in,
say, clockwise order, the resulting ordering is a diagonal ordering. In [2], however,
the corresponding diagonal code had 2n entries. The one we are about to define has
2n 3 entries.

In either case, the resulting sequence of numbers is not a real "code" unless the
correspondence between (nonisomorphic) trees and their codes is bi-unique. Thus,
some provision is made for first embedding a given tree in the plane canonically, as
was done in [2], and then selecting a starting vertex. Such a "starting point" is more
critical to the formation of the optimal diagonal code discussed here since cyclic
permutations of the resulting clockwise sequence may not even be a diagonal code
at all! However, the process of canonically embedding a tree in the plane and of
selecting a starting vertex is easily carried out and is described in the next section.
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Let T be a plane tree with one of its end-vertices v designated as "1". Numbering
the vertices in clockwise fashion starting at v results in a diagonal ordering called the
clockwise numbering at v and the sequence

d(1, 3), d(2, 3), d(1, 3), d(3, 4), d(1, 4),..., d(i, + 1), d(1, + 1),. ,
d(1, n 1), d(n 1, n), d(1, n)

of 2n- 3 distances is called the optimal diagonal code of T. We now prove two
theorems: the first shows that the optimal diagonal code corresponds to only one
plane tree/vertex pair while the second theorem shows that fewer than 2n 3 distances
will not suffice to do this.

THEOREM 1. If (T, v) and (T’, v’) are two plane tree/vertex pairs such that T and
T’ both have the same optimal diagonal code, then there is an isomorphism between T
and T’ which preserves the clockwise numbering.

Proof. The proof is by induction on the number n of end-vertices in T. If n 2
then T is a path and its optimal diagonal code is a single, positive integer, so that T’
must be a path of the same length and the theorem follows immediately. If n > 2,
remove the paths from n to its vertices of attachment x and x’ in T and T’, respectively.
The optimal diagonal code for the resulting trees T and T’ is now

d(1, 2), d(2, 3),..., d(i, i+l), d(1, i+1),..., d(1, n-l)

and, by the induction hypothesis, there is an isomorphsim between and 7’ which
preserves the clockwise numbering. The distances d (1, x), d (n 1, x) and d (n, x) may
be expressed as

d(1, x)= 1/2(d(1, n 1)+d(1, n)-d(n 1, n)),

d(n 1, x)= 2X-(d(n 1, n)+d(1, n 1)-d(1, n)),

1/2(d(nd(n,x)= -1, n)+d(1, n)-d(1 n 1)),

so that in each case the distances are uniquely determined by the integers in the code.
Since the same conclusion holds for both T and T’, it follows that the isomorphism
between 5V and ’ maps x into x’ and the isomorphism is extended to one between
T and T’ by re-attaching paths of length d(n, x)= d(n, x’) at x and x’. Clearly, the
resulting isomorphism continues to preserve the diagonal labelling. This completes
the proof of the theorem.

THEOREM 2. LetK be a fixed set of k pairs ofsubscripts from among {1, 2,. ., n }.
If k < 2n -3, then there are two plane tree pairs (T, v) and (T’, v’) such that if
T and T’ are given a clockwise numbering at v and v’, then

(a) The distances {d (i, )" (i, ) K} will be the same in both T and T’, but
(b) T and T’ will be nonisomorphic.
Proof. Let be an arbitrarily chosen plane tree with n vertices of degree 1, the

remaining vertices having degree 3. It is not hard to see that T has 2n- 3 edges. Let
these be numbered 1, 2,..., 2n -3 in some arbitrary but fixed manner and, selecting
an end-vertex v of 7, let 5V be numbered clockwise at v. It is now possible to form
the (.)x (2n-3) matrix P(7) whose i/’th entry is a 1 if the ith distance among all ()
possible end-vertex distances includes the/’th edge in its corresponding path. The rows
of P(7) may be regarded as (2n-3)-vectors over Z. They generate a space t/ of
dimension 2n -3 since, in fact, the vectors which correspond to the distances selected
for the optimal diagonal code for (7, v) are linearly independent. On the other hand,
the vectors corresponding to the set K generate a subspace of dimension less than
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2n- 3, whence there exists a nonzero vector in with integer components that is
orthogonal to the k vectors in K. Let this vector be R (rl, r., , r2n-3) and define
r max {Iril" 1, 2,..., 2n- 3}. We may now construct the two trees T and T’ of
the theorem from 7 as follows. The tree T is obtained from 7 by replacing each
edge by a path of length r. The tree T’ is obtained from T by replacing the ith edge
by a path of length r + ri, (i 1, 2, , 2n 3).

Let (i, f) be an arbitrary pair in K and suppose that the row vector of P(7)
corresponding to this pair is S (s 1, s., , sn-3). Then the distance d (i, f) from to
/" in T is given by the expression

2n-3

rsl.
l=l

On the other hand, the distance d’(i, f) from to f in T’ is given by

2n-3 2n-3 2n-3

d’(i,f)= E (r+rl)st . rsl+ ’. rlSl.
/=1 /=1 /=1

Since R is orthogonal to $, however, the second sum equals 0. It follows that
d’(1,/’) d(i, f) for every pair (i,/’) in K. Since T and T’ do not have the same numbers
of vertices, they cannot be isomorphic. This establishes the result.

It can now be seen in precisely what sense the optimal diagonal code may be
regarded as "optimal"; if one starts with a plane tree/vertex pair, it has been shown
that one cannot recover the tree uniquely from fewer than 2n- 3 of its end-vertex
distances. Our argument also establishes that at least 2n- 3 end-vertex distances are
needed to recover uniquely an arbitrary (nonplane) tree. However, it can be shown
that all () end-vertex distances are required to recover an arbitrary tree. This point
will be taken up in a future publication.

3. Coding and decoding algorithms. The first algorithm discussed in this section
is called CODE and transforms an arbitrary (nonplane) tree into an optimal diagonal
code which is clearly unique to the tree. The algorithm thus amounts to a definition
of the optimal diagonal code of a tree. It consists of two subalgorithms. The first of
these is an efficient adaptation of Read’s algorithm [5] which embeds a tree canonically
in the plane. This embedding results automatically in a "leftmost" end-vertex which,
in the second subalgorithm, receives the number "1".

Let a tree T be given by a system of linked lists. The formation of a canonically
embedded plane version of T involves two steps (1 and 2 below), described in only
enough detail to enable an interested reader to write the appropriate algorithm after
reading [1, p. 176 tt.] using these steps as a guide. In what follows T has m vertices;
n of these are end-vertices.

1. Finding the center of T. The center of T consists of those vertices the maximum
of whose distances from end-vertices is a minimum. A well-known result [3, p. 35]
asserts that the center of T consists of a single vertex or two adjacent vertices. A
depth-first search of T (on m vertices) can be accomplished in time O(m) [1, p. 178]
and such a search pattern enables one to find the center of T by keeping track of the
maximum distance to an end-vertex at each internal vertex. Every time the depth-first
search backs up to a vertex v for the last time, the maximum of the distances along
each branch is taken as the distance associated with the branch defined by vertex v
at the next "higher" vertex. When this process is complete, all maximum distances
outward from the starting vertex u will be known. The center of T will lie on the
branch of maximum distance at u. Moving along this branch from u, two things are
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done at each vertex v encountered: a) the maximum distance d along the branch at
v containing u is calculated, and b) this distance is compared with the maximum
distance along the other branches at v. If the two maxima are equal, then the center
ot the tree consists of v alone and the algorithm halts. If the two are not equal then
continue to the next vertex v’ lying on the branch of maximum distance at v. If v is
revisited following an examination of v’, then the center ot the tree consists of v and
v’ together and the algorithm halts. Clearly, it requires at most O(m) additional steps
to locate the center from u.

2. Embedding the subtrees at the center o T. If T has a one-vertex center at v,
say, then T may be written as the union of subtrees, one defined by each vertex
adjacent to v. If T has a two-vertex center, then T may be written as the union of
two subtrees, one defined by each vertex in the center. These possibilities are illustrated
in Fig. 2.

T1 T2
T T2 T

(a) (b)

FIG. 2. The subtrees at (a) a one-vertex center and (b) a two-vertex center.

A depth-first search is again carried out on T, this time starting at the top node
of each of the subtrees defined above. The binary code of a rooted tree (T’, v) is
defined recursively as the binary code 0C1C2".. Cp 1, where the subtree codes Ci of
the subtrees T of T’ at v are taken in nondescending order as binary integers. It is
easy to compute such a code as the tree is being searched. At each vertex, however,
information about the ordering of the branches imposed by the coding convention
must be stored. This ordering determines the plane embedding of T. Thus, when the
binary code of each subtree T’ Ti has been computed, the subtrees T are themselves
arranged in nondecreasing code order and the canonical embedding procedure of T
itself is complete. Depth-first construction and lexicographic sort [1, p. 77 tt.] can
ensure a completion time of O(m) steps.

The second subalgorithm of CODE mentioned at the beginning of this section
takes the canonical plane embedding of T obtained by the first subalgorithm, i.e.,
steps 1 and 2 above, and computes its optimal diagonal code.

3. The optimal diagonal code of T. Once again T is given a depth-first search
but this time the order of visitation is determined by the left-to-right embedding order
of the plane version of T produced by the first subalgorithm. As the depth-first search
proceeds, dl, the distance from vertex 1, and d2, the distance from the last end-vertex,
are kept track of. When the search begins at vertex 1, d and d2 are initialized to
zero. Whenever an edge is traversed in the forward direction, d and d2 are incre-
mented. Whenever an edge is traversed in the reverse direction, that is, when the
search backs up, d is decremented and d2 is incremented. When end-vertex 2 is
reached, d is output and d2 is set to zero. Whenever an end-vertex after vertex 2 is
reached, d2 and d in order are output and then d2 is set to zero. The search may
terminate after end-vertex n is processed.
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It is easy to verify by induction that whenever an edge is traversed, distances d
and d2 are updated correctly. Notice that the transversal direction reverses each time
an end-vertex is encountered and each time the hub of vertex 1, an end-vertex v, and
the next end-vertex v + 1 is encountered.

As each new end-vertex is visited, two integers are outputted. The only exceptions
to this involve the first end-vertex, where no integers are produced, and the second
end-vertex, where only one is produced. The sequence of integers outputted by the
subalgorithm is obviously the optimal diagonal code of the plane version of T.
Moreover, since this subalgorithm, like the others, is based on depth-first search, the
number of steps required for its completion is O(m).

The second, main algorithm discussed in this section is called DECODE and
transforms a valid optimal diagonal code into a tree represented by a linked list
structure. This algorithm is based on our proof of Theorem 1. Although no attempt
is made here to distinguish between valid and invalid optimal diagonal codes, i.e.,
between sequences ot 2n- 3 integers which are or are not optimal diagonal codes,
such a study might well be based on the results of Patrinos and Hakimi [4] characterizing
which distance matrices arise from trees.

If d12, d23, d13, d34, d14,’’’, din-l, dn-l,n, dl,n is a valid optimal diagonal code,
it is not difficult to see that the reduced sequence d12, d23, d13, d34, d,n- is also
a valid optimal diagonal code. The algorithm DECODE is described inductively on
the basis of this observation. First, if n 2, the tree corresponding to the given code
is easily constructed as a path of length d2. Suppose now that the algorithm is able
to construct a tree T’ whose code has length 2n- 5. Given the code for a tree with
n end-vertices, remove the last two integers of the code and run DECODE on the
resulting sequence, obtaining the tree Tn- with n 1 end-vertices. In order to obtain
T,, the tree corresponding to the given code, a path is attached to T,_I. In order to
do this, however, it is necessary to know two things"

a) the length of path to be attached,
b) the vertex in T,-I where the path is to be attached.

Since the code diE, d23, d13, d34,’’’, dl,n-1 is valid, let T,-1 be the unique tree for
which it is the code. Let x be the vertex of attachment for the vertex n in T,-1.
Observe that the quantity sought in a) is d(x, n) while x is actually located in T,_I a
distance d (x, n 1) from n 1 upon P(1, n 1). The quantities d (x, n) and d (x, n 1)
are easily found to be

d(x, n)= (d,_., +d., d.,_),

d(x, n 1) 1/2(d,_l,n +d.,_-d,,).

The steps involved in the construction of T, from Tn_l include the d(x, n) steps in
the construction of the linked list for P(x, n) and the d (x, n- 1) steps in the search
for x along P(n 1, 1). Adding the two quantities we obtain d,_x.,.

It follows that the total number of steps involved in the reconstruction of T from
its optimal diagonal code is

0 dk,k+l
k

The expression in parentheses counts every edge twice, so that the resulting complexity
of DECODE is O(m). It is easily proved by induction that DECODE works properly
by using the same observation which inspired this algorithm, along with the ever useful
distance equations above.
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The complexity of our coding and decoding algorithms is O(m) where rn is the
number of vertices in the tree, whereas the length of the code is O(n). (The code
length is O(n log m) if we count the digits to write the distances.) It is easy to modify
our algorithms to use a tree representation in which each path of degree 2 vertices
is represented by a single, integer-weighted edge. This way one can have trees, codes,
and algorithms whose complexities, for practical purposes, are all linear in n, the
number of end-vertices.

4. Summary and conclusions. There is an encoding of ordered or plane trees
with n end-vertices by a sequence of just 2n- 3 integers. This code, called here the
"optimal diagonal code" of a tree has been defined and shown to be optimal in a
certain sense. Furthermore, linear algorithms for converting a tree to its optimal
diagonal code and back again have been described.

In [2], one of us described a "diagonal code" involving 2n distances. We note
here in passing that the code is invalid as described; if, however, one labels the
end-vertices (say clockwise) in the order 1, 3, 5,..., n,..., 6, 4, 2 and then uses the
same set of distances, the code is valid, and the claims made for it are correct. As
such, the only serious competition for this code was shown in [2] to be the WAV
(walk around valency) code as described by Read in [5]. It is obtained by visiting the
m vertices of a canonically embedded plane tree in a prescribed order and recording
their degrees as they are visited. The result is a code consisting of m 1 numbers.

We can summarize the comparison of the "diagonal code" of [2] with the WAV
code by stating that the diagonal code showed evidence of superiority (in terms of
the proportion of trees with m vertices for which the diagonal code would be shorter)
out to m 13. Further comparison appears to require enumeration of the number of
trees on m vertices with N end-vertices for 2 _<-N =< m- 1. In comparison with the
WAV code the improved diagonal code described here must do even better.

The relative sizes of the numbers in the diagonal and WAV code have been
neglected. We only point out that

(a) they have the same worst-case order of magnitude, and
(b) their average values tend to be reciprocally related: the greater the average

degree of an m-vertex tree, the shorter the distance between end-vertices.
We conclude with an observation about labelled trees on m vertices as m gets

large. As noted in [7, p. 52], for large m the probability of a given vertex being an
end-vertex is approximately e -t. Thus the expected number of endpoints would be
m/e. Our diagonal code would thus have length (2m/e)-3 which is less than three-
fourths of the length m 1 of the WAV code.

The results described raise at least two questions, one rather specific, the other
general. The first question concerns the optimality of our code. We have shown that
2n- 3 distances are necessary and sufficient for specifying a plane tree in any scheme
in which the set of end-vertex pairs is fixed. Although we have referred to "the optimal
diagonal code" here, it should be mentioned that a variety of other codes of this
length exist. All appear, however, to have a superdiagonal as a subset of their distances.
It is possible that there are distance coding schemes in which some but not all n
endpoint trees are specified with fewer than 2n- 3 distances. For example, if it is
known that a tree has only one vertex with degree greater than 2, and the number
of end-vertices n is odd, the n distances d12, d23,’’’, dnl suffice to specify the tree.
The invention of such a scheme would combine the advantages of our scheme with
those of the WAV code. The second question involves graphs other than trees: given
a class of graphs, what subsets of their distance matrix entries uniquely determine
them? If so, what is the minimum number of matrix entries sufficient for this purpose?
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RECTANGULAR MATRICES AND SIGNED GRAPHS*

HARVEY J. GREENBERGt, J. RICHARD LUNDGREN: AND JOHN S. MAYBEE

Abstract. This paper extends the theory of graphs associated with real rectangular matrices to include
information about the signs of the elements. We show when signed row and column graphs can be defined
for the matrix A. We also deduce conditions under which these graphs are balanced. This leads to a
definition of the class of quasi-Morishima rectangular matrices A. It is shown that the Perron-Frobenius
theorem applies to the matrices AA 7" and A7"A when A is a quasi-Morishima matrix. Finally we examine
the applications of our results to several classes of matrices occurring in energy economic models. All
results in this paper are purely qualitative in character.

1. Introduction. This paper continues the development of the theory and use of
graphs and digraphs associated with rectangular matrices which we initiated in [1]
and [2]. Our aim here is to construct a theory that will adequately exploit the sign
information contained in real matrices. We touched briefly upon this topic in the
previous papers, but no systematic presentation was attempted. It turns out that,
under certain conditions, a satisfactory theory of positivity can be devised for rec-
tangular real matrices.

Our work in this paper has been motivated by our efforts to study the important
properties of two special classes of matrices introduced by H. J. Greenberg in [3].
Greenberg has identified physical flows matrices (PFM) and physical flows with
feedback matrices (PFFM) as important components of energy economic models.

Before introducing the PFM and PFFM we remind the reader how the basic
graphs associated with the m n matrix A are defined.

Given the m n matrix A we define two sets of points, R ={rl,’’ ’, r,} and
C -{c 1, , cn}, to represent the rows and columns of A, respectively. We then have
the following definitions.

Fundamental bipartite graph (bigraph)" BG is a bigraph on the point sets R and
C. The line [ri, cj] belongs to BG if aij 0.

Row graph. RG is defined on R. The line [r, r] belongs to RG if there exists
Ck C such that [r, Ck and [r, Ck ] are in BG. Thus two rows are adjacent if they have
a common column intersection in A.

Column graph. CG is defined on C. The line [c, Ck belongs to CG if there exists
rk R such that [c, rk] and [c, rk] belong to BG. In other words, two columns are
adjacent if they have a common row intersection in A.

A rectangular matrix A will be called regular if each row and column of A
contains at least one nonzero element.

Now it is clear that the sign information in the real matrix A can be immediately
incorporated into the bigraph BG. In fact, we label the line [ri, c] positive if aj > 0
and negative if ai < 0. The resulting signed graph will be denoted by BG/.

The usefulness of signed graphs and digraphs has been demonstrated by several
authors (see Harary [4], [5], Maybee and Quirk [6], and Roberts [7], for example).
Let us therefore show that for PFM and PFFM we can define the signed graphs RG/

and CG+.
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Physical flows matrix. The matrix A is a PFM if the rows can be partitioned into
disjoint sets S and M and the columns into disjoint sets P, T and K such that"

(1) Every element aij with e $, ] P is nonnegative.
(2) Every element aij with M, K is nonpositive.
(3) Every element a with S,/" T is nonpositive.
(4) Every element ai with M,/" T is nonnegative.
(5) All other elements of A are zero.

It is therefore true that A is a PFM if and only if there exist permutation matrices P
and Q such that

(1.1) pao=[A011 a. 0 ]A22 A23’
where A 11 --> 0, A 12 --< 0, A22 --> 0, A23 --< 0.

The matrix A in PFM will be called regular if each of the blocks A, A12, A22
and A23 is nonempty and regular.

Physical flows with feedback matrix. The matrix A is a PFFM if the rows can be
partitioned into disjoint sets/, $, M and the columns into disjoint sets P, T, K such
that (1) through (5) hold and:

(6) Every aii with e/, ] e P is nonpositive.
(7) Every ai with e/, ] e K is nonnegative.
(8) Every aj with e L ] e T is zero.

Thus A is a PFFM if and only if there exist permutation matrices P and Q such that

0 A01 1(1.2) PAO A21 A2
/0 A32 A33J

whereA _-<0, A13-> 0, A21 ->0, A22 <_-0, A32-> 0, A33 <- 0.
The matrix A will be called a regular PFFM if each of the blocks A 1, A 13, A21,

A22, A32, A33 is nonempty and regular.
Now let us observe that, when A is a PFM or a PFFM the scalar product of any

two columns is positive, negative or zero independently of the magnitudes of the
elements because all terms in the scalar product are weakly of the same sign. The
same is true for the scalar product of two row vectors. Consequently to such matrices
we can associate the signed graphs CG/ and RG/ in which the line [c, ci] ([r, ri]) is
positive if the corresponding column (row) vectors have a positive scalar product and
negative if the scalar product is negative. The smallest regular PFM is shown in Fig.
1 together with CG/ and RG/. The smallest regular PFFM is illustrated in Fig. 2.
In drawing the graphs we have followed the convention of using dashed lines to
represent negative lines as introduced in [8].

P T K

A=D
P

CG+: O, RG+: 0.-

K T

FIG. 1. Smallest PFM.

Since the graphs CG/ and RG/ can be defined for PFM and PFFM, it seems
natural to seek to determine the class of real rectangular matrices for which these
graphs, or at least one of them, can be defined. Section 2 is devoted to the determination
of this class of matrices and to some of their properties.
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P T K P I

I[-1 0 1]
CG+" RG+" "f

\ \
/A=S -1 0 / \

/ \

o o a; c-
K T D S

FIG. 2. Smallest PFFM.

Now it turns out that among the matrices for which the signed graphs CG and
RG/ exist there is a subclass with the property that these graphs are balanced (all
cycles positive). This subclass includes the PFM but not the PFFM. For such matrices
we can develop a satisfactory theory of positivity and we can apply the Perron-
Frobenius and its corollaries to the matrices AA 7. and ArA. This is the subject matter
of3.

Finally 4 is devoted to applications of our results to the classes PFM and PFFM
and to certain generalizations of these classes.

All of our results are purely qualitative in character, i.e., they hold regardless of
the magnitudes of the matrix elements.

2. Signed matrices. We begin with an embellishment of some fundamental ideas
introduced in the paper [6] (see also [9] where similar concepts are used). Let
x (x 1,’" ", XN) and y (y 1, ’, YN) be vectors in the euclidean space N. We shall
call x and y conformal if xiyi >= O, 1 <= <= N, and anticonformal if xiyi <- O, 1 <-i <=N. In
the terminology of [6] x and y are conformal if they lie in the closure of the same
qualitative cone Qx in r and anticonformal if one vector lies in a closed qualitative
cone and the other in the corresponding negative closed cone.

Let A [a0] be an m n real matrix. We will call A row signed if the row vectors
of A regarded as elements of " all lie in the same closed qualitative cone or in its
negative, i.e., if they are pairwise either conformal or anticonformal. We define A to
be column signed if the column vectors of A regarded as elements of are pairwise
either conformal or anticonformal.

LEMMA 1. A is column signed if and only ifA is row signed.
Proof. Assume A is column signed. Suppose A is not row signed. Then there

exist rows rs and rt such that for some and j, asia, > 0 and ajao < 0. Now consider
the products asia and ariao. We have asiasa,atj < 0 so these products have different
signs. Therefore A is not column signed, a contradiction. It follows that A must be
row signed. The proof is similar if we assume A is row signed.

In view of Lemma 1 we shall say henceforth that A is signed without using the
adjectives column or row.

The following lemma is a complement to Lemma 1.
LEMMA 2. Let G/ be a signed graph with n points. Then there exists a matrix A

such that CG+(A) G+.
Proof. Let e 1, , e, be the lines of G/ and pl, , p, the points. Construct A

as follows:
Column j of A corresponds to point pj of G /.
If ei [cil, Ci2], then aiil- 1 and

1 if ei is positive,
aii2 -1 if e is negative.

Observe that each row of A has only two nonzero elements and each row corresponds
to a unique line of CG/(A). Thus CG/(A)= G/.
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The next result relates the property that A is signed to properties of AA 7, and
A T,A. We require first some preliminary ideas. Recall from [6] that, if x
sgn x (sgn x 1, , sgn xN) where sgn is the usual signum function. In the same way
we can associate with any real m n matrix A the matrix sgn A [sgn aij] (see [6]
for more detail). Let us introduce the addition table

+ -1 0 1

-1 ’1 -1 x
0 -1 0
1 x 1 1

in which we use an x to denote an indeterminate (as to sign) entry. Define A7"o A
to be the matrix product formed using this addition table.

THEOREM 1. Let A be an m x n matrix with at least one nonzero element in each
row and column. The following are equivalent:

(1) A is signed.
(2) sgn (AAT) =sgnA (sgn A)7,.
(3) sgn (ATA) (sgn A)T sgn A.
Proof. The proof is left to the reader.
The interpretation of (2) and (3) is that the left-hand side is defined if and only

if the right-hand side is. Since sgn A (sgn A)T is symmetric and each row has a
nonzero element, the diagonal elements are all positive and we need only calculate
the elements above the principal diagonal. If any of these elements equals x; then A
is not signed. Otherwise A is signed.

For very large matrices Theorem 1 may not provide a useful test of whether or
not A is signed, especially if AAT or AT,A is not sparse. The next result provides
another criterion.

THEOREM 2. A is signed if and only if every 4-cycle ofBG/
is positive.

3. Positivity. For the deeper study of signed matrices we will require some
background. First we recall that a signed graph is called balanced if every cycle is
positive. Secondly the signed graph G/ is balanced if and only if the points of G/

can be partitioned into disjoint subsets S and S2 (one of which may be empty) such
that every line joining two points in the same set is positive and every line joining
points in different sets is negative (see Harary [4] for further details).

Let A [aij]7 be a square sign-symmetric matrix. Then we associate with A a
graph G(A) as follows" G has n points labelled 1, 2, .., n and a line joining points
and/" (i /’) if ai (and a) 0. The line [if] will be given a positive label if a > 0

and a negative label if aii < 0. In this way we arrive at the signed graph G/(A). The
matrix A is called a Morishima matrix if G/(A) is balanced. Moreover, the square
matrix A is a Morishima matrix if and only if there exists a permutation matrix
such that

TA=[All al.]A21 A22

where All ->0, A22-->0, A12<-0, A21 --<0 and where each of the blocks Alt and A22
is square. In this representation the block A22 may be 0 0 in which case A itself is
nonnegative which is a special case of the Morishima class.

With this material as background we can proceed. First note that, if BG/ is
balanced, it has nonnegative 4-cycles and so RG/ and CG/ are defined.
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THEOREM 3. The following are equivalent:
(a) BG/

is balanced.
(b) CG+ is balanced.
(c) RG/

is balanced.
Proof. We will only establish the equivalence of (a) and (b), the proof that (a) is

equivalent to (c) being similar. Suppose BG/ is balanced. Then the points of BG/

can be partitioned into two disjoint subsets B1 and BE such that positive lines join
points of the same subset and negative lines join points of different subsets. Define
CI-B1C and C2=B2"C.

Suppose first that cs and ct in C1 are joined in CG/. Then there exists a row
point r such that [cs, r] and [ct, r] are lines in BG/. If r B1 both lines are positive
and if ri B2 both are negative. In the latter case ai < 0 and at < 0 so [c, c] is positive.
A similar argument works if both points are in C2.

Now suppose c C1, c C2 and [c, c] CG/. Then there are lines [cs, r] and
[ct, r] in BG+. If r B1, then [Cs, r] is positive, [c, r] is negative and it follows that
[c, ct] is negative. A similar result holds if r BE.

Thus we have shown that CG/ is balanced and so (a) implies (b).
Assume next that CG/ is balanced so that the points in CG/ can be partitioned

into disjoint subsets C1 and C2 such that positive lines join points of the same subset
and negative lines join points of different subsets. We construct disjoint subsets B1
and BE Of BG+ as follows:

1 {ri . R" [ri, c ] is positive for some c

1 {r R’[r. c ] is negative for some c C2 and r is not adjacent
to any c C1},

R1 =/ U/, R2=R-R1,

B1 =R1 UC1, B2-R2UC2.

It is clear that B B2 and B UB2 R U C1 UR2 U C2 R U C.
First we show that all lines joining points in B1 are positive. Suppose [ri, c] is

negative for some r, cs B1. Then r/, so r/ and there is a point ct C such that
[ct, r] is positive. But then as <0 and a, >0 so that [ct, Cs] is negative in CG+, a
contradiction. Next we show that all lines between points in BE are positive. Suppose
[r, c,] is negative for some r, c E BE. Since r/, then there is a point c Cx adjacent
to r and [r, c,] is negative. But then as < 0 and a, < 0, so that [ct, c] is a positive line
in CG+, a contradiction.

Finally we show that all lines between points in B and BE are negative. Suppose
there is a line from a point in RE to a point in C1. Then this line must be negativ.e
by definition. Suppose there is a line from a point ri E R to a point cj E C2. If r R,
then [r, c] is a line for some c C1. Then [r, c] is positive and [cs, cj] is a line in CG+

so it must be negative. Thus, since a > 0, we have aii< 0 so that [r, ci] is negative. If
r /, then [r, ct] is negative for some ct C2. But this means c and ci are adjacent in
CG+, so [c,, ci] must be positive and hence [r, ci] must be negative.

We have thus shown that B1 and B2 satisfy the conditions for BG+ to be balanced,
so (b) implies (a).

Theorem 3 adds to the list of properties shared by the various graphs associated
with a regular rectangular matrix. We now connect the form of the matrixA to balance.
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THEOREM 4. BG/
is balanced if and only if there exist permutation matrices P

and Q such that

pAQ [AAll A12]
21 AEEJ’

where A 11 >- O, A22 -> 0, A 12 0, A21 --< 0.
Proof. Suppose BG+ is balanced. Then the points of B can be partitioned into

disjoint subsets B1 and B2 (one of which may be empty) such that positive lines join
points of the same subset and negative lines join points of different subsets. Further-
more, B1 =R1L3C1 and B2=RELJC2. If one of the sets, say B2 , then A_>-0 and
the result is trivial. In the remaining cases there exist permutation matrices P and Q
such that

[All A12]PAQ
LA21 AEEJ"

From the restrictions on the lines in BG/ we clearly have that A ll 3>0, A12<0,
A21 < 0, A22 > 0. Since any of the sets R or Ci, 1 < < 2 may be empty, PAQ may
contain one block, two blocks or all four blocks. For the converse suppose there exist
permutation matrices P and Q such that PAQ has the above form. Then choosing
Ri and C as before and settingB R L.J C1, B2 R2 L.J C2 we see thatBG/ is balanced.

The following simple lemma shows that whenever CG/ and RG/ are defined,
certain cliques in these graphs must be balanced.

LEMMA 3. Ira k-clique in CG+(RG+) arises from the k nonzeros in a row (column)
ofA, then the k-clique is balanced.

Proof. Suppose a k-clique in CG/ is determined by k nonzeros in a row. Let C1
be the set of columns having a positive entry in the row and C2 the set of columns
having a negative entry. Clearly every line joining points in the same set is positive
and every line joining points in different sets is negative. Therefore the k-clique is
balanced.

We caution the reader that the lemma does not imply that every clique of
CG+(RG/) is balanced; it only identifies the existence of a spanning set of balanced
cliques. To show this consider the PFFM A with

sgn A

0 0 0 + +
0 0 0 + 0

+
0 + 0 0

+ + 0 0 0
0 0 + + 0
0 0 + + 0

The graph RG+ is shown in Fig. 3. The cliques (1, 4, 5) 1, 2, 4, 5) and (2, 4, 5), for
example, are not balanced. Yet the spanning set S {(1, 3, 4), 1, 2, 4), (2, 3, 4),
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(3, 5, 6), (3, 4, 5, 6), (1, 2, 5), (1, 6)} consists of balanced cliques. (Here we are using
the notation of Harary [11] for the subgraph generated by the set X, namely (X).)

In view of our results in Theorems 3 and 4 we are tempted to call the m x n
matrix A a Morishima matrix if CG/ is balanced. This will, however, introduce an
inconsistency when m n. As an example consider the 4 4 matrixA with sign patterns

sgn A

0 0

+ + + 0

O+ + 0
0 +

The graphs CG/, RG/ and//(A), the signed directed graph of A with loops omitted,
are illustrated in Fig. 4. Since the graph//(A) has negative cycles, this matrix is not
a Morishima matrix, yet both CG/ and RG/ are balanced. Therefore we introduce
the following basic concept.

1 2 2

CG+. RG+. --- :+(a).

4 3 4 3

1 2

FIG. 4

DEFINITION 1. The m x n matrix A will be called a quasi-Morishima matrix if
BG+ is balanced.

The remainder of our results will be valid for all quasi-Morishima matrices
including the case tn n.

THEOREM 5. Let A be a quasi-Morishima matrix. Then ATA and AAT are
(symmetric) Morishima matrices. IfA has a nonzero element in each row and column
then ATA and AAT have positive diagonal elements.

Proof. The last statement of the theorem is trivial so we prove only the first
statement. Since A is quasi-Morishima there exist permutation matrices P and Q such
that

[B B2],B PAQ
I-B21 BEEJ

BI 0, B22->0, B12-<0, BE1 =<0. Then BT"B =(PAQ)rPAQ =QrATpTpAQ; hence
B TB QTATAQ. Calculating B TB, we set

BrB rB+BrB BB+BB C C]"

From the signs in the block form of A we get that Cll -> 0, C22 > 0, C12 0 and C21 <-- 0.
Furthermore, if B is r x s, it is easy to show that C is s x s and C22 is (n s) x (n s).
It follows that ATA is a Morishima matrix. A similar argument shows that AAr is a
Morishima matrix.

This theorem shows that the class of quasi-Morishima matrices is closely connected
to the class of Morishima matrices. We will show how the Perron-Frobenius theorem
applies to these matrices, but we require some preliminary results first.
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THEOREM 6. LetA be a regular quasi-Morishima matrix. Then there exist diagonal
matrices D1 and DE with diagonal elements +1 such that D2ADI >-0.

Proof. Without loss of generality we can assume that A itself is not nonnegative;
otherwise we can choose Dx to be the n x n identity matrix and DE the m m identity
matrix. By Theorem 4 we can find P and Q such that

PAQ [ 1 -A2]
21 AEEJ’

where all of the blocks are nonnegative. Suppose AI is rs. Let Dlo
diag(1,...,1,-1,...,-1) where there are s l’s and n-s -l’s, and let D20
diag(1,...,1,-1,...,-1) where there are r l’s and m-r -l’s. Then
D20PAQDo is nonnegative. Define D2=P-D20P and D=QDloQ-1, then
D2AD1 P-1D20PAQDoQ-I >=0, proving the theorem.

Note that the matrices D and D2 are in general not unique if CG/ is not
connected. We will discuss this and related matters in a subsequent paper.

Before applying this theorem let us consider an example. Let A be the quasi-
Morishima matrix with sign pattern

+ 0 + 0

sgnA-
0 + 0 0

0 + +
o 0 + + 0 +

We can compute D directly from the balanced graph CG/ by partitioning its points
into subsets C and C2 so that the lines have the usual properties. We obtain
C1 {1, 2, 5}, C2 {3, 4, 6}. If we choose signs so that the scalar product of D with
row 1 is positive, we obtain D1 diag (1, 1, -1, -1, 1, -1) and

sgn AD

+ 0 + + + 0

+ + 0 0

0 0

so that the sign pattern of the columns is [+ +--
diag [1, 1, -1, -1] and D2ADx >-_ O.

Next observe that (DEAD1)7"= DA7"D hence

]. Thus we choose D2

(D2AD1)TD2AD DATDD2AD1.

ButD D2 SO DD2 is the identity matrix and

(D2AD1)TDEAD1 DIATAD1 >-_ O.

It follows that the matrix ATA is similar to a nonnegative matrix, the similarity being
effected by the diagonal matrix D1. Similarly we have

D2AD (D2AD1)T D2AATD2 >-- O.

Now it is well known that the matrices AAT" and ATA are symmetric and
nonnegative definite (see [12], for example). Therefore the same will be true of the
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matrices DA7"AD andD2AA7"D. We are now ready to apply the Perron-Frobenius
theory (see [12] for an elementary, but thorough, discussion).

THEOREM 7. Let the m x n matrix A be a quasi-Morishima matrix with at least
one nonzero element in each row and column and suppose that CG is connected. Then
the matrix A 7"A has a simple eigenvalue r, equal to its spectral radius and, if h is any
other eigenvalue ofA 7"A, we have 0 <-h < rn. Moreover, the eigenvector y belonging to

rn has all its components different from zero and its sign pattern is such that Dly is a
strictly positive vectorDly > O, i.e., y has the same sign pattern as

Proof. We apply the Perron-Frobenius theorem to the nonnegative matrix A
DA7"AD 1. Since CG is connected, A is irreducible. Also a, > 0, 1 <_- <_- n, because
each column of A has a nonzero element. Thus A is primitive. The theorem follows.

For completeness we state the corresponding theorem for AA
THEOREM 7’. Let the hypotheses of Theorem 6 be satisfied. Then the matrix AA

has a simple eigenvalue r,, equal to its spectral radius and, if h is any other eigenvalue
of AAT’, we have 0 <-h < r,. Moreover, the eigenvector y belonging to r, has all its
components different from zero and the same sign pattern as DE.

We note that it is known that r,,- r, and, more generally, that the spectrum of
AA 7- is the same as that of ATA except that one of these matrices may have more
zero eigenvalues than the other depending upon which of m and n is larger.

4. Applications. Let us begin with an examination of elements in the class PFM.
Consider first the graph RG/(A) for A PFM. We can partition the points of RG/

into two disjoint sets S and M with the property that lines joining points of S or
points of M are positive and lines joining a point of S and a point of M are negative.
It follows that RG+ is balanced. We thus have as a consequence of Theorem 3 the
following result.

THEOREM 8. IfA PFM, then A is a quasi-Morishima matrix.
We now know that for A PFM the graph CG/ is balanced, but we are interested

in the structure of this graph in any case. In fact the points of CG+ can be partitioned
into three disjoint sets P, T and K such that each line joining points in the same set
is positive, each line joining points in different sets is negative, and no line joins a
point in P with a point in K.

If a matrix in the class PFM is regular the graphs RG/ and CG/ satisfy the
following conditions:

(ct) Each S point in RG/ is adjacent to at least one M point and each M point
to at least one $ point.

(/3) Each P point in CG/ is adjacent to at least one T point and each K point
to at least one T point.

(y) Each T point in CG/ is adjacent to at least one P point and at least one K
point.

The effect of imposing regularity on a PFM is to insure that such matrices do
describe a sort of flow. In fact the conditions guarantee that, when A is permuted
into the form (1), to each nonzero element in a row of A 11 there corresponds a
nonzero element in the same row in A12, to each nonzero element in a column of
A 12 there corresponds a nonzero element in the same column of A22, and to each
nonzero element in a row of A22 there corresponds a nonzero element in the same
row of A23. Thus there exists a connection (or flow) between elements of All and
elements of A23.

The structure of a PFM as displayed in (1) suggests a generalization of this class
which still retains the properties of balance in CG/ and RG/. A matrix A will be
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called a generalized physical flows matrix (GPFM) if there exist permutation matrices
P and Q such that

(4.1) PAQ

Ail A12 0 0 0

..0. ..0.
L 0 0 0 App App+11

where A, => 0, A./I -< 0, 1 =< -<_ p. It is clear that the graphs RG/ and CG/ exist for
A e GPFM. Let us show that RG/ is balanced for p >- 3.

Note that RG/ can be partitioned into disjoint sets Si, i-< i-<p, such that lines
joining two points of S are positive for 1 <-i <= p, lines joining a pair of points one in
$ and one in $/1 are negative, 1 -<i <-p 1, and no line joins a point in $i to a point
in St if li-]1 > 1. Therefore we may partition the points of RG/ into the disjoint sets
U (which is the union of the sets $ for odd) and V (which is the union of the sets
Si for even), and the sets U and V satisfy the conditions for balance. Thus RG/,
and hence CG/ is balanced, and every element of GPFM is a quasi-Morishima matrix.

The form of RG/ and CG/ for A e GPFM suggests the following ideas which
lead to another generalization of the class PFM still within the class of quasi-Miroshima
matrices. Define the signed graph G/ to be a signed ladder graph of order p -> 2 if the
points of G/ can be portioned in p disjoint sets L, 1 <-i <=p, such that lines joining
two points in L are positive, lines joining two points one in L and one in L+I are
negative, 1 -< -< p 1, and no line joins a point in L to a point in L if li -]1 > 1. Then
G/ is balanced. Define the matrix A to be a quasi physical flows matrix (QPFM) if
RG/(A) is a signed ladder graph of order p and if CG/ is a signed ladder graph of
order p + 1. It is clear that GPFMc QPFM, but the converse is not true. It is also
easy to see how to impose regularity conditions on the classes GPFM and QPFM.
But even with regularity conditions imposed it is still not true that GPFM QPFM.
Here is a simple example. Let

-I 1
0 1

Figure 5 illustrates RG/(A) and CG/(A). It is clear that RG/ is a signed ladder
graph of order p 2 and CG/ a signed ladder graph of order 3 so that A e QPFM.
It is also clear that A GPFM, and that regularity conditions hold for A.

3

CGRG+: x\

FIG. 5

We do not have a characterization of matrices in the class QPFM in block form.
This is an interesting open question and we feel that its solution would provide some
useful insights for energy modelers and others concerned with large scale systems.
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We will conclude with a brief discussion of the class PFFM. The example illustrated
in Fig. 2 of the smallest regular PFFM shows that not every element in this class is a
quasi-Morishima matrix. However the PFFM

-1 0 0
A= 0 1 -1

0 0 1

1 10 0
0 -1

satisfies the conditions for a QPFM so it is a quasi-Morishima matrix.
It turns out that even if A is a regular PFFM it can be a quasi-Morishima matrix.

We do not have a simple criterion that will enable us to characterize which elements
of this class are quasi-Morishima and which are not. This must be regarded as an
open problem.

As a final application let us turn to an entirely different area. In the theory of
Lanchester models of military combat between heterogeneous forces (see [10] for
some interesting examples) systems of differential equations having the form

Y -Ay, f -Bx

must be solved. In the simplest cases A is an m x n nonnegative matrix and B an
n rn nonnegative matrix. The matrix of the system is therefore the quasi-Morishima
matrix

The spectral properties of the system are most conveniently obtained by making use
of Theorem 7.

A problem more general than the above is obtained when logistic considerations
are incorporated into the equations of combat and, in particular, when one or both
armies is being reinforced. In this case (see [13]) we obtain systems having the form

2 Ax +Ay, Bx +By,

where A, A2, B and B2 are rectangular matrices in general. When this happens one
can identify certain key submatrices which are quasi-Morishima matrices. Here again
the Perron-Frobenius theorem can be applied to obtain useful results.
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LEAKY ELECTRICITY: 1-CHAIN FORMULAS FOR THE CURRENT AND
VOLTAGE*

KENNETH A. BERMANt

Abstract. A leaky electrical network N is a mathematical generalization of an electrical network. In
this paper we present a formula expressing the current 1-chain of N as a linear combination of leaky
uv-flows associated with the spanning 2-arborescences and a formula expressing the voltage 1-chain as a
linear combination of coboundaries associated with the spanning 2-arborescences. This generalizes a result
of Nerode and Shank lAmer. Math. Monthly, 68 (1961), pp. 244-247] on electrical networks.

1. Introduction. In "leaky" electricity, Kirchhoff’s first law is replaced by the
statement that the sum of the currents in the edges directed out of each vertex different
from the source or sink is zero (but not necessarily in the edges directed into that
vertex). Kirchhoti’s second law that the sum of the voltages around any circuit is zero
remains applicable. A leaky electrical network is a mathematical generalization of an
electrical network. This can be seen as follows. Suppose N is an electrical network.
Each wire in N may be represented by two edges, e and e’, such that e points in the
direction of the current flow and e’ points counter to the direction of the current flow.
The digraph G* obtained in this way is a symmetric digraph. Assign the amount of
current in the wire to edge e and negative the amount of current in the wire to edge
e’. By Kirchhoff’s first law the sum of the currents in the edges directed into a vertex
of N equals the sum of the currents in the edges directed out of that vertex (except
at the source or sink). But this implies that in G* the sum of the values assigned to
the edges directed out of a vertex equals zero (except at the source or sink). Thus
electrical networks correspond to symmetric leaky electrical networks.

The theory of leaky electricity was developed by Tutte in [5], [6] and jointly by
Brooks, Smith, Stone and Tutte in [1]. Tutte applied this theory to the problem of
the dissection of an equilateral triangle into equilateral triangles. In his papers, Tutte
gives an explicit expression for the current and voltages in the edges of a leaky electrical
network in terms of the spanning 2-arborescences.

In this paper we give an elegant linear algebraic proof of this result. Our main
theorem is a formula expressing the current 1-chain as a linear combination of leaky
uv-flows associated with the spanning 2-arborescences and a formula expressing the
voltage 1-chain as a linear combination of coboundaries associated with the spanning
2-arborescences. This theorem generalizes a result of Nerode and Shank [4] on
electrical networks.. 1-chains. Let G be a strongly connected digraph, i.e., a digraph such that
there is a directed path from each vertex to every other vertex. Let E(G)-
{el, e2,’’’, e,,} denote the edge set of G. A 1-chain C is a mapping from the edges
E(G) into the real numbers R. We will refer to C(ej) as the weight of C on edge ej
for each edge e E(G). The set c6’ of all 1-chains forms a vector space over R: For
C1, C2 c6’, A R and eE(G) vector addition is defined by

(2.1) (C1 + C2)(ei) Cl(ei) + C2(ej)

* Received by the editors October 7, 1981.
f Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts

02139.

62



LEAKY ELECTRICITY: CURRENT AND VOLTAGE 63

and scalar multiplication is defined by

(2.2) (C1)(ej) ,C(ej).

For u, v two vertices of G, a uv-flow Fur is a 1-chain such that the sum of the
weights of Fur on the edges directed out of a vertex equals the sum of the weights on
the edges directed into that vertex for every vertex but u and v. A leaky uv-flow
is a 1-chain such that the sum of the weights of Lv on the edges directed out of a
vertex is zero for the every vertex but u and v. A coboundary B is a 1-chain such
that for e E

(2.3) B (ei) P(h )-P(t),

where h and denote the head and tail of ei, respectively, and P is a mapping from
the vertices of G into the real numbers R. Mapping P is a O-chain. It is immediate
that the set r,v of uv-flows, the set,v of leaky uv-flows and the set of coboundaries
each form a subspace of c.

Let C be a 1-chain from c such that C(ei)> 0 for all ei E. A leaky electrical
network N with conductivity 1-chain C c, having source u and sink v, is a digraph
G together with a current 1-chain ! and a voltage 1-chain V such that

(i) ! is a leaky uv-flow,
(ii) V is a coboundary,
(iii) ! CV.

Condition (i) corresponds to the generalized Kirchhoff’s first law. Conditions (ii) and
(iii) correspond to Kirchhott’s second law and Ohm’s law respectively. The total
current, I (Iv), at vertex u (vertex v) is the sum of the currents in the edges directed
out of u (v). Note that the total current at the source u need not equal the negative
of the total current at the sink v, as is the case for symmetric networks. In [1] a simple
argument is given to show that I and V are uniquely determined by conditions (i),
(ii), (iii) up to within a constant multiplier. Thus if the total current at u is given then
the current 1-chain I and the voltage 1-chain V are uniquely determined.

An (in) arborescence Av rooted at vertex v of G is a tree of G such that there
is a directed path in the tree from every vertex in the tree to v. (Arborescence Av
may be the single vertex v.) If Av spans the vertices then Av is a spanning arborescence.
Let v denote the set of all spanning arborescences rooted at v. Set cj C(e). The
implexity av of G at vertex v is given by

(2.4) av Y. 1-I c,
Avev eieE(Ao)

where E(Av) denotes the edge set of an arborescence Av. Since G is strongly connected
there is at least one spanning arborescence rooted at v. Since c > 0 for each edge
e E(G) it follows that the implexity av is strictly greater than zero.

A spanning 2-arborescence A (A, Av) rooted at vertices u and v is a pair of
arborescences, A= rooted at u and Av rooted at v, which are vertex disjoint and
together span the vertices of G. Let ,v denote the set of all spanning 2-arborescences
rooted at vertices u and v. The weight rrA of a spanning 2-arborescence A Mv is
given by

(2 5) ZrA= l-I cj
ej eE(A)

where E(A) denotes the edge set of A. Let V and W be the sets of vertices spanned
by Au and Av, respectively, and let S(A) be the set of edges of G having one end
vertex in V and the other in W. Let S/(A) be the subset of edges in S(A) directed
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out of vertices in V and $-(A) be the subset of edges in $(A) directed out of vertices
in W. For ej e $(A), set

1, eieS/(A),(2.6) signA ej
--1, ei S-(A).

Let Suo(A) be the subset of edges in S(A) directed out of either vertex u or vertex
v. For eE(A) let T.(A) be the subset of edges in S(A) having the same tail as ei.

With each spanning 2-arborescenceA of Muv associate the coboundaryBA defined
by

(2.7) BA(e,)={;ignAej, eS(A),
otherwise,

and the leaky uv-flow LA defined by

(2.8) LA(ei)

(signA ei)ci, ej S,v (A ),

1
(sign ei)ci, ei S(A)-S,o(A),

1 Y’. (sign ek)Ck, ei E(A),
ekeTi(A)

0 otherwise.

3. Formulas for current and voltage 1-chains. In this section we prove the
following main theorem.

THEOREM 3.1. Let N be a leaky electrical network with 1-chain C such that the
total current at the source u is 1. Let ao be the implexity at the sink v and let 7rA, BA
and LA be defined by (2.5), (2.7), (2.8), respectively. Then the current 1-chain I and
the voltage 1-chain V are given by

1
(3.1) I --- E ’rrAta,

Olv A .uv
1

(3.2) V =-z- E ’ABA.
Olv

Since the set of leaky uv-flows and the set of coboundaries form subspaces of c
it follows that (1/a,,)A,,,’trALA is a leaky uv-flow and (1/ao)FA.,oZrABA is a
coboundary. Let 6,+ be the set of edges directed out of vertex u. Then

eieS+u Auv eieS Auv Auv ei8

Av Nv eE(Av)

Hence to prove the theorem it suces to show that

2 ALA =C ABA.(3.3) A.o A.

Consider an edge ei E(G). Let i be the subset of spanning 2-arborescences in
d,o which contain edge ei and let be the subset of spanning 2-arborescences in
,o which do not contain edge ei. For A i and ek (A) let Aik be the spanning
2-arborescence obtained from A by deleting edge ei and adding ek.
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If ej is directed out of either vertex u or v then it is immediate from the definition
of LA and BA that . 7r,L,(ei)=ci E 7rABA(ei).

A "suv A suv

Now suppose ej is neither directed out of vertex u nor vertex v. Then it is
immediate from the definition of LA and BA that

Y. rALA(e) Ci Y. ZrABA(e).

We also have that

1
raLA(e)= Y rA-Adi A..

(signA ek)Ck)
ekTi(A). rA,kLA,k (e) ZrALA(e).

A, ek. Ti(A) Ae,.

Hence

E "trALA(ej) E "trALA(e])+ E "rrALA(ei)=C] E "trABA(e).
A A sg A A s

The theorem follows.
The following corollary due to Tutte [1], [5], [6] follows immediately from

Theorem 3.1.
COROLLARY (Tutte). Let ei be an edge of G with tail and head h. Let aut,oh be

the sum of the weights over the spanning 2-arborescences such that lies in the
arborescence rooted at u and h lies in the arborescence rooted at v. Similarly define
auh,ot. If the total current at the source u is 1 then

(3.4) V(e)
Ov

4. Electrical networks. An electrical network N with conductivity 1-chain C
having source u and sink v is a digraph G together with a current 1-chain I and a
voltage 1-chain V such that

(i) I is a uv-flow,
(ii) V is a coboundary,
(iii) I CV.

Conditions (i) and (ii) correspond to Kirchhott’s two laws of electricity and condition
(iii) corresponds to Ohm’s Law. The total current is the current entering the network
at the source u (which equals the current leaving the network at the sink v).

With the electrical network N we may associate the leaky electrical network N*
as follows. Replace each edge ej of G with two edges, e7 and e, both joining the
same two vertices as e but with e7 directed the same as ei and e directed counter

9) I(e) and I*(e) -I(e). Also setto ej. Call the resulting digraph G*. Set I*(el
V*(e) V(e), (i=0, 1), and C*(e)=C(e), (i=0, 1). Then the digraph G* together
with current 1-chain I* and voltage 1-chain V* determine a leaky electrical network
N* with conductivity 1-chain C*.

Let ff denote the set of spanning trees of G. The complexity - of N is given by

(4 1) r= Y’, I-[ c
T"eiE(T)

where E(T) is the edge set of a spanning tree T. A spanning 2-tree, T (Tu, To),
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separating vertices u and v is a tree Tu containing u and a tree To containing v which
are vertex disjoint and together span the vertices of G. Let Tuo denote the set of all
spanning 2-trees separating vertices u and v. The weight rrr of a spanning 2-tree
T ffuo is given by

rr H c(4.2) eiE(T)

where E(T) is the edge set of T. Let V and W be the sets of vertices spanned by Tu
and To, respectively. Let Br be the coboundary defined by

(4.3)
1,

BT(el) --1,
0

ej has tail in V and head in W,
ej has tail in W and head in V,
otherwise.

The following theorem of Nerode and Shank [4] is a corollary of Theorem 3.1.
THEOREM 4.1 (Nerode and Shank). Let N be an electrical network with conduc-

tivity 1-chain C such that the total current is 1. Let - be the complexity of N and let
rrr and Br be defined by (4.2) and (4.3) respectively. Then the voltage 1-chain V is
given by

1
(4.4) V Y’. 7rrBr.

"l" Te’uv

By applying Theorem 3.1 to the associated leaky electrical network N* we have

0 1
V(ei)=V*(ei)= ., raB(e) =1 E rrBw(ei).

Ol A "suv "I" T Y-uv

As a corollary of Theorem 4.1 we have the following famous result of
Kirchhoff [2], [3].

COROLLARY (Kirchhott). Let e be an edge of G with tail and head h. Let rt,oh
be the sum of the weights over the spanning 2-trees such that u and lie in one tree and
v and h lie in the other tree. Similarly, define ’uh,ot. I]: the total current is 1 then

(4.5) V(ej) =rut.oh --ru..o,
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1. On KLYM posers. Let P be a finite poset with ranks 0, 1,...,n. For
0=< i-<n let r(i) be the number of elements of P of rank i. If x P we write r(x)
for r(rank (x)). A maximal chain of P has length n + 1. We call A c P an antichain
if it has no chain of length 2. Kleitman proved [3] that the following two conditions
are equivalent for P:
(1) If A c P is an antichain then Y. (x A) 1/r(x) <- 1.
(2) There is a nonempty list C(1),. ., C(c) of not necessarily distinct maximal

chains of P with the property that for every x P the number of chains
in the list which contain x is c/r(x).
We assume that P satisfies (1), (2) and call it a KLYM poset in view of the

writings of Kleitman, Lubell, Yamamoto and Meshalkin (cf. [3]). Usually (1) is called
the LYM inequality. An example for P is the lattice L of all subsets ofN {1, 2, , n }
ordered by inclusion.

Let q (0),..., q (n) be the numbers r(0), ., r(n) ordered so that q (0) _>- q (1) >-
-> q (n). Then let Q(b) q (0) +. / q (b 1), so in particular Q (n / 1) IPI Y r(i).

We denote q(0)= Q(1) by ISI because Sperner proved that if A is an antichain in L
then ISI--> IAI. For B P let the set of elements comparable with B be

comp B {x" x P, =ly B, either x -<_ y or y <_-x }.

Then we give the following generalization of (1).
THEOREM 1. IfB P has no chain of length b + 1, then

max {blBl/O(b), Y. (x B)l/r(x)} =< blcomp BI/IPI.

Proof. Part (i). Let A be an antichain in P. Put E P\(comp A) and for 0 <- <- n
let E(i) be the set of elements of E of rank/. Then there is a /" such that
IEIr(/)-<-Iel IE(/)l. Using this fact and applying (1) to the antichain A t3 E(/) we get

IEI/IPI+Y, (x A)l/r(x)<=lE(/)l/r(f)+Y (x A)l/r(x)

Y. (x cA t.JE(f))l/r(x) <-_ l.

In other words,

(3) Y. (x A)l/r(x) <=lcomp AI/IPI.
Part (ii). We can partition B as B A " UAb where Aj are antichains. Then

we apply (3) to each Aj and sum over/’. Since compA comp B, this gives the second
inequality of the theorem.

* Received by the editors May 20, 1981.
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Part (iii). We have

clPIIBI IF] Y (1 <-i <-_c) E (x B C(i))r(x)

<--IPI Y (1 <-_i <-_c, B C(i) )O(b)

O(b) , (1 <-i <-c, B C(i) )IPI
Q(b) , (1 <-i <-_c, B C(i) ) , (x (comp B) C(i))r(x)

<-Q(b) , (1-<i <-c) E (x (comp B)’f’) C(i))r(x)
O(b)c Icomp B l,

and the theorem is proved. [3
Notice that IBI/ISl is a lower bound for both terms in max {...}. All the inequalities

are best possible in the sense that examples give equality.

2. On the lattice L of subsets of N. We say that V is convex if x, z V and
x =< y-< z imply y V. In particular L\compF is convex for every F c L. We let D
denote a down-set so x-<y and y D imply x D. We let U denote an up-set so
x =< y and x U imply y U.

Confecture 1. If V is convex, ISl/ILI <-IAI/IVI for some antichain A c V.
Question. If V is convex, is

IvIIvlIvO UIISl--< ILIIV DIIV UIIAI
for some antichain A c V? This question is related to"

Confecture 2. If A is an antichain and V L\comp A then

IvllvllvD UIISl--<ILIIVDIIV UI(ISI-IA[).

When A this inequality reduces to Kleitman’s classical [1], [2] inequality ILl IO
UI<-IDIIUI.

Next let

Isl if 1 <_-n _-<8,
m max ltl/4, Isl}- ILl/4 if 9-< n.

Confecture 3. If X, Y cL are such that x X, y Y, x # y imply x z y, y z x then
min lxl, Yl-<- m,

This clearly implies the folklore"
Conjecture 4. IfX = L is such that x, y X implies either x N\y or both x y N

and x y , then IxI-<- m.
THEOREM 2. Conjecture 2 implies Confecture 3.
Proof. Given X, Y satisfying the conditions of Conjecture 3, let A be the antichain

X Y and let V be L\comp A. Also put G X\A - V and H Y\A V. For any
Z L, define

below Z {x" x L, :lz Z, x <_- z } down-set,

above Z {x" x L, lz e Z, x -> z } up-set.

Then (below G) (above H) , so IV below GI +IV above HI lvI, and
similarly IV above G +IV below HI-<-IVI, so we assume IV below GI+IV
above l-<_lvI, and then IVbelow GIIVabove l<-_lvIIvI/4. Ie v= then
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X Y A and IAI -< ISl. If V then

IGI-- Iv GI Iv (below G) 1 (above G)I

-<-ILl IV below IIV above l(Isl-[a I)/ISlIVIIVI
<--ILI(ISl-IAi)/41Sl-- t, say.

If 1 -< n <- 8 then ILl < 41sl and < Isl- Ial. Ig 9 -< n then 41sl < ILl, so =< (ILl/4)-Ial.
In either case, Ixl- IAI / IGI--< m, as required.
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THE COMPLEXITY OF SOLVING POLYNOMIAL
EQUATIONS BY PRIME ROOT EXTRACTIONS*

GEORG GATIt

Abstract. We show that for each algebraic number field Q of finite degree and for each natural number
n Pl Pk, Pi prime, there exists an irreducible polynomial fn of degree n in Q[x] such that f, is solvable
by radicals and +pl +pp2+"" +PP2"’’Pk- extractions of pith roots are required for obtaining all
roots of f,. This generalizes the linear lower bound on the number of circles one has to draw in order to
solve a geometric construction problem by ruler and compass and exponentially improves the obvious
lower bound which is the number of prime factors of (n), the value of Euler’s function on n.

Key words, complexity, lower bounds, polynomial equations

Let O be an algebraic number field of finite degree and f(x) an irreducible
polynomial in O[x]. If the equation f(x)= 0 is solvable by radicals then the splitting
field of f can be constructed by repeated cyclic extensions of O. Computationally, all
roots of f can be calculated if all roots of binomial equations y n-a 0 can be found.
If n is a composite number then the equation y n-a 0 can be replaced by several
equations of degree less than n. However, binomial equations of prime degree cannot
be replaced by binomial equations of smaller degree. We were thus led to the following
question" How many binomial equations of prime degree have to be solved in order
to obtain all roots of an irreducible polynomial f(x) in O[x of degree n ?

Consider the case when O is the field O of rational numbers and f(x) is the
cyclotomic polynomial qSn(x) which is of degree (n) where q denotes the Euler
function. b, is irreducible over O and has Galois group C,). Hence the equation
b, (x)= 0 is solvable and the number of binomial equations of prime degree which
have to be solved in order to obtain all roots of b, is the number of prime factors of
q (n). For every nonprime natural number n we shall prove the existence of irreducible
polynomials of degree n which considerably improve this obvious lower bound, namely
to 1 +Pl +PlP2 +" "+Pip2"" Pk- ifn PP2 Pk is afactorization of n into primes.

The case n -2k, k , yields the number of circles one has to draw in order to
solve a geometric construction problem by ruler and compass and was treated in [1].

THEOREM 1 (gafarevi. [2]). Let Q be an algebraic number field of finite degree
and G a finite solvable group. Then there exists a Galois extension of Q with Galois
group G.

DEFINITION. A subgroup H of a group G is corefree if H contains no nontrivial
proper normal subgroup of G.

The following result is a consequence of Steinitz’s theorem and the fundamental
theorem of Galois theory; for a proof see [1].

THEOREM 2. Let Q be an algebraic number field of finite degree and Q’ a finite
Galois extension of Q with Galois group G. IfH is a corefree subgroup of G then there
exists an irreducible polynomial f(x) in Q[x] of degree (G:H) with splitting field Q’.

Let n be a natural number with prime factorization n p "Pk. We denote by
Cn the iterated wreath product Col[Cp2[... [Cok]...]], where the Co, are cyclic groups
in p elements. The group Cn is solvable and isomorphic to a subgroup of the
automorphism group of the rooted tree in which the root has out degree p l, each

* Received by the editors July 28, 1981, and in revised form November 15, 1981. This research was
supported by the Swiss National Science Foundation under grant 82.813-0.80.

" Eigen6ssischle Technische Hochschule Ziirich, Ziirich, Switzerland, and Institut fiir Statistik und
Informatik, Universit/it Wien, A-1010 Wien, Austria.
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successor of the root has out degree p2, etc. Let H, be the stabilizer subgroup in C,
of a leaf of this tree. Then H, is a corefree subgroup of C, of index n.

We now can prove:
THEOREM 3. Let O be an algebraic number field of finite degree and n >-_2 a

natural number with prime factorization n pipE" Pk. Then there exists an irreducible
polynomial f(x) in Q[x] of degree n such that f(x) is solvable by radicals and one has
tO sohe 1 +Pl +pipE +" "+pipE Pk- binomial equations of prime degree in order
to obtain all roots off(x).

Proof. By Theorem 1 there exists a Galois extension Q’ of Q with Galois group
Cn. By Theorem 2 there exists an irreducible polynomial f(x) in Q[x] of degree n
with splitting field Q’. It follows that the Galois group of f over Q is Cn and that f
is solvable by radicals. The fundamental theorem of Galois theory implies that the
number of binomial equations of prime degree that have to be solved in order to
obtain all roots of f is the number of factors in a prime factorization of IC.I, namely
l +p +pp2+ +plp2 Pk-.
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SCHEDULING OPPOSING FORESTS*

M. R. GAREY* D. S. JOHNSON*, R. E. TARJAN,, AND M. YANNAKAKIS*

Abstract. A basic problem of deterministic scheduling theory is that of scheduling n unit-length tasks
on m .identical processors subject to precedence constraints so as to meet a given overall deadline. T. C.
Hu’s classic "level algorithm" can be used to solve this problem in linear time if the precedence constraints
have the form of an in-forest or an out-forest. We show that a polynomial time algorithm for a wider class
of precedence constraints is unlikely, by proving the problem to be NP-complete for precedence constraints
that are the disjoint union of an in-forest and an out-forest (the "opposing forests" of our title). However,
for any fixed value of rn we show that this problem can be solved in polynomial time for such precedence
constraints. For the special case of rn 3 we provide a linear time algorithm.

1. Introduction. One of the fundamental problems of deterministic scheduling
theory is that of scheduling unit-length tasks on a collection of identical processors
subject to precedence constraints so as to meet a given overall deadline. Given a
number m of processors, a deadline D, and a task system S (T, <), where T
{Tx, T2,’", T,} is a set of tasks and < is a partial order on T, an m-processor
schedule for S that meets deadline D is an assignment r T - {0, 1, , D 1} which
satisfies the following processor and precedence constraints:

For all t, O <-_ <=D -1, [{T/e T cr(Ti) t}[ <= m.
(2) For all Ti, T . T, Ti < T implies tr (T) -> tr (T/) + 1.

A task T with o-(T)= is said to start at time and finish at time + 1. The set
{T T: tr(T)= t-1} is called the set of tasks executed in the tth time slot (tasks in
the first time slot start at time 0).

In what follows, we shall refer to the question, "Given m, D, and S, is there an
m-processor schedule for $ that meets deadline D?" as the multiprocessor scheduling
problem (MS). This problem provides an elementary model for a number of scheduling
situations, including the pre-emptive scheduling of multiprocessor systems [2]. It is
known to be NP-complete [18] and hence is unlikely to be solvable by any polynomial
time algorithm (see [11] for an introduction to the theory of NP-completeness).
However, a number of special cases can be solved with polynomial time algorithms.

In a classic 1961 paper [12], T. C. Hu presented an algorithm, called the "level
algorithm," which can be used to solve MS in time O(n) when S is either an in-forest,
i.e., each task has at most one immediate successor, or an out-forest, i.e., each task
has at most one immediate predecessor. (T is an immediate predecessor of T, and T/
is an immediate successor of T, if T < T. and no other task Tk satisfies T < Tk "< T..)

Quite recently, Papadimitriou and Yannakakis [14] have shown that if < is an
interval order (each task T corresponds to an interval [a, b] on the real line, and
T < T. if and only if bi < a), then MS can be solved in time O(n 2). Even more recently,
Warmuth [19] has shown that if < is a level order (any two incomparable tasks with
a common predecessor or successor have identical sets of predecessors and successors),
then for any fixed value of m MS can be solved in time O(n"-x).

* Received by the editors September 18, 1981, and in revised form April 29, 1982.
t Bell Laboratories, Murray Hill, New Jersey 07974.
The work of this author was done in part while he was with the Computer Science Department,

Stanford University, and was partially supported by the National Science Foundation under grant MCS75-
22870-A02 and by the Office of Naval Research under contract N00014-76-C-0688.
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For arbitrary partial orders, the most general case that is known to be solvable
in polynomial time is that for m 2. The first polynomial time algorithm for this case
was presented in 1969 by Fujii, Kasami and Ninomiya [5], and improved algorithms
have been obtained by Coffman and Graham [3], Sethi [16] and Gabow [6].

No other significant subcases have been identified as being solvable in polynomial
time, although results of this sort have been obtained for a number of variants on the
basic model [1], [2], [7], [8], [9]. In particular, it is shown in [1] that if each task has
an individual deadline it must meet, then the problem of scheduling equal length tasks
on rn processors remains solvable in polynomial time for in-forests but becomes
NP-complete for out-forests.

In this paper we return to the basic multiprocessor scheduling model and
consider the case in which $ can be partitioned into two disjoint and independent
task systems, St (Tt, <t) and So (To, <o), where St is an in-forest task system
and So is an out-forest task system. We call such a composite system S an opposing
forest.

Opposing forest task systems form essentially the simplest natural generalization
of the cases solvable by Hu’s level algorithm. They are properly included in the class
of series-parallel partial orders, a class to which algorithms for in-forest partial orders
have often been generalized in other scheduling domains [13], [14], [17]. However,
for MS, we shall show that the opposing forest case is NP-complete. (The same holds
for certain less natural generalizations of the polynomially solvable cases, such as
when S is the union of interval ordered task systems or the union of an interval
ordered task system and an in- or out-forest.)

When the number of processors rn is fixed, the outlook is somewhat brighter.
We present an algorithm for the opposing forest case that runs in time bounded by
the polynomial O(n’+z"-5). Clearly such a bound cannot be used to justify a claim
of having found an "efficient" algorithm for large m, but it does verify that the problem
can be solved in polynomial time for fixed m and offers hope that subsequent work
may lead to significant reductions in the exponent. Moreover, this algorithm shows
that task systems more complicated than opposing forests will be required if one is
to resolve the longstanding open problem of MS for fixed m by showing that there
is some value of m for which the problem is NP-complete.

The paper is organized as follows: In 2 we introduce the profile scheduling
problem and show its relationship to opposing forest MS, proving that both problems
are NP-complete for general m. In 3 we describe our general algorithm, which is
based on a subroutine for the "monotone" profile scheduling problem. In 4 we show
how special techniques allow us to solve three-processor opposing forest MS in linear
time, a substantial improvement over the general algorithm. We conclude in 5 with
a discussion of the other NP-completeness results mentioned above and some direc-
tions for further research.

Before moving on to those results, it should be remarked that the earlier algorithms
we have cited [3], [12], [15] all construct minimum makespan schedules, i.e., schedules
in which the latest finishing task finishes as early as possible. Our new algorithms in
contrast only determine whether or not a schedule exists that meets the given deadline,
constructing one if it does, but without guaranteeing any additional properties for
that schedule. Thus, in the event a minimum makespan schedule is desired for these
cases, the algorithms must be applied approximately log n times in a binary search
for the minimum achievable deadline, increasing the running time by a factor of log n.
For the three processor case, however, we show how to find minimum makespan
schedules without introducing this additional log n factor.
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2. Profile scheduling. In this section we introduce the notion of a "profile" and
show its relationship to the scheduling problems we are considering. A profile is simply
a sequence fit (too, m1,’", ink) Of nonnegative integers. A schedule tr for a task
system S meets the profile ffz (mo, m 1, ",too-l) if it meets the deadline D, and if
for all i, 0-< _<-D 1, it satisfies

[{T. T: tr (T.) i}[ _-< mi.

The schedule has the given profile if equality holds in the above for all values of i.
An m-processor schedule tr for an opposing forest task system S St So meets

the internal profile r (rno, rnl,..., too-l) if it meets the deadline D and for all i,
O<-i<=D-1,

I{T T,: cr(T)=i}l<--_m, and I{T. To: tr(T.)=i}l<--_rn-m,.

Note that if tr meets the internal profile r, it can be viewed as a composite schedule
made up of a schedule trt for St that meets r and a schedule tro for So that meets
the complementary profile fit c (m mo, rn rn 1, , rn too-l).

The opposing forest MS problem is closely related to the following problem for
S an in-forest or an out-forest task system:

PROFILE SCHEDULING (PS)
Instance. Task system S (T, <), number m of processors, deadline D, and a

profile rh (rn0, rn 1, ’, rno-1), with 0 =< mi -< rn for 0 =< <-D 1.
Question. Is there a schedule tr for S that meets profile r ?

Our first observation is that in-forest PS is linearly equivalent to out-forest PS.
Given an instance of one, we can convert it to an instance of the other by replacing
< by the reversed partial order <R (T <R T. if and only if T. < T) and replacing
by the reversed profile th R (too-l, ", rn2, m 1, too).

We shall be particularly interested in the PS problem for "monotone" profiles.
A monotone profile for an in-forest is one satisfying mo >= m >=" ">- rno-1. A monotone
profile for an out-forest is one satisfying rno <= rnl <=... <-too-1. A monotone internal
profile for an opposing forest task system S St U So is one satisfying rn0 => rn >-" =>
rno-1. It imposes the monotone profile n on the in-forest St and the monotone profile
n c on the out-forest So. We shall call the case of PS in which S is an in-forest
(out-forest) task system and r is monotone for S the MONOTONE PROFILE
SCHEDULING (MPS) problem for in-forests (out-forests). Note that by the above
remarks in-forest MPS is equivalent to out-forest MPS; an algorithm for one can be
converted directly to an algorithm for the other with essentially no change in the
running time. Our interest in these problems derives from the following results:

THEOREM 2.1. Let S (Tt U To, <t t.J <o) be an opposing forest task system, let
m be a number of processors, and let D be a deadline. Then, if there is an m-processor
schedule for S meeting deadline D, there is also such a schedule that meets a monotone
internal profile

fit (m0, m 1, , mo-1) with mi <- rn ]’or 0 <- <=D 1.

Proof. For any profile r=(mo, ml,’",mo-1) with rni<=m for 0-<i_-<D-1,
define the monotonicity measure f(r by

D-1

f(r Z (D i)rni.
i=0
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For any schedule cr for S that meets deadline D, define f(cr) by

f(cr) max {f(rh): cr meets internal profile fit }.

Since f(tr) cannot exceedD ITt [-J To[, there must be some schedule tr* that maximizes
f(tr) and some internal profile fft*=(m,rn*,...,rn_l) met by tr* for which
f(tr*) f(r*). We claim that tr* and r * are the desired schedule and internal profile.

Suppose not. Then for some i, 0=<i <D- 1, we must have m/* < m/*+l. Consider
the least such value of i. By the definition of rh*, we know that So must actually have
the profile (n*)c, so the number of tasks from To that start at time must be exactly
m- rn* and must exceed the number m- rn*/ of tasks from To that start at time
+ 1. Since So is an out-forest task system, it follows immediately that some task

T. To with tr*(T.)= must have no successors scheduled to start at time + 1. If r*
assigns fewer than m tasks to start at time + 1, we could thus reassign T. to start at
time + 1 and obtain a new schedule tr satisfying f(tr)= f(tr*)+ 1. On the other hand,
if tr* assigns exactly rn tasks to start at time + 1, then there are exactly m*/l tasks
from Tt that start at time + 1 and at most m/* < m/*/ tasks from Tt that start at time
i. Thus, since St is an in-tree task system, there must be some task Tk Tt with
tr*(Tk) + 1 that has no predecessors starting at time i. In this case we can interchange
the tasks Tk and T. to form a new schedule tr with f(tr) f(tr*) + 1. Therefore, in both
cases we obtain a contradiction to the maximality of f(tr*), and the theorem is
proved.

The following lemma is useful for refining Theorem 2.1"
LEMMA 2.1. Suppose that S (T, <) is an in-forest task system, tr is a schedule

for S meeting the monotone profile (too, m,..., mq) where mq >0, and k is an
index satisfying 0 <-k < q such that mk> mk+l. Then there exists a schedule tr’ for S
that meets the monotone profile tfi (tno, m 1, , mq+l) where

rn if O<-i <k or k <i <-q,

mi r-I gi=k,

ifi=q+l.

Proof. See Fig. 1. We first construct a sequence of tasks as follows. Let To be
any task with tr(T0)= k. Inductively, suppose that we have just chosen a task T/such

FIG. 1. Schedule transformation for Lemma 2.1.

that r(T)=k +i. If k +i <q, consider the set of tasks scheduled to start at time
k + + 1. If this set is empty, set T/I . If the set contains a successor of T/(there
can be at most one, since S is an in-forest), let that successor be T//I. Otherwise,
choose any task from the set to be Ti/l.

This procedure results in a sequence To, Tt,..., Tq-k of tasks such that each T
satisfies tr(T)= k + and has no successors, except possibly T/I, scheduled to start
at time k + + 1. Thus our desired schedule tr’ can be obtained from tr by adding 1
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to the starting time for each task T in our sequence and leaving the starting times
for all other tasks exactly as they were.

THEOREM 2.2. Let S (Tx To, <t <0) be an opposing forest task system, let m
be a number of processors, and let D be a deadline. If there is an m-processor schedule
]’or S that meets deadline D, then there is such a schedule that also meets a monotone
internal profile r (mo, m 1, ",mo-1) for which either mo< m or too-1 > O.

Proof. Suppose S has an m-processor schedule meeting deadline D. By Theorem
2.1, there is such a schedule r that meets a monotone internal profile r
(too, m 1, ", too-l). If m0 < m or too-1 > 0, we are done. If not, apply the transforma-
tion of Lemma 2.1 to the schedule obtained by restricting tr to Tx with k equal to the
largest index for which m m, and simultaneously apply the out-forest analogue of
Lemma 2.1 to the schedule obtained by restricting tr to To with k equal to the largest
index/’ for which mj 0. The combination of the two resulting schedules is a schedule
for S that meets a new monotone internal profile r’ identical to fit except that
m m 1 and m 1. Thus repeated.application of this operation will yield a schedule
of the desired form.

Theorem 2.2 leads directly to the following algorithmic result:
COROLLARY 2.2.1. For any fixed number m of processors, if there exists an

algorithm A that solves the m-processor in-forest MPS problem in time P(n, m, D), then
there exists an algorithm that solves the m-processor opposing forest MS problem in time
O(Dm-lP(n, re, D)).

Proof. Theorem 2.2 tells us that we can restrict our attention to schedules for
the opposing forest that have an internal profile fit (too, m1,"’, roD-l) that is
monotone and that satisfies either m0 < m or roD-1 > 0. For each such profile, we can
check whether there exists a schedule with that internal profile by applying A to the
in-forest with the specified profile and to the reversed out-forest with the reversed
complementary profile. The number of internal profiles that must be considered can
be counted by first observing that each corresponds to a unique sequence n,,
nm-1, no where

n, I{/’" 0 -<_/" <_-D 1 and m i}[
and where either n,, 0 or no 0. Furthermore, since we can restrict attention to
schedules in which the out-forest has the complementary profile, the value of no or
n,, whichever is nonzero, is uniquely determined by the other n and the number of
tasks in the out-forest. Thus there are at most 2. D"-1 such sequences (profiles) that
need to be considered, and we need only apply algorithm A 4. D"-1 times, from
which the result follows.

Corollary 2.2.1 indicates that if in-forest MPS is solvable in polynomial time for
a fixed number m of processors, then opposing forest MS is solvable in polynomial
time for the same fixed number m of processors (we can assume that D _-< n). The
converse need not hold, although it is not difficult to show that if opposing forest MS
can be solved in polynomial time for m + 1 processors, then in-forest MPS can be
solved in polynomial time for m processors. Note also that Corollary 2.2.1 does not
imply that if in-forest MPS is solvable in polynomial time for arbitrary m, then so is
opposing forest MS, because of the D’-I factor in the time complexity. This last issue
is moot, however, (assuming P NP [11]) in light of the following theorem:

THEOREM 2.3. If the number m of processors is arbitrary, the following problems
are all NP-complete

(1) PROFILE SCHEDULING for in-forest task systems;
(2) MONOTONE PROFILE SCHEDULING for in-forest task systems;
(3) MULTIPROCESSOR SCHEDULING for opposing forests.
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Proof. Since all these problems are easily seen to be in NP, our proof need only
consist of a series of polynomial transformations. The first transforms the known
NP-complete problem 3-PARTITION into problem (1). We then transform (1) into
(2) and (2) into (3), completing the proof. In what follows, we use the symbol "a"
to denote "transforms to." The 3-PARTITION problem is defined as follows:

3-PARTITION
Instance. Set A of 3q elements, a positive integer weight w(a) for each a c A,

and a positive integer bound B, where B/4<w(a)<B/2 for each a cA and
YA w(a)=qB.

Question. Can A be partitioned into q disjoint sets A, A2,’’.,A such that,
for l <=i <=q, Y’.aA, w(a)=B?

Note that the constraints on the weights force the sets Ai to contain exactly three
elements each. This problem is NP-complete in the strong sense [7], [10], [11], and
hence in using it as the source problem for an NP-completeness proof we are allowed
to use "pseudo-polynomial" transformations [10], [11 ], i.e., our transformations and
instance sizes need only be polynomial in terms of q and B (rather than q and log B).
We proceed as follows:

(A) 3-PARTITION c in-forest PS. Suppose we are given an instance of 3-
PARTITION specified by A, q, B, and w. Without loss of generality we may assume
that B is even and exceeds 3q (otherwise we could simply multiply B and all values
w (a) by 2q without changing the answer for that instance). We construct an in-forest
instance of PS as indicated in Fig. 2.

u.[i].
u(oi,) [j]

mo=B

:::_
B-3(q- I) B-3(q-2)

FIG. 2. The constructed instance of in-forest PS in the proof of Theorem 2.3.

The set T is the union of 3q sets T[i], one for each element ai cA. T[i] consists
of 2w (ai) tasks, uj[i] and vj[i], 1 <-] <= w(a). The partial order on these tasks is specified
by:

u[i]< Vk[i] for 1 <=f, k <= w(ai),
v[i]<vk[i] forl<=j<k<=w(ai).

Note that each T[i] is an in-tree and hence T is an in-forest.
The deadline D is given by

,-x 3q2_ 5q
D =q+ Y (B-3i)=qB-.

i=0 2
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To specify the profile th (m0, m1,’’ ", roD-l), we first define certain special times
tj, l<_-f<_-q +1, by

tj (j- 1)B 3 (j 1)q +
3j2-j-2

Note that tl =0 and tq+ =D. For 0-<_i <-D-l, we set

B+3(/-1) ifi=t for l <- f <- q,
mi= 1 otherwise.

Observe that

D-1 q-1

mi D -q + Y’. (B + 3j) 2qB TI,
=0 i=O

and hence any schedule for S (T, <) that meets profile n must in fact have profile
m.

This completes our description of the constructed instance of in-forest PS, which
is easily seen to be constructible in pseudo-polynomial time. It remains for us to show
that there exists a schedule for S that meets profile if and only if the desired
partition exists for A.

First, suppose the desired partition for A exists, and without loss of generality
assume thatA {a3i-2, a3i-, a3i}, 1 <=q, is such a partition. We show how to derive
a corresponding schedule for S that meets profile .

The tasks of TIll, T[2], and T[3] are scheduled as follows: For {1, 2, 3}, all
tasks ui[i], 1 <= ] <- w (ai), are scheduled at time tx 0. Since mo=B and w (a 1) + w (a2) +
w(a3)=B, these tasks completely fill up this slot in the profile. The tasks viii],
1 <-] <-w(a)-(q-1), are scheduled at times between tx and t2. Since there are B-
3(q- 1) such tasks and B- 3(q- 1) time slots with room for one task each, these use
up the remaining slots that occur before t2. Finally, for 0 _-< k <q- 1 and s {1, 2, 3},
we schedule each task Vw(a,)-k[i] at time tq-k. Figure 3 illustrates this "partial" schedule.

l’"l lal...12131...la131

FIG. 3. Scheduling o.f tasks from T[1], T[2], and T[3].

In general, the tasks in T[3i- 2], T[3i- 1], T[3i] are scheduled analogously. All
the Uk[]] tasks, for ]{3i-2,3i-1,3i} and l<-k<-w(a), are scheduled at time ti,

which has precisely enough room for all these tasks plus one representative from each
T[I], 1<-_1<-3(i-1). The tasks vkE]], for /" {3i 2, 3i --1, 3i} and 1-<k-<
w(ai)-(q-i), are scheduled between h and &+l and exactly fill up the B-3(q-i)
slots there. Finally, for ] e {3i-2, 3i- 1, 3i} and 0 _-< k <q- i, we schedule each task
1)w(aj)-k[/] at time tq-k.

We leave to the reader the straightforward verification that the above description
yields a schedule for S that meets profile
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Now suppose that there exists a schedule tr for $ that meets, and consequently
has, profile rh. We shall show that this implies the existence of the desired partition
for A.

Consider the set of tasks scheduled at time o. We first claim that this set can
include tasks ot the torm Uk[i] for at most three distinct values of i. It there were
more, then there would be at least four sets of tasks {vk[i]" 1 <-k _<-w(ai)} whose
members were all scheduled at or following time o + 1. However, since w(ai)> B/4
for all ai A, these sets contain at least B + 1 tasks in total, and the time slots after
o + 1 in the profile have room for at most B tasks, a contradiction to the assumption
that the schedule has profile n.

Next we claim that tasks Uk[i] for at least three distinct values of are scheduled
at time o Suppose there were only two. Then the total number of such tasks at o
could be at most B-P,, since w(ai)<B/2 for each aA and B is even. This leaves
room tor at least 3(q- 1)+2 additional tasks in that time slot, but there can be at
most 3(q- 1)+ 1 tasks of type vk[i] at that time, at most one for each value of and
none for the two values of for which Uk[i] tasks are scheduled at o. Thus again we
have a contradiction to the assumption that the schedule has profile rfi. The case in
which one or fewer classes of uk[i] tasks are scheduled at o is handled similarly.

Thus there are precisely three indices such that tasks Uk[i] are scheduled at time

o. This means that at most 3(q- 1) tasks of type Vk[i] can be scheduled at this time,
so there must be at least B Uk[i] tasks scheduled at o. Let Ao be the set of a with
the corresponding three indices. We thus have that Ya,Aq w(a)>=B. However, since
these tasks have a total of Ya,Aq w(a) successors and since there is room for only B
tasks after time to, we also must have aiA w(ai)<-_B. Thus "aieA w(a)= B. This in
turn implies that the task Vw(,[i] for each agAq also must be scheduled at time o.

We proceed by induction. Suppose that in general we define

Aj {ai" for some k, 1 <-_k <- w(ai), tr(uk[i]) tj}

and A; =Ai UAi+I U" "UAo. When j =q, we know that the sets At, j _-<I _-<q, form
a partition of A; into three-element sets such that the weights of the elements in each
sum to B. We also know that the slots in the profile starting with time to are completely
filled with the tasks

{Uk[i], Vk[i]: ai A;, 1 <-_k <- w(ai)}

and

{Vk[i]" aiA and w(ai)-(q-f)<-k <-w(ai)}.

Suppose this is true for a given value/’ J + 1 -< q. An analogue ot the above argument
for /=q can be used to show that Aj "IA+I Q, IAj[ 3, ,A,W(a)=B, and the
space in the profile starting with t and extending through time t/l- 1 is completely
filled with the tasks from the sets T[i] for aA that are not scheduled later than
t+l- 1, plus Vw(a,)-o+j[i] for each aAJ A A’-/I. This implies that the induction
hypothesis holds for J, and we can conclude that it holds for/" 1. Hence, the
constructed sets A 1, A2, ’, Ao form the desired partition of A.

It follows from the above that in-forest PS is NP-complete. Our remaining
transformations are considerably simpler.

(B) In-forest PS a in-forest MPS. Let S (T, <) and fit (mo, rex,"’, too-l)
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specify an instance of in-forest PS. Define

D-1

M0=l+ mi,
i=0

j--I D-I

M. Mo- mi l + 2 mi,
=0 =]

Note that we then have

I<=]<=D-1.

Mo>=Mo-mo=M1 >=Ml-ml =M2 ->" >--MD-1 >----MD-I--mD-1 1.

We now define an in-tree S’= (T’, <’) as follows:

T’ {x[k ]: 0 <= k <=D 1, 1 <-_ <-_ Mk ink},

x[k] <’ xj[l]<"{O<=k <l <=D 1 and either =/" or ] =M-m and >Ml-m.
This tree is illustrated in Fig. 4. Notice that any schedule r for S’ must have makespan
at least D, and, if it has makespan exactly D, it must have r(x[k ]) k for all xi[k ] T’
and thus have profile (Mo too, M1 m 1, ",MD-1 mD-).

FIG. 4. The in-tree task system S’.

The desired instance of in-forest MPS is simply the task system (T t.J T’, < LI <’)
and the profile M (Mo, Mx,." ,MD-1). It is easy to see that this combined task
system can be scheduled to meet the monotone profile M if and only if $ can be
scheduled to meet the original profile th" Since any schedule for the combined task
system that meets Ar must satisfy r(xi[k ]) k for all x[k T’, the restriction of that
schedule to tasks in T must be a schedule for S that meets n. Similarly, any schedule
r for S that meets n can be extended to a schedule for the combined system that
meets Ar by setting o,(x[k])= k for all x[k T’.

It is trivial to construct the above instance in polynomial time, so we have, as
required, shown that in-forest PS a in-forest MPS and hence the latter is NP-complete.
Our final transformation is quite similar.

(C) In-forest MPS a opposing forest MS. Let S=(T,<) and rfi=
(too, rex,..., too-x) specify an instance of in-forest MPS. We construct an out-tree
S’= (T’, <’) as follows"

T’={y,[k]: O<-k <=D-l, l <=i <--_mo-mk +1},

y,[k]<’yj[l]

0 _-< k < _-<D 1 and either or m0- mk+ 1 and ] > m0- mk+ 1.

Notice that this tree has the form of the tree in Fig. 4, but with all the arrows reversed.
If T’ is scheduled to have makespan D, it must be the case that r(y[k ]) k for each
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y[k T’, and hence the schedule must have the (monotone) profile (too- rn0 + 1, m0-
ml + 1, , mo-rno_ + 1). From this it is trivial to conclude that the opposing forest
task system (T t.J T’, < t.J <’) can be scheduled on m0 + 1 processors with makespan
D if and only if $ can be scheduled to meet profile fit. Thus we have our desired
polynomial transformation from in-forest MPS to opposing forest MS, and it follows
that opposing forest MS is NP-complete.

Having proved that opposing forest MS is NP-complete when the number of
processors is arbitrary, we proceed in the next section to the case where m is fixed.
We devise an algorithm for in-forest MPS that runs in polynomial time for any fixed
value of m, which, by Corollary 2.2.1, yields a polynomial time algorithm for m-
processor opposing forest MS for each fixed value of rn.

3. A monotone profile algorithm for in-forests. Our algorithm is of the "divide
and conquer" variety. Due to the manner in which we divide into subproblems, all
the subproblems that arise will be of one of the two following forms"

Case 1. ITI Y’.--0 rn. In this case we say that a schedule o- satisfies the profile
fit if tr maps T into the set {0, 1,... ,D-I} of starting times, it observes the
precedence constraints, and it schedules exactly rn tasks to start at each time i,
0-< -<D- 1. Note that such a schedule will in fact have the profile fit.

D-1Case 2. ITI--> Y,=0 m, / too-1. In this case we say that a schedule tr satisfies the
profile fit if tr maps T into the set {0, 1,..., D} of starting times, it observes the
precedence constraints, and it schedules exactly rni tasks to start at each time i,
0 =< =<D- 1, with the remainder scheduled to start at time D. We can view such a
schedule tr as one mapping a subset of T into the starting times {0, 1,..., D- 1},
along with a collection of "unscheduled" tasks (those with tr(Ti)=D), with the
restriction that no unscheduled tasks have any successors in T.

In what follows, we shall assume that each task system under consideration falls
under either Case 1 or Case 2, and that fit is a monotone in-forest profile. At the
end of the section, we will discuss the conversion of an arbitrary instance of in-forest
MPS to the required form.

We will be using the level algorithm of [12] as a basic subroutine in our algorithm.
In terms of the MPS problem, this algorithm can be described as follows:

Given an in-forest S (T, <), the level l(T) of a task Ti T is defined to be 0 if
T has no successors and otherwise is given by

1 + max {/(T): T. e T and T/< T}.

The level algorithm first reorders the tasks so that l(Tx) => l(T2) ->" -> l(Tn). It then
schedules the tasks by time slot, first choosing the tasks to be executed at time 0, then
those to be scheduled at time 1, and so on, always scheduling as many tasks as possible
and giving preference to tasks with lower indices. Specifically, in choosing the tasks
to start at time t, the algorithm chooses from the set

At {T T" T has not been scheduled to start before t,
and all predecessors of Ti have been scheduled to start before t}

the mt tasks with lowest indices (and, hence, highest levels), or, if IAtl < mr, it assigns
all tasks in At to start at t. This scheduling process continues, with increased by 1
at each step, until all tasks in T have been assigned starting times. (To handle
subproblems falling under Case 2, we set mo= az by convention.)

We now give four lemmas pertaining to the level algorithm, as it applies to
problems of types (a) and (b). These will be used later to justify the way in which our
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overall algorithm works. The first of these, which we state without proof, is merely
an observation about in-forests that will be useful in our subsequent proofs. A leaf
in an in-forest task system is a task that has no predecessors.

LEMMA 3.1. Suppose S (T, <) is an in-forest with exactly k leaves. If any subset
of these leaves is deleted from S, then the resulting "pruned" in-forest will have no more
than k leaves. If all k of these leaves are deleted, then the maximum level in T is reduced
by 1.

Our second lemma characterizes a class of profiles for which the level algorithm
is guaranteed to find satisfying schedules whenever they exist. For a given profile
fit -(too, ml,..., mo-), define M to be the number of tasks that can be scheduled
in the first + 1 time slots, i.e., for 0 _-< _-< D 1, Mi mo+m +. + mi, with M 0
if < 0 and Mo o by convention. For an in-forest task system, define l to be the
number of tasks with level i, define L to be the number of tasks with level or greater,
and let L_ oo by convention.

LEMMA 3.2. Suppose S=(T, <) is an in-forest task system and fit=

(too, m, ., mo-) is a monotone profile satisfying too-mD- <- 1. Then the following
are equivalent"

(i) There is a schedule for S satisfying fit.

(ii) For all >-0, Li <-Mo-i- in Case 1, or Li <-Mo-i in Case 2.
(iii) For any ordering ofthe tasks by nonincreasing level, the level algorithm produces

a schedule for S satisfying fit.

Proof. We first note that (iii) trivially implies (i). It is also immediate that (i)
implies (ii), since in any schedule that observes the precedence constraints it is
necessarily the case that all tasks with level or greater start at or before time D 1
in Case 1 or time D- in Case 2. We shall show that (ii) implies (iii) by induction
on D, thus completing the proof.

Suppose D 1 and that (ii) holds for S and fit. In Case 1 this means that all tasks
have level 0, and they all belong to the set Ao of tasks available at time 0. Since there
are precisely mo of them, by the definition of Case 1, the level algorithm will schedule
them all at time 0, thus satisfying the profile fit. In Case 2 there must be at least 2mo
tasks, with at most mo having level 1 by (ii) and the rest having level 0. Since S is an
in-forest, it follows that the set Ao of leaves must consist of at least m0 tasks, including
all the level-1 tasks. Hence the level algorithm will schedule mo tasks, including all
the level-1 tasks, at time 0, and the schedule will satisfy the profile fit.

Now suppose that (ii) implies (iii) for all values of D < d and let S and fit satisfy
(ii) for D d. We first claim that S has at least mo leaves. Suppose that S had no
more than too- 1 leaves. By Lemma 3.1, we know that removing all the leaves from
an in-forest with at most too-1 leaves yields a pruned in-forest with no more than
too-1 leaves and with the maximum task level reduced by exactly 1. Thus, if we
remove all the leaves from S, and then remove all the leaves from the resulting
in-forest, and continue to do this until the set of tasks becomes empty, we will remove
at most too-1 tasks at each step and the number of steps will be one greater than
the maximum task level in S. By (ii), the maximum task level in Case I is at most
D 1 and in Case 2 is at most D. Thus the number of tasks in T must satisfy

in Case 1 and

D-1

]Tl(mo-1).D Y. m-I
i=0

D-1

ITI <- (too- 1). (D + 1) <_- E m, + roD-1- 1
i=0
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in Case 2. Since each of these inequalities contradicts the definition of the correspond-
ing case, it follows that $ must have at least m0 leaves.

It follows that the set A0 of tasks initially available to be scheduled by the level
algorithm satisfies IAI--> m0, and the level algorithm will choose exactly m0 of these
tasks to start at time 0. Let T’ be the set of remaining tasks, S’= (T’, <’) be the
induced task system, and rh (m, m ,..., mb-2) be the remaining profile, where
m mi/l for 0 _-< -<D 2. DefineM andL in terms of the new task system, profile,
and deadline D’ D 1. It is easy to see that S’ and rfi’ satisfy the hypotheses of the
lemma and that whichever of Cases 1 and 2 held for $ and rfi continues to hold for
$’ and th’. We shall argue that (ii) must continue to hold for S’ and th’, and hence,
by the inductive hypothesis, the level algorithm will construct a schedule tor S’
satisfying th’. Since this is exactly what the level algorithm will do in scheduling S
after the first m0 tasks have been scheduled, it will follow that the level algorithm
constructs a schedule for S satisfying rfi, and the lemma will follow by induction.

Let k be the least level (in S) of any task in T-T’. Property (ii) will certainly
hold for S’ and rfi’ for all i<k, since for such we have L=L-mo, Mb--
Mo-l--mo, and Mb-i =Mo--mo, in Cases 1 and 2 respectively. Consider any
> k. By the definition of k and the operation of the level algorithm, we know that

there were at most m0-1 tasks of level greater than k available at time 0. Since $

is an in-forest, this implies that for each ] => there can be at most too-1 tasks of
level exactly ] in S, i.e., lj =< m0-1 for all/"-> i. In Case 1 the maximtim task level in
S is at most D 1 and hence the maximum task level in S’ is at most D -2. Thus we
have

D--2 D -2

Lg= l <- E li<-(mo-1)(D-i-1)<--Mo--2,
i=i i=i

as desired. Similarly in Case 2 the maximum level for a task in S’ is at most D- 1,
and hence we have

D--1 D--1

L Y. l <- E li<=(mo-1)(D-i)<--Mb--,
j=i i=i

as desired. Thus (ii) holds for S’ and th’, and the fact that (ii) implies (iii) for all values
of D follows by induction. I-1

Figure 5 gives an example of a task system that can be scheduled to satisty the
monotone profile (3, 3, 1, 1, 1), but for which the level algorithm fails to find a satisfying
schedule, thus showing that Lemma 3.2 cannot be extended to more complicated
profiles.

The remaining two lemmas are needed for specific technical reasons that will
become clear later.

SATISFYING LEVEL
SCHEDULE SCHEDULE

2 4

FIG. 5. Task system for which the level algorithm fails to find a satisfying schedule.
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LEMMA 3.3. Suppose S (T, <) is an in-forest task system, fit

(too, m1,’", roD-l) is a monotone in-forest profile satisfying mo= roD-l, and there is
a schedule for S satisfying fit. If S’ (T’, <’) differs from S only in that a leaf has been
deleted from S and replaced in S’ by a leaf of no greater level, then there is a schedule
for S’ satisfying fit.

Proof. This follows immediately from Lemma 3.2, since such a change in S will
yield L <-_ Li for all ->_ 0. l

LEMMA 3.4. Suppose S (T, <) is an in-forest task system with IT[ mD+ 1,
fit (too, m 1, , too-l) is a monotone in-forest profile satisfying mo= too-1 m, and
T1 and T2 are two level-O tasks in T. Let $1- (T-{T1}, <1) and $2 (T-{T2}, <2)
be the induced task systems obtained by deleting T1 and deleting T2 respectively. If there
is a level schedule tr for $1 that satisfies fit and that starts all predecessors of T1 before
time D 1, then $2 can be scheduled to meet fit.

Proof. Let us consider the hypothetical schedule tr for $1. If tr(T2)= D- 1, we
can obtain the desired schedule for $2 simply by replacing T2 with T1. If tr(T2)- <
D- 1, then there were at most m- 1 tasks of level greater than 0 available at time
and hence at most that many available at any later time. Since tr schedules exactly
m tasks in each time slot, this means that at each time/’, _-<f -<_D 1, there must be
at least one level 0 task. Because S is an in-forest, this implies that at each time ,
</" <-D- 1, there must be some task T that has no predecessors scheduled at time

/"- 1. Thus if we delete T2 and reschedule each T to start at time/- 1 instead of/’,
we can then schedule T1 at time D- 1 and obtain a schedule for $2 satisfying fit.

Our first application of the above lemmas will be in proving that any schedule
for an in-forest S satisfying a monotone profile fit can be assumed to have certain
structural properties, that is, can be assumed to take on a certain "normal form."

Any satisfying schedule tr can be partitioned into blocks B1, BE,’’’, Br, with
one block Bi for each distinct value hi taken on by the mj’s, 0-</" <-D- 1, where block
Bi consists of the wi consecutive time slots for which mj hi and the blocks are indexed
so that h > h2 >’" > hr. See Fig. 6. Note that block B must contain exactly hiw
tasks, since cr satisfies fit. Any tasks from T that are not included in these blocks
(those with tr(Ti)= D in Case 2) will be ignored for the moment.

h B
B

w w: w3 Wr- Wr

FIG. 6. Block structure of a schedule tr for S satisfying the profile rh.

For each task Tk in block Bi and each/, <-/<_-r, define lj(Tk) to be the level that

Tk has in the in-forest obtained by restricting S to only those tasks in blocks
B1, B2," .,B. Note, in particular, that lr(Tk)= l(Tk) for all tasks Tk. Define l/(Tk)
to be the vector

(h(Tk), h+l(Tk), lr(Tk)).
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For any fixed value of/’, we order these vectors lexicographically, i.e., t-.(T)< I(T’
if and only if either li(T)< l(T’) or there is some integer q such that I(T)= li(T’),
l+(T) I+(T’ ),..., l_(T) I_I(T’ ), and I(T) < l(T’ ). We shall show that we
may restrict our attention to schedules that have the following two normal form
properties"

Property A. Within each block B, the tasks are scheduled according to the level
algorithm, with the task ordering determined by 1(.). (Note that this merely says
that tasks are ordered by 1(. ), with the values of l(. for/" > used to break ties.)

Property B. If T is a task in block B whose predecessors are all scheduled before
the last time slot in block Bi, where l<=i <j<-r, then l(Tk)< l(T’k) for all tasks
T in block
We shall say that a schedule is in normal form if it has these two properties.

THEOREM 3.1. If there exists a schedule for the in-forest S (T, <) that satisfies
the monotone profile r, then there exists such a schedule which is also in normal form.

Proof. For Property A, we observe that by Lemma 3.2, since the tasks in each
block Bi can be scheduled to satisfy the profile (hi, hi," , hi) for block Bi, any level
schedule for the in-forest induced by those tasks will also satisfy this profile. In
particular, the level schedule obtained when those tasks are ordered by li(’) will
satisfy this profile.

The argument for Property B is somewhat more complicated. For a task Tk in a
block Bi, 1 _-<i _-<r, define the vector level of Tk to be li(Tk). Define the characteristic
vector of a schedule tr satisfying profile th to be a vector composed of the vector
levels of all the tasks, with the vector levels for tasks in block Bi occurring before
those for tasks in block Bi whenever/" > and with the vector levels for tasks belonging
to the same block occurring in nonincreasing lexicographic order. We claim that a
schedule tr satisfying n that achieves the lexicographically minimum characteristic
vector must have Property B (and hence can be converted to such a schedule that
also has Property A, since the above conversion to Property A does not affect the
characteristic vector).

Let tr be a schedule satisfying r that achieves the minimum possible characteristic
vector, and suppose that tr does not have Property B. Then there is a block B and
a task Tk in B for which Property B is violated. Choose the largest </" such that
Property B fails for Bi, Bi, and Tk, and let T be the latest scheduled task in Bi for
which (T)< l(Tk). By these choices, no successor of T can be scheduled during
Bi, B/I,’’’, Bi-1, or that successor would be a later violator than T, contradicting
either the choice of or the choice of T. Thus, if all tasks outside of blocks Bi and
Bi remain as scheduled, T would have no successor preventing it from being scheduled
in block Bi. By hypothesis, Tk can be scheduled as early as the last time slot in
Thus we propose to interchange Tk and T. By Lemma 3.3, the tasks in Bi can still
be scheduled within the same hi by wi "rectangle" when Tk is replaced by T, since
both are leaves of the in-forest induced by themselves and the remaining tasks in
and l-i(T’k < .(Tk) implies li(T’k <-- li(Tk ). Similarly, the tasks in Bi can be rescheduled
within the same hi by w "rectangle" when T, is replaced by T, since the hypotheses
of Lemma 3.4 are satisfied. This yields a new schedule tr’ for S satisfying th. Moreover,
this does not affect the values of l-i(Tk) or l.(T’k), nor the vector levels of any other
tasks occurring in blocks Bi, Bi/,""", B. Thus the first change in the characteristic
vector in going from tr to tr’ occurs among the vector levels for tasks in block
where l(Tk) is replaced by the lower value l.(T’k), thus yielding a lexicographically
smaller characteristic vector. This, however, contradicts the initial choice of tr, so
must have Property B.
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The next theorem and its corollaries are consequences of Theorem 3.1 and provide
the key to our divide and conquer strategy.

THEOREM 3.2. Suppose S (T, <) is an in-forest task system, fit is a monotone
profile, and tr is a normal form schedule ]’or S satisfying rh and having blocks,
B1, B2, Br. Let l* be the least value of lr(T) for a task T scheduled outside of block
B, let Bi be the last block prior to B that contains a task T with lr(T)"- l*, and let
denote the last starting time in block Bi. Then there exists a task Ti in Bi with tr(Ti)-
such that l(Ti) (0, 0,. ., O, l*), and every task T. which has tr(T.) > ti and l(Ti) > l*
must have a predecessor scheduled to start at time ti.

Proof. Let T be the latest task in Bi with l(T)= l*. By the choice of l*, T has
no successors in blocks Bi, Bi/l,’" ,Br-1 and hence /(T/)= (0, 0,..., 0, l*). Thus
all tasks T. in B with l(T.)> l* must have /(T.)> (T/). If tr(T)< t, then the time
tr(T) + 1 is in block B and must be the starting time for at least one task T. that is
not a successor of any task scheduled at time tr(Ti), since S is an in-forest and T has
no successors in Bi. By our choice of T, it must also be the case that l(T.)> l*.
However, this implies that li (T/) > li(Ti), which is a violation of normal form property
A, since T was available at time tr(T) but T was scheduled instead. Thus T must be
as required.

In a similar way it can be argued that the earliest-scheduled task T/with tr(T.) >
l(T.) > l*, and no predecessor scheduled at time ti must violate normal form Property
B with respect to Bi and T, and hence no such tasks can exist.

COROLLARY 3.2.1. Suppose there exists a schedule tr ]’or an in-forest task system
S (T, <) satisfying a monotone profile fit with r >-_2 blocks. Then there exist integers
l* and i, 0 <- l* <-_ ITI and 1 <-_ <= r, and a set T’

_
T with IT’I hi, such that if we define

U T’ t_J {T. T" (T.) > l* and T. has no predecessor in T’},

W {T. T" l(T.) l* and T has no predecessor in T’},

V {T T" l(T) < l* or T has a predecessor in T’},

m the initial portion of rfi corresponding to the first blocks,

m--- the remaining portion of rh corresponding to the last r- blocks,

no EI=I hi" wi,

then
(1) for some W’ W with IW’l=lUl+lWl-no, the in-forest S induced by U

W- W’) can be scheduled to meet--;, and
(2) ]’or any W’ =_ W with w’l lul + Wl no, the in-’orest S2 induced by V t.J W’

can be scheduled to satisfy -22.
Proof. Let tr be a normal form schedule for $ satisfying th, choose l* and as

in Theorem 3.2, and let T’ be the set of tasks scheduled by tr in the last time slot of
block Bi. Claim (1) then follows by Theorem 3.2.

For claim (2), observe that Theorem 3.2 tells us that for some W’ W with
w’l uI /lwl-no, v w’ is scheduled by tr so that all tasks from W’ go in block
B, or later. Let X be the set of tasks scheduled by tr in block Br or later. Note that
the tasks in W’ are all leaves of the in-forest induced by X and all have level l*.
Furthermore, this in4orest is scheduled by tr to satisty the profile (h, h,. , h). Thus
if W" is any other subset of W with W"I w’l, the in-forest induced by (X W’) t.J W"
can also be scheduled to satisfy the same profile, by Lemma 3.2. Since all tasks in W
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have no successors except in block Br or later, this new schedule for block Br (and
the time slot following B in Case 2) can be appended to the schedule of blocks
Bi+l,"’", B-I under tr to yield the schedule required for Claim (2).

COROLLARY 3.2.2. Suppose S (T, <) is an in-forest task system, fit is a monotone
profile, and there exist l*, and T’ as in Corollary 3.2.1, with U, V, W, --;, m--S,
and no defined in the same way, such that there is a W’

_
W with [W’I UI +lwl- no

satisfying
(1) the in-forest induced by U t.J (W- W’) can be scheduled to meet m 1, and
(2) the in-forest induced by V t.J W’ can be scheduled to satisfy m2.
Then S can be scheduled to satisfy fit.

Proof. The schedules for the two subproblems can be juxtaposed to obtain the
desired schedule for S.

Theorem 3.2 and its corollaries provide a divide and conquer strategy for solving
the problem of scheduling an in-forest S (T, <) to satisfy a monotone profile fit

with blocks B 1, B2, , B. We shall denote the resulting Monotone Profile Algorithm
by A, for short, and let A[S, fit ] stand for the schedule constructed by the algorithm
for S and fit, with A[S, fit 4 if no schedule exists. (We remind the reader that we
continue to assume that either Case 1 or Case 2 holds. At the end of this section, we
shall observe how the algorithm can be extended to the standard MPS problem by
the introduction of dummy tasks having level 0.)

MONOTONE PROFILE ALGORITHM

Step 1. If mo-roD-1 -< 1, apply the level algorithm to S and fit. If the resulting
schedule satisfies fit, return it and halt. If the schedule fails to satisfy, fit,
return b and halt (no schedule exists, by Lemma 3.2).

Step 2. Ifmo-mo-1 > 1, then for all/, 0-<l -<max {/(T)" T. T}, for all i, 1 -<i <r,
and for all sets T’

_
T such that IT’I hi and min {/(T)" T/ T’} l, define

U, V, W, m l, m2, and no as in Corollary 3.2.1, and do one of the
following, depending on the value of no:
2A. If no > UI + WI or no < UI, go on to the next choice for (l, i, T’).

(No schedule exists for the current choice.)
2B, If 0 <luI +lwl- no < h,, then for all subsets W’ W with W’I

uI /lwl- no, do the following:
Let Sl and $2 be the task systems induced by U (W- W’) and
V W’ respectively. Compute trl A[S1, --;] and tr2

A[S2, 22]. If both trl and tr2 are satisfying schedules, return the
schedule obtained by combining them and halt. If either is b, go
on to the next choice for W.

If all possible choices for W’ have been exhausted, go on to the next
choice for (l, i, T’).

2C. If Iu[+lWl-no>=h,, let $1 be the task system induced by Ut.J Wt.J
{To}, where To is a new task with level 0 that is a successor of all
tasks in U and that is placed last in the level ordering for Sl. (Note
that Sl and form a Case-2 instance of our problem.)

Compute trl A ($1, -). If trl b, go on to the next value for
(l, i, T’). If trl is a satisfying schedule, let W’ be the set of tasks
started after the last block of --. (Note that we must have W’ W
{To}, since all tasks in U precede To and hence have level exceeding
0. We also claim that To must belong to W’. This is because To is
a successor of all tasks with level exceeding 0 in $1 (all tasks in W
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have level 0 in $1). Hence, when To was scheduled, all tasks with
level exceeding 0 were already completed, so all tasks in W U{T0}
were available. Since To was last in the level ordering, it must have
been the last to be scheduled, and thus it must be in W’.)

Let $2 be the task system induced by V LI (W’-{T0}) and com-
pute tr2 A[S2, -2]. If tr2 b, go on to the next value for (l, i, T).
(Note that, if there exists a schedule tr for S satisfying n, and if l,
i, and T’ are the values for that schedule as in Theorem 3.2, then,
no matter what choice of W’ is obtained from trl, we cannot have
tr2- b, by Corollary 3.2.1.) If O’2 is a satisfying schedule, return the
schedule obtained by combining trl, restricted to those tasks in
U t_J(W- W’), with O’2 and halt.

Step 3. If all choices for (l, i, T’) have been exhausted without returning a
schedule, return b and halt.

We leave to the reader the formal verification, using Theorem 3.2 and its corol-
laries, that the above algorithm will find a schedule for $ satisfying n if one exists
and will return b otherwise. We now estimate the running time for the algorithm.

The overall time for the algorithm is dominated in the worst case by the time
spent in recursive calls that enter Step 1 and apply the level algorithm. Each of these
is reached by making a sequence of choices for (l, i, T’) and possibly W’. For each
triple (l, i, T’) in such a sequence the value of is fixed by the requirement that h
and the same value of h cannot occur twice in a sequence. Each particular value of
h might occur with any of the n -[TI possible values for and can be associated with
at most (hni)(hin___l) possibilities for the sets T’ and W’, for at most n 2h’ possibilities. The
total number of values for hi in a particular sequence is at most m0-2, since each
choice of a triple (l, i, T’) must reduce the number of blocks by at least one, and the
algorithm stops when there are only two blocks left (unless the heights of the two
blocks differ by more than one, in which case r-<_ rod-1). Thus the total number of
sequences is at most

H /,/2j nmo2+mo-6.
i=3

Each sequence can lead to at most two applications of the level algorithm, requiring
time O(n), so we obtain an overall (no doubt pessimistic) time bound of O(n"+"-5).

To use this algorithm to solve the in-forest MPS problem, we first compute
D--1N==o m,. I ITI>N, no schedule can exist. If ITl_-<N, we add N-IT dummy

tasks, each with level 0 and having no predecessors, to obtain a Case-1 instance of
our problem. Applying the above algorithm to this instance, we will obtain a schedule
tr satisfying (indeed, having) profile r if and only if there is a schedule tr’ for the
original instance that meets th, where tr’ is derived from tr simply by deleting the
dummy tasks. Letting m rod, the running time for this is O(N"2/"-5 ).

Applying Corollary 2.2.1, we can extend this algorithm for solving the in-forest
MPS problem to one that solves the opposing forest MS problem in time

O(D"-IN"+"- O(m m2+m-SDrn2+2m-6)
since N <-roD. Noting that we may assume n ->D (or the problem would be trivial),
we obtain our final running time bound for fixed m of O(l’tm2+Em-6).

Although this bound is clearly polynomial for any fixed value of m, it is by no
means the sort of bound that could be used to justify any claims of having an "efficient"
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algorithm. Indeed, even for m 3, the bound is O(n9). However, at least for this
special case, it is possible to do significantly better. In the next section we shall see
how special techniques can be used to solve the m 3 case of opposing forest MS in
linear time. In the concluding section we will comment on the possibilities for achieving
significant improvements for general m.

4. The three-processor problem. Our algorithm for the three-processor case of
opposing forest MS is based on Theorem 2.2 and the following "algorithmic" analogue
of Lemma 2.1 for the case of m 2:

LEMM 4.1. Suppose that S (T, <) is an in-forest task system and r is a schedule
for S meeting the monotone profile fit (too, m,. ., m), where mo= 2, mo >0, and
k is the largest index such that m 2. Then for any ], 0 <= f <= k, there is a schedule o-’
for S meeting the monotone profile fit’= (m, m’,... mo+_i+) where mi 2 for
0 <= <j and m 1 for ] <- <= q + k j + 1. Furthermore, given cr and j, the schedule r’
can be constructed in linear time.

Proof. Trivial.
We are now prepared to analyze the opposing forest MS problem for m 3.

Suppose S (Tt [.J To, <t U <o) is an opposing forest task system and D is a desired
deadline. By Theorem 2.2 we may restrict our search to schedules with monotone
internal profiles fit (too, m,. , mo-) for which either m0 =< 2 or mo- --> 1. Let us
consider the latter possibility (the former will be treated symmetrically by our
algorithm, and we shall omit description of the details).

Define t to be the least value of j such that the in-forest St (Tt, <t) can be
scheduled to meet a monotone profile fit (too, m, , mo-) with m0 _<- 3 and mi < 3.
Define t to be the minimum makespan for any two-processor schedule for the
out-forest So (To, <o). Note that t2, and a schedule realizing it, can be constructed
in linear time using the level algorithm. Furthermore, by Lemma 3.2, we can use the
level algorithm to decide for any integer whether t _-< and to construct a correspond-
ing schedule, all in linear time, simply by applying the level algorithm to St with the
profile r (too, m, ., mo-) where m 3 for 0 _-< < and m 2 for <_- <_- D 1.

THEOREM 4.1. Suppose S (Tt [_J To, <t LJ <o) is an opposing forest task system
and D is a deadline such that [Ttl +lTol <- 3D. Then there exists a three-processor
schedule r for S with makespan D and a monotone internal profile fit
(too, m, , mo-) satisfying mo- >= 1 if and only if t + t2 <-D.

Proof. Suppose S can be so scheduled, and let r (too, m,..., mo-), with
mo- _-> 1, be the internal profile for some such schedule. Let to min {t: mt< 3}. By
the definition of t, we must have t _-< to. Furthermore, since all of Sz is scheduled
from to on and uses at most two processors, we must also have t2-<_D-t0. Thus
t+tz<-D.

For the converse, suppose tx + tz <=D. Let ra be a schedule for St (Tt, <t) that
has a monotone profile rh (m0, mx,..., too-x) satisfying m 3 for 0=<i <ta and
m <_-2 for t <_-i < D. By Lemma 4.1 we can transform ra into another schedule r
for St that has a monotone profile th’ (m’ .., b_o, m , m ) satisfying m 3 for

< 1 for tx < <D. (See Fig. 7(a).)<2fortx<i<D or0<m0 _-< < tx and either 1 <= m
Let o’z be a two-processor schedule for So (To, <o) having makespan tz. By the
analogue of Lemma 4.1 for out-forests we can transform o’z into another schedule
for So that has a monotone profile and that either has makespan exactly D-tx or
never executes more than one task at a time. (See Fig. 7(b).) It is now straightforward
to observe that r and r can be combined to form the desired schedule for $, simply
by adding to the starting time for each task in To. (If the two schedules did not fit
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(a)

o-

(b)
t D_tl

(c)

FIG. 7. Constructing a schedule for S when tl + t2 <-_D.

together, it would necessarily be the case that the total number of tasks exceeded 3D,
contrary to our assumption.) [3

This theorem leads to the following algorithm for the m 3 case of opposing
forest scheduling:

THREE-PROCESSOR OPPOSING FOREST ALGORITHM

Step 1. If IT,[ + ITol > 3D, halt with no schedule possible.
Step 2. (Find a schedule with rno-1 => 1, if one exists.)

2A. Apply the level algorithm to compute t2 and the corresponding
schedule o’2.

2B. Apply the level algorithm to determine whether tl-<D-t2. If not
(no schedule with Mo- -> 1 exists), go to Step 3. Otherwise, let o’
be the corresponding schedule obtained for St.

2C. Construct the transformed schedules o’ and o’ as in the proof of
Theorem 4.1.

2D. Output the schedule o" defined by

g(T,)
o’(Ti)

o’’2 (Ti) + t
and halt.

Step 3. (Find a schedule with m0 -< 2, if one exists.) [Analogous to Step 2 above.]
Step 4. If neither Step 2 nor Step 3 produces a schedule, halt with no schedule

possible.

THEOREM 4.2. The above algorithm constructs a three-processor schedule with
makespan D or less for S, if one exists, and can be implemented to run in linear time.

Proof. That the algorithm works follows from Theorems 2.2 and 4.1. That it can
be implemented to run in linear time follows from Lemmas 3.2 and 4.1 and the fact
that the level algorithm can be implemented to run in linear time. F1
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Recent work of Dolev [4] has led to a slightly more complicated, but still linear
time, algorithm for the three processor problem, which has the additional property
of always finding a minimum makespan schedule. Note that this saves a factor of
log2 n over the time complexity of using our algorithm in a binary search mode on
D to find the minimum makespan. However, there is an alternative way to use
Theorem 4.1 to find minimum makespan schedules that runs in linear time. We describe
it as follows:

Once again we consider the two possibilities, m0-<-2 and too-1 -> 1, separately and
discuss only the latter, since the former can be handled symmetrically. Thus we need
to show how to find a schedule for $ with minimum makespan among all such schedules
that have a monotone profile with mo--> 1. Consider t and t2, defined as before.
The value of t2 is independent of the deadline D (which is now unspecified), and we
can again compute it in linear time using the level algorithm. The value of t, however,
depends on D, so we shall write it as t(D). By Theorem 4.1, the minimum makespan
D* for S is exactly the least deadline D such that t(D)<=D- t2. From the definition
of tl, it follows that D* is the least value of D such that St can be scheduled to satisfy
the monotone profile n (m0, ml, ’, mo-), where mi 3 for 0<=i <-D -t2-1 and
mi 2 for D t2 <- _<-D 1.

Now, this profile has mo-mo- <- 1, so we can apply Lemma 3.2 (the proof, as
well as the statement, of Lemma 3.2 is easily seen to remain valid when there are
fewer tasks than required for Case I of 3 to hold). From part (ii) of Lemma 3.2, a
schedule for St of the desired form exists for a particular D if and only if the following
inequalities are satisfied, where h denotes the maximum level of a task in St"

Li <- 3(D rE) q- 2t2- 2i for 0 <_- _<- rE,

L _<- 3(D t2) 3i for t2 < <_- h.

The values of h, L, and the increments L-L+I, 0 <_-i < h, can all be computed easily
in linear time, and it is then straightforward to find D* in linear time as the least
value of D satisfying the above inequalities. Moreover, by part (iii) of Lemma 3.2,
we can construct a schedule for $ that satisfies the required profile, with D D*, by
applying the level algorithm, again a linear time operation. Finally, as in our previous
algorithm, this schedule can be combined with the one for So that achieves t2 to obtain
an overall schedule for S that has makespan D*.

Our three-processor makespan minimization algorithm can therefore be summar-
ized as follows:

Step 1. Compute t2 and a corresponding schedule for So using the level algorithm.
Step 2. Compute D* as the least D satisfying the above inequalities and construct

a corresponding schedule for St using the level algorithm.
Step 3. Combine the schedules from Steps 1 and 2 to form a schedule for S with

makespan D*.
Step 4. Perform the analogous operations to Steps I through 3 for the symmetric

case of m0_-< 2.
Step 5. Choose the better of the two schedules constructed in Steps 3 and 4.

From the preceding discussion, we have"
THEOREM 4.3. The above algorithm constructs a three-processor schedule with

minimum makespan and can be implemented to run in linear time.

5. Concluding comments. In this paper we have concentrated on the question
of whether the multiprocessor scheduling problem can be solved in polynomial time
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for opposing forest task systems, a natural and comparatively slight generalization of
the in-forest and out-forest cases, both of which can be solved in linear time using
the level algorithm. One could ask similar questions about a variety of other generaliz-
ations of the known polynomially solvable subcases. Recall that MS is solvable in
polynomial time for interval ordered task systems [15] and level ordered task systems
[19]. A special case of both these classes is what might be called a layered order" the
tasks are divided into classes C1, C2, , Ck and, for any two tasks T Ci and T C.,
T precedes T. if and only if <j. It is a straightforward exercise to modify the
constructions used in proving Theorem 2.3 to prove that MS remains NP-complete
for the following classes of partial orders"

1. Disjoint union of an in-forest (or out-forest) and a layered order.
2. Union of layered orders.
3. Intersection of two layered orders (in fact, two total orders) on the same set
o tasks.

The last of these follows from the act that any opposing forest can be represented
as the intersection of two total orders, a fact whose proof we leave to the reader.

Our results leave open the question of whether there exists any fixed value of m
for which m-processor MS is NP-complete for arbitrary task systems, although the
algorithm in 3 shows that task systems more complicated than opposing forests will
be needed for proving any such result (unless P- NP). A next logical step might be
to consider the case of series-parallel task systems.

The running time for our general algorithm also leaves considerable room for
improvement. The techniques used for obtaining our efficient three-processor
algorithm do not obviously extend to larger values of m. However, there does seem
to be some hope [20] that techniques from [4] and [19] may be useful in this regard.
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CHOPPED ORTHOGONAL POLYNOMIAL EXPANSIONS--SOME
DISCRETE CASES*

MARCI PERLSTADT

Abstract. We study expansions of functions f(x) in terms of certain discrete families of orthogonal
polynomials, {pi(x)} where x =0, 1,... ,N, N finite or infinite. We assume f is known for x <-_M(M <N)
and that the expansion in terms of the pi’s is chopped after L terms (L <N). This results in the need to
study the eigenstructure of a certain "integral-type" operator. This eigenstructure is determined by
producing a commuting second order difference operator.

1. Introduction. Our investigations are motivated by problems of the following
type" Let f be a function with Fourier transform f. Let A be an operator that restricts
("timelirnits") f and let B be the operator that restricts f ("bandlirnits") f, i.e.,

Af =f "x, Bf=f"Xm

where X;Xm are the respective characteristic functions of the compact sets M, . Let
F, F-1 denote the operations of Fourier transform and inverse Fourier transform"

F(f) =f, F-’(f) =f.
Suppose that f is known only on the set and that f is known to have support in
the set M. Formally we have

BFf g, known,

Af =f.
Combining these two equations we are faced with the problem of solving

Ef BFAf
or, multiplying by E,

E*Ef AF-BFAf E*g.

This leads to the study of E*E.
The operator E*E has been investigated in a number of cases. In general, E*E

is a finite convolution integral operator and thus determination of its eigenstructure
presents a formidable problem. The problem has been tackled successfully in certain
special cases b.y finding a second order differential operator E such that/ and E*E
commute. If D and E*E can be shown to have simple spectrum, then they share their
eigenfunctions.

Slepian, Landau, and Pollak ([1], [2], [3]) consider the problem for the standard
Fourier transform on the real line with ’ [-T/2, T/2], -[-12, fl]. They produce
a second order differential operator that commutes with E*E. That this phenomenon
is not to be expected in general is indicated by Morrison [6]. Here it is noted that if
t and are chosen in any form other than symmetric intervals about the origin,
then no commuting D can be found.

In [4] Slepian extends these results to the standard Fourier transform on R" with
M, chosen as symmetric balls about the origin. Once again a commuting/ is found.
In [7] Griinbaum considers the problem in R2 for a different choise of M and . In

* Received by the editors December, 1981, and in final revised form May, 1982.
Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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this case such a D cannot be found. Slepian [5] studies the situation for the Fourier
series of a function on [-1/2, 1/2] taking =[-W, W], 0< W<1/2 and taking B to
correspond to chopping the series after a finite number of terms. Griinbaum [8]
extends these results to the discrete Fourier transform.

Griinbaum, Longhi, and Perlstadt [9] have generalized these results to several
other situations including Fourier expansions for f L2 (SO (n)). For properly chosen
A and B once again a commutingD can be found. In particular, these results specialize
to include expansions of f in terms of Gegenbauer polynomials where [b, 1], -1 <
b < 1. Griinbaum has further noted [10] that similar results hold for expansions of [
in terms of Jacobi, Hermite, and Laguerre polynomials. In each case a commuting D
is found by appropriate modification of the Sturm-Liouville type differential equation
for the family. We extend these results to the "discrete" orthogonal polynomial families
satisfying second order Sturm-Liouville type difference equations.

2. The olerator ’*E. Let {pi(x)} be a family of orthogonal polynomials on
x 0, 1, 2,..., N with respect to the discrete weight function w(x). Expanding f in
terms of the pi’s we have

N N

f(x) Y’. cipi(x), ci Y’. f(x)p,(x)w(x)
=0 =0

where N is a positive integer or infinite. Suppose that f is known on 3ff {0, 1,. , M}
and that the expansion of f in terms of the p’s is chopped after L terms (M, L <N).
Then, letting B represent the chopping, we have

M L

E*Ef(x)=AF-1BFAf(x) ., f(y) Y’. p,(x)p,(y)w(y).
y=o i=0

We will produce a second order difference operator/ that commutes with E*E for
those orthogonal polynomial families satisfying a second order difference equation of
the form:

D ao(x)AVp, (x) + a l(x)Ap, (x) + a2(x)p,, (x) A,p,, (x),

where

af(x) f(x + 1)-[(x), f(x) =f(x)-f(x 1)

and where it is assumed hi hi for /’.
Lesky 11] has shown that these polynomial families are precisely the
(1) Poisson-Charlier polynomials

Cn (X 2F0(-n,-x;-;- al--), a>0, x=0,1,2,...,

w(x)=;
x!

(2) Meixner polynomials

M,(x) 2F(-n,-x ;-N; 1-cl-), /3>0, 0<c<l

c(/3)
w(x)=, x =0, 1,2,. ",

x!
(B) (B)(3 + 1)". (B + x 1);
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(3) Krawtchouk polynomials

K. (x 2FI (-n, -x -N ),
w (x (Nx )p’q l’r-’,

(4) Hahn polynomials

h,(x)=aF2(-n,-x,n +ot + + l;-N,a + l; 1),

(o x+x) ( + x- X)
w(x)

(N+CZN+/3+I)

0<p<l, p+q=l,

x =0, 1,2,...,N;

a,/3 >-1, x =0, 1,2,. .,N.

Furthermore Lesky shows that for these cases the difference equation D can be recast
in the Sturm-Liouville form

1
(.) D A[Q(x)w(x-1)V]-(R(x)+A)=O.

In [10] Griinbaum has shown that in the case of a continuous weight function,
the basic elements needed to produce a differential operator L5 commuting with E*E
are the

(i) Sturm-Liouville type differential equation for the pi’s,
(ii) Christoffel-Darboux formula,
(iii) differentiation ormula or pi(x) in terms o p(x) and p-l(x).
For the discrete case the same basic pieces are needed except that (i) and (iii)

are replaced by difference equations. The equation for (i) is derived in Lesky [11].
Formula (iii) can be readily derived using the contiguous hypergeometric function
formulas [14]. Writing (i) in the form above, the recipe tor D becomes

1
O w(xi A[b(x- 1)w(x 1)Q(x)V]+G(L)c(x).

One should note the similarity to the continuous case [10].
In a manner analogous to the methods used in [9] we note that if/5 and E*E

are to commute it suffices to choose b (x)= x-M and to choose c (x)G(L) so that

/SxKt.(x, y) =/SyKr.(x, y),
L

where Kt.(x, y)= .,i-.opi(x)pi(y). This follows since

M

E*EIf(x)= , K(x, y)lyf(y)w(y)
y=0

(**) (A-B +C) + . f(y)[D,Kt(x, y)]w(y),
y =-1 y =0

where
A Kt.(x, y + 1)b(y)w(y)Q(y + 1)Af(y),

B b(y + 1)w(y + 1)O(y + 2)]’(y)AKr.(x, y + 1),

C =]’(y + 1)A[b(y)w(y)Q(y + 1)VK(x, y + 1)].
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The equality (**) ollows from repeated application of the summation by parts formula.
We further note that by expanding the A term in C and combining terms we get

that A-B + C1=-1 =0 if b(x)=x -M. Thus since

M

E*Elxf(x) E f(y)[/yKL(X, y)]w(y)
y=0

we have that it suffices to show

O(x, y) DK(x, y).

We carry out the necessary details to show the equivalence of DxKL(X, y) and
DyKL(x, y) for the case of the Poisson-Charlier polynomials in the next section and
then give the necessary formulas for the Meixner, Krawtchouk and Hahn polynomials.

3. Poisson-Charlier polynomials. We will always use Pi (X) to indicate the normal-
ized family of orthogonal polynomials, i.e.,

N

E pi(x)pi(x)w(x)=Sii.
x=0

For the Poisson-Charlier polynomials we have
(i) Second-order difference equation

e A e 1)---.(-a)p(x) =ip,(x);

(ii) Christottel-Darboux

KL(X, y)= Y’. pk(x)p(y)=
k=O

(iii) Difference formula

[Pt.+l (x)pt.(y) Pt.(x)Pt,+l (Y)];

Ap, (x) fp (x)

CLAIM:

x!e (-a(x-1 M)-._-i-.]o

We must show K(x, y) =yK(x, y). Since (using (i) and (iii))

fixi(X)]: xpi(x)[i -L]- (1 +M)ipi(x)-44Pi-l(x)

we have

L

[/,,-/y]KL(x, y)=(x-y) E (i-L)pi(x)p(y)
i=0

L., x/-i x/"d [Pi-l(x)pi(Y)--pi(x)pi-l(y)]
i=0

L L i-1

=(x-y) ’. (i-L)pi(x)pi(y)+ , ., (x--y)pk(X)pk(y)
=0 =0 k =0

L L--I L ]=(x-y) Z (i-Llp(xlp(y)+ Z Z pk(xlp(y) =0.
i=0 k=0 i=k+l
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4. The Meixner, Krawtchouk and Hahn polynomials. Once again we assume the
p(x) are normalized. The proper normalizations can be found in [12].

(a) Meixner polynomials.
(i) Second order difference equation [11]

c,,([3),,A (x-l+[3)Vp,(x) =i 1- p,(x);

(ii) Christottel-Darboux [13]

(x y) E p, (x)p, (y)
i=0 C

(PL/I(x)pt.(y) p(x)p+l(y));

(iii) Difference formula [14]
1

( +x)Ap.(x) np,(x)- /-( + n 1)pn_(x).
"C

Take D (1/w(x))A[(x 1-M)w(x 1)(x 1 +/3)V]-Lx.
(b) Krawtchouk polynomials.

(i) Second order difference equation [11]

1
w(x)A[w(x 1)p(x 1 -N)Vp,(x)] ip,(x);

(ii) Christoffel-Darboux 13]
L

x/(L + 1)(N- 1)pq[pt.+l(x)p(y)-pL(x)p.+(y)] (y -x) , p, (x )p, (y
i=0

(iii) Difference formula [14]

p,_(x)+p,(x).

Take D (1/w(x))A[(x 1-M)w (x 1)p(x -N- 1)V]-Lx.

(c) Hahn polynomials.
(i) Second order difference equation [11]

1
A[-w(x- 1)(a +x)(N + 1-x)Vpi(x)] (i)[i +a +/ + 1]pi(x);
w(x)

(ii) Christoffel-Darboux [13]

where

L

(y -x) p,(x)p,(y) x/+4-[p+(x)p(y)-pt.(x)pt.+x(y)]
i=O

(n)(n + t)(n + a +t +N + 1)
(2n + a +/3)(2n + a +/3 + 1)

(n +ct +/3 + 1)(n +a + 1)(N- n)
(2n + ct +/3 + 1)(2n + a +/3 + 2)’
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(iii) Difference formula [14], [15]

1
n’,/(2n,n’,, +a +)(a + 1 +x)(N-x)Ap,(x)

=[(n +)(N-x)-(n +ot)(n +oz + +x + 1)]
/._.

1)P--(x)-(n+)(n+a++N+

where

bob1"" bi-
"tro= 1, "tr > O

dd2""di

Take D (1/w(x))A[-(x -M 1)w(x 1)(a +x)(N + 1 -x)V]-L(a + fl +L + 2)x.

5. EE*= BFAF-1B. It has been noted [9] that one can equally well study the
operator EE* BFAF-XB. Namely if f is an eigenfunction of AF-XBFA with eigen-
value A 0 then BFf is an eigenfunction of BFAF-XB with eigenvalue A. We can
represent EE* by an (L + 1) (L + 1) matrix with entries

M

(EE*)ii Y’. pi(x)pj(x)w(x), O<=i, ] <=L.
x=0

A tridiagonal matrix T that commutes with EE* can be found by applying/ to pi (x).
A three-term recurrence formula for lpi(x) in terms of pi-(x), p(x), pi/x(x) results
and from this we can read off matrix T. For a detailed example of this sort see [9].

If we represent T in the form

y0

then we note that T has simple spectrum if y 0, 0, 1, , L 1. In the case of
the four families studied here we have yi 0. In general, however, EE* will not have
simple spectrum (take L M N-2 for the Hahn polynomials) but the eigenvectors
of T still provide an orthogonal basis of eigenfunctions for EE*.

6. Remarks. We note that if one generalizes the form of operator D to include
divided difference operators

hx+l-hx

then several additional families of orthogonal polynomials arise including the dual
Hahn and Racah polynomials and basic hypergeometric extensions of these families.
The construction of the operator/ for these cases is discussed in [16].

Acknowledgments. It is a pleasure to thank Professors F. Alberto Griinbaum
and Jeffrey Geronimo for many helpful conversations.
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OPTIMAL DETECTION OF TWO COMPLEMENTARY DEFECTIVES*

C. CHRISTEN

Abstract. This paper is concerned with the problem of detecting two defective coins of respective
weight w +e and w- e, mixed with n-. 2 coins of standard weight w, in the minimum number of weighings
on a single-dish spring scale. The exact solution of the problem for the worst case is obtained. In particular,
it is shown that asymptotically ((1 + logz 3)/logz 3) log2 n weighings are required, an improvement of almost
30% over the information-theoretic lower bound.

Introduction: A candy factory problem. Workers of a candy factory pack boxes
containing a fixed number of equally heavy candy pieces. After a day’s work, a
mischievous employee informs his supervisor that he has put a piece of candy from
one of his 2000 packed boxes into another, so that one box is too heavy and another
too light. The supervisor has to correct this situation; of course he doesn’t want to
open and repack that many boxes. He has at his disposal a single-dish spring scale,
on which the weight difference due to a single candy piece can be detected. How
many weighings does he need, and how is he to proceed? One may assume that about
thousand boxes can be weighed simultaneously on the scale.

Clearly, this is one of the cases where group testing helps. Using a divide-and-
conquer method, one may easily come up with 21 weighings, instead of 1998.

On the other hand, one weighing shows that the weighted boxes either contain
an additional piece of candy or lack one piece or contain the correct number of pieces
(in which case the defective boxes may be or not be among the weighed boxes). But
there are at least 2000. 1999 possible (ordered) pairs of boxes; thus at least
[log3 2000" 1999] 14 weighings are necessary.

In fact, the minimum number of weighings here is 17.

1. General formulation and results. The above problem may be formulated in
a more usual way as a coin-weighing problem"

Given are n coins, of which n- 2 have the standard weight w, one the excess
weight w + e and one the overlight weight w-e. What is the minimum number of
weighings on a single-dish spring scale necessary in the worst case to detect the
overlight and the overheavy coin, assuming that the simultaneous weighing of
arbitrarily many coins is possible?

In a slightly more general variant, the possibility that all n coins have standard
weight will also be allowed.

Unless specifically mentioned, all logarithms are base 2.
A counting argument similar to the above shows that at least

2
[logs n (n 1)] -log 3 log n

weighings are required, whereas a rude divide-and-conquer approach (repeatedly
using the binary method to" find a deviation; find out in which of the subsets the
defective pair is located; separately find the heavy and the light coin) shows that at most

2 [log n 1

* Received by the editors July 28, 1981, and in revised form June 3, 1982. This work was supported
by the Natural Sciences and Engineering Research Council of Canada.
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weighings are required. However, it should be expected that a more refined method,
looking simultaneously for the heavy and the light coin, should save some fraction of
the weighings.

On the other hand, the above counting argument does not take into account the
structure of the problem. It seems in fact that the size of the three outcomes cannot
be balanced, so that one should expect more weighings than predicted by the lower
bound. In similar situations, the derivation of an improved lower bound is often a
tedious affair, usually implying complicated counterstrategies. As it turns out, a
surprisingly simple optimal counterstrategy exists here.

Relying on this, the exact solution to the problem is obtained. Let f be defined
for t-> 0 by:

7 if t=4,

f(t)
(3 t(1 +t)/(1 +log 3 )J 1 + 2:+,-t(: +t)/(1+og 3)j)/2

if 1 + 2 t-t(l+t)/(l+lg3)J <3 t(x+t)/(+log 3)j

[3(3 t(:+’/(:+g3l + 22-t(1+’/(l+lg 31)/4]
otherwise.

The first twenty values of [ are given in Table 1.

TABLE 1.

0 1 2 3 4 5 6 7 8 9
/’(t) 2 3 5 7 12 18 29 44 68

10 11 12 13 14 15 16 17 18 19
f(t) 104 156 249 374 566 876 1314 2082 3141 4712

MAIN THEOREM. The detection of one, or at most one, complementary defective
pair requires in the worst case weighings for f(t- 1)< n <=f(t).

In particular, this shows that the correct value is asymptotically

(( 1 + log 3)/log 3) log n,

thus yielding an improvement of about 18.5% from the previously stated upper bound
and of about 29.2% over the information-theoretic lower bound.

This is in sharp contrast with the similar problem using a two-dishes beam scale,
where the lower bound (2/log 3) log n can essentially be achieved.

The detection of a single defective coin using a beam scale is a well-known and
well-solved puzzle (see [1] and [10]). The work by Bellman and Gluss [2] is a try on
the detection of two defective heavy coins with a beam scale. Cairns [3] solves the
problem within 1 weighing.

The detection of a single defective coin on a spring scale is of course trivial for
the worst-case analysis. Christen [5] shows that the detection of two defective coins
of equal bias using a spring scale requires considerably less weighings than the present
case, although the number of possibilities is the same. However, no sharp lower bound
is known in that case. The detection of an arbitrary number of identical false coins
with a spring scale has been treated by S6derberg and Shapiro [11], Erd6s and R6nyi
[6], Lindstr6m [6], [7], [8] and Cantor and Mills [4].

2. Some illustrative cases. The first few cases are easily determined"
If fewer than two coins are given, no weighing is required, since there cannot be

any defective pair.



DETECTING TWO COMPLEMENTARY DEFECTIVES 103

If two coins are given, there are at least two possibilities for the defective pair,
so one weighing is required. Of course, weigh a single coin; depending whether the
result is w + e, w-e or w, the weighed coin is heavy or light or there is no defective
coin.

If three coins are given, there are at least six possibilities for the defective pair,
so that at least two weighings are needed. First weigh a single coin. If the result is
w + e (respectively w-e), the weighed coin is heavy (light) and the complementary
defective is one of the two unweighed coins, so one more weighing is sufficient; if the
result is w, two possible defective coins are left, so one more weighing suffices too.

If more than three coins are given, there are at least ten possibilities for the
defective pair, so that at least three weighings are required.

The terminology used in the paper will now be introduced and illustrated on the
next cases.

Suppose x of the given n coins are weighed. A result of xw + e indicates a positive
bias: one of the x weighed coins must be heavy and one of the n -x unweighed coins
light. This situation will be called an x:(n-x) configuration. The first component is
always the number of heavy candidates. Similarly, a result of xw e indicates a negative
bias; this symmetrical situation is of course an (n-x):x configuration. Finally, in the
unbiased case (result xw), either the defective pair is among the weighed coins or it
is among the unweighed coins or possibly there is no defective pair.

To every detection scheme is associated a rooted ternary tree, the decision tree
of the scheme, whose nodes correspond to the situations after the weighings and
whose edges leading out of a node correspond to the result of the weighing. The
central branch of height h of a decision tree is the branch of length h corresponding
to the unbiased result for each of the first h weighings. Central situations are those
corresponding to the nodes of a central branch.

In an x’(n-x) configuration, suppose y from the x and z from the n-x coins
are weighed. The positively and negatively biased results respectively lead to an
y: (n-x-z) and an (x-y):z configuration. However, in the unbiased case, the
defective pair consists of either one of the y weighed heavy candidates and one of
the z weighed light candidates or of one of the x-y unweighed heavy candidates
and one of the n-x-z unweighed light candidates. This situation will be called an
y:z + (x -y) (n -x -z) configuration; the two alternatives are the summands of the
configuration. Similarly, if the possible defective pair is known to be either in a subset
of x coins or in a subset of n -x coins and if y from the x and z from the n-x coins
are weighed, an y (x y) + z (n x z) (respectively (x y) y + (n x z) z)
configuration is obtained in a case of a positive (negative) bias, whereas four subsets
of coins emerge otherwise. More generally, in a central situation, a weighing produces
two subsets out of one (unless the weighing does not split the coins of the subset), so
that in a central situation of height h the coins are partitioned into at most 2h subsets.
Similarly, in a noncentral situation, a weighing produces two summands out of one
in the unbiased case, unless one set of candidates is unsplit. In the biased case, a
summand arises out of each subset or summand, unless the subset or the subset of
corresponding candidates is unsplit. Thus in noncentral situations of height h, the
configurations consist of at most 2h summands.

The magnitude of a situation is the number of possibilities for the defective pair
consistent with the situation. Clearly, the magnitude of a summand is the product of
its components, and the magnitude of a configuration is the sum of the magnitudes
of its summands. In a central situation, the magnitude of a subset of s elements is
s(s 1), and the magnitude of the partition is the sum of the magnitudes of the subsets
(plus one if the case of no defective pair is allowed).
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Example 1. From the 2:1 + 1 1 configuration, one single weighing detects the
defective pair.

Indeed, weigh one of the heavy candidates from the first summand and the light
candidate from the second summand. If the bias is negative, the light coin is the
weighed light candidate and the heavy coin the corresponding heavy candidate.
Otherwise, the light coin is the unweighed light candidate and the heavy coin the
weighed heavy candidate or the unweighed one from the first summand, depending
whether the bias is positive or zero.

Example 2. From the 3:2 + 1:2 + 1 1 configuration, two weighings detect the
defective pair.

Weigh one heavy and one light candidate trom the first summand, the heavy
candidate from the second and the light candidate from the third. Zero bias leads to
a 1:1 + 2:1 configuration generated from the first summand only, while positive and
negative bias lead to a 1" 1 + 1" 2 configuration generated rom the first and the second
summand, respectively to a 2:1 + 1:1 configuration generated from the first and the
third summand. Of course, by suitably interchanging light and heavy and first and
second, all these configurations can be treated as in Example 1; thus two weighings
suffice in each case.

In general, it is worth noting that configurations differing only in the order of the
summands or in the order ot the components o a summand can be treated in a similar
way. This elementary fact will be constantly used in the following without further
mention.

One may further note that interchanging the weighed against the unweighed coins
simply inverts the bias; thus it is never necessary to weigh more than half of the coins.

Example 3. Three weighings are sufficient to detect a possible defective pair
among five coins.

Weigh first two coins. If the bias is zero, weigh one coin from each subset; if the
bias is again zero, the defective pair can only be in the resulting subset of two coins;
otherwise a 1:2 + 1 1 or a 2 1 + 1 1 configuration arises. If the result of the first
weighing indicates a bias, a 2’ 3 or a 3" 2 configuration is generated, for which two
more weighings suffice by Example 2.

Of course, at least four weighings are required for six coins, since the magnitude
is here at least thirty.

The next examples show that structure may be more important than number of
possibilities (but see 3).

Example 4. Three weighings are required in the worst case to detect the defective
pair from the 2’ 2 + 2" 2 configuration.

When a 2" 2 summand is split by a weighing, two possibilities remain open in the
unbiased case (as one 2:1 or 1:2 summand or as two 1:1 summands). Thus if both
2:2 summands are split, the magnitude of the produced central situation is four, so
one more weighing is insufficient. But if a summand is unsplit, it appears in one of
he resulting configurations; so that one more weighing is insufficient there too.

Given nine coins, there are still less than 81 possibilities for the defective pair.
But the 56 possibilities for eight coins are already too many:

Example 5. In the worst case, five weighings are required to detect the defective
pair out of eight coins.

After two unbiased results, either four subsets of two coins are obtained or one
subset of three and two subsets of two or two subsets of at least three coins. In the
second and third case, the magnitude is at least ten, so three more weighings are
required. But to have obtained four subsets of two, four coins must have been weighed
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first and two of each subset next. Thus if the second result had been biased, a 2:2 + 2:2
configuration would have been generated, for which three weighings are required, as
shown in Example 4.

By contrast, four weighings suffice if the first result is biased (reduction to
Example 2).

Of course, four weighings suffice for seven coins, the only critical case for eight
being then dominated by Example 2 (four weighings suffice for a 2" 2 + 2" 1 configur-
ation since they suffice for a 3:2 + 1:2 + 1 1 configuration).

3. Derivation of the lower bound. Throughout this section, the case of no
defective pair is excluded. Of course, the derived lower bound holds also when this
case is allowed.

LEMMA 1. (i) The minimum of 2 t=l (k) under the constraint ,k=l Sk n occurs
exactly when m -n + [n/m] m of the Sk are equal to [n/m] and the others to [n/m].

(ii) The above minimum is equal to ([n/m] -1)(2n- In/mira).
(iii) For fixed n >= m, decreasing m strictly increases the value of this minimum.
Proof. (i) Note first that for s" <_-s’ and s" +s’= s the minimum of 2(’)+ 2(s)

occurs only when s"=/s/2] and s’= Is/2]. Indeed, for > 0

2(S"-i) (s’+i) (’) (S2’) (S’) (S2’)+ 2 2 + 2 + 2i (S’- S") + 2i2 > 2 + 2
2 2

SkIt follows from this observation that if 2 km__ (2) is minimum under k--1 Sk --l’l then
Isi sjl =< 1 must hold for all i, ] with 1 -< i, ] -< k. This is because when sj + 2 <- si, replacing
the pair {si, s} bythe pair {[(si + s)/2], lsi + sj)/2] } would strictly decrease the objective
function while preserving the constraint.

But if n r mod m (with 0 < r < m), the only way to satisfy Y" Sk n under the
condition [si-sj[= 1 for all i,] is to take r of the sk equal to In and the m-r
others equal to [n/m/. The assertion follows immediately from the fact that the
remainder of n mod m is equal to n [n/mJ m.

(ii) The minimum of the objective function is therefore (n-
[n/mJm)[n/m]([n/m] -1)+(m-n + [n/mJm)[n/m]([n/mJ -1), which is easily
seen to be equal to(Inby distinguishing the cases of zero
and nonzero remainder mod m.

(iii) When m is decreased by one, one of the Sk has to be set from (say) [n/m
to zero. By (i), to produce the minimum, [n/m of the smallest possible others have
to be increased by one. This increases the objective function by at least
2[n/mi [n/mJ-Ln/mJ([n/mJ-1)= [n/mJ([n/mJ +1), which is positive for
n>=m.

It turns out now that Examples 4 and 5 are somewhat atypical, because except
for five weighings, the large magnitudes of the central situations supersede other
considerations.

THEOREM 1. The detection of the complementary defective pair among f(t)+ 1
coins requires always at least + 1 weighings in the worst case.

Proof. For 4, the assertion was shown in Examples 4 and 5. Otherwise, let
h [(1 + t)/log 6]. From [(1 + t)/log 6] < (1 + t)/log 6 < 1 + [(1 + t)/log 6] follows
6 t(l+t)/lg61 <21+’ < 6l+tl+t)/g61, hence 6t-h <2l+t < 6t-h+. Therefore

(*) 2h 3t-h+l- 1

and

(**) 3 t-h + 1 _<-2h+l.
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Lemma 1 will now be applied with n =f(t)+ 1 to obtain a lower estimate on the
magnitude of an appropriate situation. By part (iii) of this lemma, it suffices to consider
the largest possible m. Two cases have to be distinguished.

Case 1. If 2 <3’-- 1, consider the central situation of height h. Here n
f(t) + 1 (3 ’-h + 1 + 2h+1)/2 and m 2h. From (.) and from the hypothesis,

1 < n/m (3’-" + 1 + 2"+1)/2"+1 < 2,

hence [n/m] 2.
By part (ii) of Lemma 1, the magnitude of the considered situation is thus at

least 2(n-m) 3t-h+ 1. Therefore at least t-h + 1 more weighings are required in
this situation to detect the defective pair.

Case 2. If 3t-h- 1-<2h, consider the central situation of height h- 1. Here
n =f(t) + 1 [3(3t-h2h)/4] + 1 and rn 2h-1. By part (ii) of Lemma 1, the magnitude
of this situation is at least

([n/m] -1)(2n- [n/mm)=4n-6m +([n/m] -3)(2n- [n/mm-2m).

From the hypothesis and from (**),

2 <n/m =([3(3t-h2h)/4J + 1)/2h- --<4,

hence 3--< [n/m] -<4. The last term of the above expression is zero when n/m <-3
and positive otherwise. But

4n-6m 413(3t-h +2h)/4] +4--3 2h

1)/4] 3 2h

3t-h+l q" 1.

Thus at least t- h + 2 further weighings are necessary in this situation to detect the
defective pair.

4. Derivation of the upper bound. The first three easy results show that there
are no structural complications once heavy splitting has been done; thus balanced
ternary subdivision is possible.

LEMMA 2. From a configuration consisting of 3 1:1 summands, the defective pair
can be detected in at most weighings.

Proof. By induction on t.
One single 1:1 summand means that there are only one heavy and one light

candidate; thus no weighing is required.
Suppose the assertion holds for t. Given 3t+l 1" 1 summands, weigh 3 he’avy

candidates and 3 light candidates from distinct summands. If the bias is positive, one
of the 3 weighed heavy candidates must be heavy; if it is negative, one of the 3
weighed light candidates must be light; otherwise the defective pair may only be
among the 3 remaining summands. Thus + 1 weighings are sufficient. [3

LEMMA 3. From a configuration consisting of (3t- 1)/2 2:1 configurations and
of one 1 1 configuration, the defective pair can be detected in at most weighings.

Proof. By induction on t.
The assertion is trivial for 0; the case of 1 is in fact Example 1.
Suppose the assertion holds for t. Given (3t+- 1)/2 2:1 summands and one 1 1

summand, weigh one heavy candidate from the first 3 summands and the light
candidate from the remaining (3 + 1)/2 summands (including the single 1 I summand).
If the bias is zero or positive, a configuration consisting of 3 1" I summands is obtained,
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for which weighings are sufficient by Lemma 2. If the bias is negative, there must
be a light element among the (3’+ 1)/2 light candidates; thus by the induction
hypothesis + 1 weighings are sufficient.

LEMMA 4. weighings are sufficient to detect the possible defective pair among
(3’- 1)/2 pairs.

Proof. By induction on t.
For =0, the assertion is trivial. Suppose it holds for t. Given (3’/1-1) pairs,

weigh one element from each of 3’ pairs. If the result is biased, the defective pair
must contain one of the weighed elements; the obtained configuration consists of
1" 1 summands, thus further weighings are sufficient by Lemma 2. If the result is
unbiased, the defective pair is among the (3’- 1)/2 remaining pairs, so that further
weighings are sufficient by the induction hypothesis.

In the following proofs, use will be made of an elementary fact about configur-
ations: If a (x + y):z summand is dissected into one x:z and one y:z summand, no
more weighings are required in the resulting configuration than in the start configur-
ation. Indeed, the dissection means that instead of having x + y heavy candidates from
a subset H and z light candidates from a subset L, one has x heavy candidates from
a subset H’ and z corresponding light candidates from a subset L’ or y heavy candidates
from a subset H" and z corresponding light candidates from a subset L". If a weighing
from the start configuration involves u heavy candidates fromH and v light candidates
from L, emulate it by involving v light candidates from L’, v light candidates from
L" and a total of u heavy candidates from the union of H’ and H" in the weighing.
The resulting configurations are dissections of those resulting of the start configuration.

The next three results generalize Lemma 3 for some larger summands.
LEMMA 5. From a configuration consisting ofx 2 2 summands, y 2 1 summands

and z 1:1 summands, weighings are sufficient to detect the defective pair, as long as
4x + 2y + z 3’, except when x 2.

Proof. By induction on t.
For <= 1, the assertion reduces to previous cases, since x must be zero. Since

2 1 and 1 1 summands may be viewed as dissections of 2:2 summands, it is sufficient
to prove the assertion for minimal y and z.

For 2, it was shown in Example 4 that x 2 is impossible in two weighings;
thus let x 1, y 2 and z 1. Weigh one heavy candidate from the 2:2 summand
and from one 2:1 summand and one light candidate from each of the remaining
summands. The resulting configurations are then those of Example 1, so that one
more weighing is sufficient.

Suppose the assertion holds for 2t. For 2t + 1, minimal y and z are 1. Weigh one
heavy candidate from (32’- 1)/4 2:2 summands and from the single 2:1 summand,
one light candidate from (32’- 1)/4 other 2:2 summands and from the single 1:1
summand, both heavy candidates from half the remaining summands and both light
candidates from the other half. If the bias is zero, the resulting configuration consists
of (32‘- 1)/4 1:2 summands, (32’- 1)/4 2:1 summands and one 1 1 summand; by
Lemma 4, 2t more weighings are sufficient. Otherwise, the resulting configuration
consists of (32‘- 1)/4 1:2 (resp 2:1) summands, (32‘- 1)/8 2:2 summands and one
1:1 summand; by the induction hypothesis, 2t more weighings are sufficient (note
that the exceptional case is avoided).

For 2t + 2, minimal y and z are respectively 0 and 1. Weigh one heavy candidate
from a first 2:2 summand, one light candidate from a second one, one heavy and one
light candidate from a third one, both heavy candidates from (32’/1-3)/4 other
summands and both light candidates from (32’/1-3)/4 further ones. In the biased
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cases, the resulting configuration consists of (32’+1- 3)/4 2:2 summands, one 1:2
(respectively 2’1) summand and one 1’ 1 summand. In the unbiased case, it consists
of (32’/1-7)/4 2:2 summands, one 1:2, one 2:1 and three 1:1 summands. By the
induction hypothesis, 2t + 1 more weighings are sufficient. E

LEMMA 6. From a configuration consisting ofx 3:2 summands, y 2:2 summands,
u 2:1 summands and v 1 1 summands, weighings are sufficient to detect the defective
pair, as long as 6x + 4y + 2u + v 3 t, except when y 2.

Proof. By induction on t.
For -< 1, the assertion follows from the previous lemma. Because 2" 1 and 1" 1

summands may be viewed as dissections of the larger summands, it is sufficient to
prove the assertion for minimal u, v (the same is not true of 2:2 summands, since
there may not be enough 2:1 summands).

Suppose the assertion holds for t-> 2. If x is odd, minimal u and v are 1 and
y 0 mod 3. If y 0, weigh two heavy and one light candidate from one 3:2 summand,
both candidates from the 1:1 summand, all heavy candidates from (3t-- 1)/2 3:2
summands and all light candidates from (3t-l- 1)/2 3:2 summands, one 2:1 or 1:2
summand and one 1:1 summand. If y >0, replace groups of two similarly treated
3" 2 summands by groups of three similarly treated 2" 2 summands or one 3’ 2 summand
with weighed light candidates and one without weighed candidates by three 2" 2
summands with each one weighed light candidate. Thus the induction hypothesis is
always satisfied (in particular, the exceptional case cannot occur).

If x is even, minimal u and v are 0 and 1 and y 2 mod 3. If x 0, the assertion
holds by the previous lemma, so suppose there is at least one 3" 2 summand. If y 2,
weigh two heavy and one light candidate from one 3" 2 summand, one light candidate
from one 2:2 summand, all heavy candidates from (3‘-a- 1)/2 other 3:2 summands,
all light candidates from (3-- 1)/2 further such summands and the heavy candi-
date from the single 1:1 summand. In the biased cases, the resulting configuration
consists of (3‘-- 1)/2 3:2 summands, one 2:1 and one 1:1 summand; in the un-
biased case, one 3:2 summand is dissected into one 2:2 and one 2:1 summand. If
y >2, replace groups of two 3:2 summands by groups of three 2:2 summands
as above. The exceptional case cannot occur, and the induction hypothesis is then
satisfied.

LEMMA 7. From a configuration consisting ofx 3:3 summands, y 3:2 summands,
u 2:1 summands and v 1 1 summands, weighings are sufficient to detect the defective
pair, as long as x < 3 t-2 and 9x + 6y + 2u + v 3 t.

Proof. By induction on t.
For _-< 2, the assertion follows from Lemma 6. Suppose the assertion holds for

t. Minimal u and v are here 1. If x is even, y lmod 3. If y 1, weigh one light and
two heavy candidates from the 3:2 summand, the light candidate from the 2:1
summand, the heavy candidate from the 1:1 summand, two heavy candidates from
one 3" 3 summand, two light candidates from another, all heavy candidates from
(3t-- 1)/2 other 3:3 summands and all light candidates from (3-x- 1)/2 further
such summands. In the biased cases, the resulting configuration consists of (3-- 1)/2
3:2 summands, one 2:3 (respectively 3:2) summand, one 2 1 and one 1 1 summand;
in the unbiased case, the 2" 3 summand is replaced by one 3" 1 and one 1" 3 summand
(a dissection with an inversion). If y > 1, replace groups of two similarly treated 3:3
summands by groups of three similarly treated 3:2 summands or one 3:3 summand
with weighed light candidates and one without weighed candidates by one 3" 2
summand with weighed light candidates, one 3:2 summand without weighed candi-
dates and one 3:2 summand with one weighed light candidate.
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If x is odd, y--0mod3 and y >0. If y =3, weigh one light and two heavy
candidates from one 3" 2 summand, one heavy and two light from another, two heavy
candidates from half the 3" 3 summands and two light candidates from the remaining
3:3 summands. The resulting configuration directly satisfies the hypothesis of Lemma
6 in the biased cases and is a dissection with some inversions of such a configuration
in the unbiased case. If y > 3, replace groups of two 3" 3 summands by groups of three
3:2 summands as above.

In the following, to halve a subset of s coins means to take [s/2J of its coins in
the next weighing, while to halve an x:y summand means to take [x/2] of its heavy
candidates and [y/2J of its light candidates in the next weighing.

The optimal algorithm can now be stated:
DETECTION ALGORITHM. As long as a component or a subset of at least four

coins remains, halve all summands or subsets.
In a central situation, if all subsets have at most two elements, apply the method

of Lemma 4. If some subset of three coins remains, split all subsets of three elements
and (2x+" + 1-3P)/2 subsets of two elements, where m is the number of weighings
already made and p the largest exponent such that 3 < 2/". Apply then the method
of Lemma 5 in the biased cases and the method of Lemma 4 in the unbiased case.

In a noncentral situation, apply the methods of Lemma 5, 6 or 7, depending on
the size of the largest remaining summands.

THEOREM 2. The given algorithm requires at most weighings to detect a single
possible complementary defective pair among f(t) coins.

Proof. (i) Note first that as long as halving is used, at any stage the cardinalities
of the obtained subsets or components differ by at most 1; this is because halving sets
of cardinalities c and c + 1 produces only sets of cardinality between [c/2] and
[(c + 1)/2] and that [c/2] + 1 _-> [(c + 1)/2]. Furthermore, with the given rule, it is
impossible that both c:c and (c + 1) (c + 1) summands occur in the same configuration.
Indeed, in the unbiased case, summands are of type [xi/2] [yi/2J or [xi/2J [yi/2]
having both c:c and (c + 1):(c + 1) summands would imply xi + y _-<4c + 1 for some
and xj + yj _>-4c + 3 for some j, contradicting the first remark. In the biased cases the
argumentation is similar.

(ii) Note then that as long as halving is used, the magnitude of a noncentral
situation never exceeds the magnitude of the central situation of same height. Indeed,
for k2h <-n _-<(2k + 1)2h-, the magnitude of the central situation of height h is
(k2_ k)2h + (n k 2h)2k, whereas the magnitude of a noncentral situation of height h
is k22h- + (n + k 2h)k. But here k -> 2, else the halving would have stopped after h 1
weighings, the cardinality of every component being then at most 3; thus the assertion
holds. For (2k + 1)2h- < n _-< (k + 1)2h, the magnitude of the central situation of height
h is k22h +(n-(2k + 1)2h-)2k and that of the noncentral situation of same height
(k2+k)2h- +(n -(2k + 1)2h-)(k + 1). But here the assertion holds again, since k ->_ 1
(or the halving would have stopped before).

(iii) The magnitude of some situations will now be evaluated. Let again h
t-[(1 +t)/log 61. Since the smaller values have already been handled in 2, we
may suppose >-5; hence h >_-2.

Case 1. If 2h < 3 t-h 1, the detection algorithm executes h halving steps. Indeed,
since n (3-h 1 + 2h+)/2, there are exactly (3-h 1)/2 subsets of two coins among
the 2h subsets of the central situation of height h. As this is (by the case hypothesis)
more than half of the subsets, there was still at least one subset of four coins after
h- 1 halvings, so that the algorithm had to halve one more. The magnitude of the
situation at the end of the halvings is thus 3 t-h.
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Case 2. If 3 t-h 1 =< 2h, the detection algorithm executes only h 1 halving steps.
Indeed, since n [3(3 t-h q- 2h)/4], there are exactly [3t-h+1/4] --2h-2 subsets of three
coins and 3 2h-:- [3t-h+x/4J subsets of two coins in the central situation of height
h- 1. By (,) and by the case hypothesis, both quantities are nonnegative. The
magnitude of this situation is thus 413t-h+/4] + 1--<3’-h+. (Note that in case all
subsets have exactly 3 coins the magnitude is strictly less than 3t-h+; hence the
restriction in Lernrna 7 does not apply.)

At step h, the algorithm splits all subsets of three coins and (2h+ 1--3’-h)/2
subsets of two coins. The arising central situation has (3t-h- 1)/2 subsets ot two coins
and thus magnitude 3t-h, whereas the arising noncentral situations have [3t-h+/4]
2h-2 2" 1 surnmands and (2h + 1- 3t-h)/2 1’ 1 summands and thus magnitude --<3 t-h.

(iv) By (iii), Lemrna 4 and Lemma 5, the detection algorithm uses only t-h
weighings in Case 1 and t- h + 1 weighings in Case 2 to detect the defective pair from
the central situation at the end of the halvings.

By (ii), (iii), Lemma 5, Lemma 6 and Lemma 7, the detection algorithm uses
only t- h weighings in Case 1 and t- h + 1 weighings in Case 2 to detect the defective
pair from a noncentral situation at the end of the halvings. The theorem is thus
proved, l-I

Putting both theorems together yields the main result.
COROLLARY. Asymptotically, ((1 + log 3)/log 3) log n weighings are required to

detect a possible complementary defective pair among n coins.
Pro@ The exact formula implies that for some constants c and cz,

Cl 2’ log 3/(l+log 3) N f(t) NC2 2 log 3/(l+log 3),

Thus the assertion follows from the main theorem.
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EXACT SOLUTION OF SYSTEMS OF LINEAR EQUATIONS
WITH ITERATIVE METHODS*

SILVIO URSICt AND CYRO PATARRA:

Abstract. An algorithm is presented to compute the exact solution of a system of linear equations
with integer coefficients from any method capable of providing a sufficiently accurate approximate solution.

Key words. Algebraic algorithms, continued fractions, rational rounding.

1. Introduction. Numerical methods for the solution of systems of linear
equations are usually classified in two main categories" direct and iterative. Most
textbooks on the subject then continue by stating that direct methods are potentially
capable of finding the exact solution, if exact arithmetic is used, in a finite number of
steps. By contrast, iterative methods are presented under the framework that they
can only provide us with an approximate solution.

This paper shows that the classification of methods for the solution of linear
systems of equations as direct, implying exact, and iterative, implying approximate,
is not entirely accurate. In fact, we show that any sufficiently close approximation to
the solution leads to the exact rational solution of a system with integer coefficients
with very little additional work.

As a consequence, the existing iterative methods and their huge supporting
literature become available for utilization in the exact solution of systems of linear
equations.

2. The main observation. We are interested in finding the exact rational solution
to a system of linear equations with integer coefficients. We assume that the system
has a unique solution.

The main observation to be made concerns the discrete nature of the problem.
The solution vector can be found, for example with Gaussian elimination, in a finite
number of arithmetic operations. As a consequence, the numerator and denominator
of each rational in the solution cannot be arbitrarily large. So, there are only a finite
number of rationals to be considered as candidates for the solution.

It is therefore possible, in principle, to find the solution to such a system simply
by trying one-by-one all rationals, candidates to the solution. This brute force trial
algorithm will obviously have an exponential computing time. Trying all candidates
for the solution one-by-one is not a very good strategy.

The idea is stated more precisely as follows. Let

(1) Ax =B

be the linear system to be solved. The coefficients of the array A, ai,j, 1 <-i, f <-N,
and of the vector B, bi, 1 <-i <-N, are integers smaller, in absolute value, than some
integer d.

Lemma 1 provides a tight bound on the size of the components of x in (1).
LEMMA 1 (Hadamard inequality). Let det (A) be the determinant of the array A.

* Received by the editors May 25, 1978. This research was supported in part by the National Science
Foundation under grant GJ-28339A1, and by FAPESP, Fundacao de Amparo a Pesqisa do Estado de Sao
Paulo, under grant mat. 70/725.

t 6E University Houses, Madison, Wisconsin 53705.
Mathematics Department, University of Sao Paulo, Sao Paulo, Brazil.
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Then

(2) (det (A))2< I-I
l<--i_N

With our bound, d, to the coefficients of (1) we can write

(3) Idet (A)I <=N/2 * d <=D,

for a suitable integer D. For a proof of Lemma 1 see, for example, [8, exercise 4.6.1.15].
So, if

Pi(4) xi =--, 1 <=i -<_N,
qi

is the solution to (1), we will have Iql D, 1 -<i =< N.
The next lemma tells us that candidates for the solution of (1) are not too close

to each other.
LEMMA 2 (minimum distance). Let p/q and r/s be two rationals with p/q r/s

and Iql <- D, Is <- D. Then

-I 1
(5) min --s =-’"

Not only are there a finite number of candidates for the solution, but they are
also reasonably far apart from each other.

3. A system of integer linear inequalities and its solution with continued
fractions. Let us suppose we were able to find an approximation a/b to the true value
p/q of some component of the solution of (1). If the distance between a/b and p/q
is less than half the minimum distance between two candidates for the solution, then
the nearest candidate to the approximation a/b will be p/q.

More precisely, the system of inequalities

(6) -- -<
(2,D2) 1 -<_/3 <-D,

with a and/3 as integer unknowns, has at most one solution. The uniqueness of a
possible solution to (6) is guaranteed by Lemma 2.

Inequalities (6) can be rewritten as follows:

2,D2,b ,c-(2,D2,a+b),B<=0,
(7)

-2*D2. b * c +(2*D2. a-b),/3_-<0, /3 =<D, -/3-<_-1.

The problem of determining whether a system of inequalities like (7) has a solu-
tion in integers and then, if some solution exists, actually finding one is in general
NP-complete. Hirschberg and Wong [4] showed that integer systems of inequalities
with only two unknowns are special. They can be solved in polynomial time. In our
case it is simpler to find a solution of (7) by going back directly to the continued
fraction algorithm.

Continued fractions are an old and venerable topic and have close ties with
Euclid’s algorithm. The first documented use of their approximating powers seems to
have been done by Huygens [7]. He used continued fractions to compute the best
number of teeth in pairs of gears to be used in the driving mechanism of a model ot
the solar system.
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The key result that permits us to solve system (7) efficiently is contained in the
following theorem.

THEOREM C (continued fractions approximations).

then p/q is a convergent in the continued fraction series ]’or a/b.
Proof. For an algebraic proof, see [3, Thm. 184]. For a more geometric and

somewhat more revealing approach, see [11, Thm. 7.19].
Proofs of Theorem C lead directly to Algorithm C.

ALGORITHM C (computation of the continued fraction approximation). Given
the integers a _-> 0, b > 0, D > 0, the algorithm computes, when they exist, two integers
p’, q’, such that la/b -P’/q’l <- 1/(2 D2) and q’ -<_D.

C1. [Initialize.] Set p <-- 0, q 1, p’ <-- 1, q’ <-- O, A <-- a, B - b.
C2. [Test for end.] If B 0, then go to step C5.
C3. [Compute new approximation.] Set W <-- [A/BJ, p" <-p + W p’,

q" <--q + W q’. If q">D, then go to step C5.
C4. [Shift and go back.] Set p *p’, q <--q’, p’ <--p", q’ <--q",

T <--A-B W, A <--B, B * T; then go back to step C2.
C5. [Test for goodness and terminate.] If

12"D2*(a .q’-b .p’)l<-b .q’ then the approximation to a/b is p’/q’;
otherwise the algorithm returns "NO SOLUTION" and terminates.

Algorithm C is an implementation of the extended Euclidean algorithm with the
addition of tests in steps C3 and C5.

Step C3 selects one of the continued fraction convergents, namely, the one with
the largest denominator smaller than the bound D. The choice follows from the
following facts:

Fact 1. Each successive convergent, p/q, approximates a/b better and better.
Fact 2. Inequalities (6) have at most one solution.
Hence the only candidate to a solution of (6) is the convergent with the largest

possible denominator.
Step C5 is not necessary if we know in advance that two integers, p, q, exist

satisfying (6). For then we have

1 1a P <
2)

-<
2)-- =(2,D -(2,q

because q -< D, and we can apply Theorem C.
In general, however, steps C1-C4 may fail to produce the required approximation.

The test in step C5 becomes necessary to differentiate between a true solution to (6)
and simply a continued fraction approximation p/q to a/b having q -<D.

The worst case computing time of Algorithm C is of O((logN)2), when all the
inputs are bounded by some integer N. For a computing time analysis of Algorithm
C, consult [8]. For many details of its practical implementation, consult Collins [1]
and its bibliography.

4. The procedure. The results in 2 and 3 suggest a two-step procedure for the
computation of the exact solution of a linear system of equations with integer
coefficients:
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Step 1. Obtain an approximate solution that differs, in each component, from
the true solution by less than 1/(2 D2). D is an integer bound for the denominators
of the solution vector.

Step 2. Use Algorithm C to obtain the exact rational solution.
A computing time analysis of step 1 is difficult. The analysis is complicated by

the fact that performance of iterative methods depends strongly on the particular
problem being solved. Two improvements of a general nature in the computing time
of step 1 are possible.

First, the bound D is in many cases too large. A much smaller bound and
considerably fewer iterations might do. It might be more convenient to apply Algorithm
C as a test of termination than to iterate up to the precision necessary to be certain
that step 2 will produce the exact solution.

Second, the use of exact arithmetic to compute successive approximations to the
solution will cause an increase in the size of the integers to be manipulated during
each iteration. Algorithm C can be used to reduce the size of the integers in the
approximation. Some care must be exercised, however, not to destroy the convergence
of the underlying iterative method.

$. Conclusion. Continued fractions approximations can be used to obtain the
exact rational solution to a problem whenever:

(A) The denominator of the sought rational a/b is bounded’by some known
integer D;

(B) It is possible to obtain an approximation p/q to the rational a/b, satisfying
[p/q_a/b[<__l/(2 , /92).

The continued fractions algorithm closely resembles the extended Euclidean
algorithm applied to the integers p and q.

As a last observation, consider all the real roots of all the polynomials of degree
not greater than N and with integer coefficients bounded by D. Sufficiently small
intervals will contain at most one of those roots. We would like to have an efficient
algorithm that, given such an interval and given the bounds N and D, would choose
a polynomial in our set of polynomials having a root in the given interval. Such an
algorithm would allow the use of approximate methods for a wide range of exact
computations with algebraic numbers.

The continued fractions algorithm solves the problem efficiently for N 1.

Note added in proof. Since this paper was written, at the beginning of 1977, and
presented at the SIAM 1978 Spring Meeting, following a seminar on the subject given
at the University of Sao Paulo in 1976, a number of references relevant to its contents
have been published. We list some of them:

[1] O. ABERTH, A method for exact computation with rational numbers, J. Comp. Appl. Math., 4 (1978),
pp. 285-288.

[2] R. P. BRENT, F. G. GUSTAVSON AND O. Y. Y. YUN, Fast solution of Toeplitz systems of equations
and computation of Pad( approximants. J. Algorithms, 1 (1980), pp. 259-295.

[3] J. H. CARTER, Power series and exact solution of systems of linear equations, M.Sc. thesis, Dept.
Computer Science, Univ. of Toronto, 1978.

[4] M. GROTSCHEL, L. LOVASE AND A. SCHRIJVER, The ellipsoid method and its consequences in
combinatorial optimization, Report 80151-OR, Univ. of Bonn, W. Germany, 1980.

[5] F. GUSTAVSON AND D. Y. Y. YUN, Fast algorithms for rational Hermite approximation and solution
of Toeplitz systems, IEEE Trans. Circuits and Systems, 9 (1979), pp. 750-755.

[6] D. W. MATULA AND P. KORNERUP, Approximate rational arithmetic systems: analysis of recovery
of simple fractions during expression evaluation, Lecture Notes in Computer Science 72, Springer-
Verlag, New York, 1979, pp. 383-397.
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[7] R. MOENCK AND J. CARTER, Approximate algorithms to derive exact solutions to systems of linear
equations, Lecture Notes in Computer Science 72, Springer-Verlag, New York, 1979, pp. 65-73.

[8] S. URSlC, The ellipsoid algorithm ]’or linear inequalities in exact rational arithmetic, IEEE Symposium
on Foundations of Computer Science 23, 1982.

[9] D.YuN AND F. GUSTAVSON, Fast computation of rational Hermite interpolation and solving Toeplitz
systems of equations via the extended Euclidean algorithm, Lecture Notes in Computer Science
72, Springer-Verlag, New York, 1979, pp. 58-64.
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LINEAR TRANSFORMATIONS ON NONNEGATIVE MATRICES
PRESERVING PROPERTIES OF IRREDUCIBILITY AND

FULL INDECOMPOSABILITY*

RICHARD A. BRUALDIt AND LI QIAO

Abstract. We characterize linear transformations on the vector space of n n matrices of the form
A --> PAQ which preserve the combinatorial properties of irreducibility, reducibility, near reducibility, full
indecomposability, decomposability, and near decomposability for nonnegative matrices. The minimality
of such pairs P, Q is also considered.

1. Introduction. Let M, denote the vector space of n n matrices over the
complex number field. The problem of determining those linear transformations T of
M, which preserve a given invariant has been extensively studied. For a survey of
results and an extensive bibliography see Marcus [6], [7]. A classical result due to
Frobenius [3] asserts that if T preserves determinant, that is det (T(A))=detA for
each n n matrix A, then there exist matrices P and Q with det (PQ)= 1 such that
either

(1.1) T(A)=PAQ for all A
or

(1.2) T(A)=PA’Q for allA aM,.

The conclusion that T have one of the forms (1.1) or (1.2) has been shown to hold
for other invariants. Thus, for instance, Marcus and Moyls [8] proved that if T(A) is
a rank 1 matrix for each rank 1 matrix A, then T satisfies (1.1) or (1.2) where P and
Q are invertible matrices. In this note we consider linear transformation T on M, of
the form (1.1) which take nonnegative matrices to nonnegative matrices and preserve
properties of irreducibility, reducibility, near reducibility, full indecomposability,
decomposability, and near decomposability for these matrices. Results similar to ones
we obtain hold also for linear transformations T of the form (1.2). Minc [9] character-
izes linear transformations T which take nonnegative matrices to nonnegative matrices
and preserve the spectrum of each nonnegative matrix.

Suppose P [pij] and Q [qij] are n n matrices different from the zero matrix
such that PAQ is a nonnegative matrix for each n n nonnegative matrix A. Let Ei
be the n n matrix all of whose entries are 0 except for the (i, /)-entry which is 1.
By considering the matrices Ei, it follows that Prsquv >= 0 for each entry Prs of P and
each entry quv of Q. Hence there exists a real number 0 such that P e iP1 and
Q =e-Q1 where P1 and Q1 are nonnegative matrices. In addition PAQ =PIAQ1.
This is why we restrict our attention to linear transformation T of the form (1.1)
where P and Q are nonnegative matrices.

2. Preliminaries. Let A be an n n matrix. If each entry of A is nonnegative,
we say A is nonnegative and write A => 0. Let K, L

_
{1, ., n}. Then A[K, L/denotes

the submatrix of A whose rows are indexed by the integers in K and whose columns
are indexed by the integers in L. If L {1,. , n }, we write A[K,. ]; if K {1, ., n },
we write A[., L]. For K

_
{1, , n}, K denotes the complement of K.

* Received by the editors January 25, 1982, and in revised form June 1, 1982.
t Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706.
$ Department of Mathematics, China University of Science and Technology, People’s Republic of

China, and University of Wisconsin, Madison, Wisconsin 53706.
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The n x n matrix A [aij] is called reducible if there exists a K {1, ., n } with
both K and/( nonempty such that A[K,/(] is a zero matrix. It follows that A -is
reducible if and only if there is a permutation matrix R such that

RARt= [ A1 0]A2t A2
where A and A2 are square (nonvacuous) matrices. The matrix A is irreducible if it
is not reducible. Finally, the matrix A is nearly reducible if it is irreducible and the
replacement of any nonzero entry by a 0 results in a reducible matrix. All entries on
the main diagonal of a nearly reducible matrix equal 0. With the matrix A there is
associated a directed graph D (A). The vertices of D(A) are 1, 2,. , n. There is an
arc from to/" provided aij 0. It is well known [11] that A is irreducible if and only
if D (A) is strongly connected. Here, that a directed graph is strongly connected means
that for each ordered pair of vertices r, s there is a path from r to s. The directed
graph of a nearly reducible matrix is strongly connected and the removal of any arc
results in a directed graph which is not strongly connected. Irreducible matrices and
their directed graphs have an important role in the spectral theory of nonnegative
matrices.

The n x n matrixA is called (partly) decomposable if there exist K, L {1, , n }
with both K and L nonempty and with Igl / ILl-- n such that A[K, L] is a zero matrix.
Thus A is decomposable if and only if there are permutation matrices R and S such
that

RAS=
A21 A2

where A and A2 are square (nonvacuous) matrices. The matrix A is fully indecompos-
able provided it is not decomposable. Finally the matrix A is nearly decomposable if
it is fully indecomposable but the replacement of any nonzero entry by a 0 results in
a decomposable matrix.

The connection between irreducible and fully indecomposable matrices is well
known [2, p. 33]. The matrix A is fully indecomposable if and only if for some
permutation matrix R, RA has no zeros on the main diagonal and is irreducible.
However, the relation between nearly reducible and nearly decomposable matrices
is not so conclusive. For more information see [1].

A nearly reducible matrix must have at least one nonzero entry in each row and
in each column; a nearly decomposable matrix must have at least two. Later we shall
need one additional structural property for each of these two types of matrices. For
nearly decomposable matrices this property was found by Hartfiel [4] and later in the
context of bipartite graphs by Lovisz and Plummer [5].

LEMMA 2.1. LetA be an n x n nearly decomposable matrix with n > 2. Then every
2 x 2 submatrix ofA contains a O.

A similar conclusion holds for nearly reducible matrices:
LEMMA 2.2. LetA be an n n nearly reducible matrix. Then every 2 2 submatrix

ofA contains a O.
Proof. Suppose there exist K, L

_
{1,..., n} such that IKI =]LI 2 and A[K, L]

contains no O’s. If KL rs , then A has a nonzero entry on its main diagonal so
that A is not nearly reducible. Hence K L . Let K {i, } and L {r, s} so that
i,/’, r, s are distinct. Now consider the directed graph D (A). Define a chord of a circuit
(i.e. a path joining a vertex to itself) to be an arc joining two vertices of the circuit
which is not an arc of the circuit. Since k is nearly reducible, no circuit of D(A) can
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have a chord, since the removal of such a chord would leave a strongly connected
directed graph. In D(A) there are arcs (i, r), (i,s), (j,r) and (/’, s). Since D(A) is
strongly connected there is a simple path from r to for which (i, r) is not at arc.
Similarly, there is a simple path 8 from s to for which (/’, s) is not an arc (see
Fig. 1). Suppose (i, r) is not an arc of 8. Then the sequence % (i, s), 8, (j, r) determines
a circuit for which (i, r) is a chord. Hence (i, r) is an arc of 8, and similarly, (/, s) is
an arc of 3’. Then contains a path ’ from r to/, and 8 contains a path d;’ from s
to (see Fig. 2). Since 3’ is a simple path, (/’, r) is not an arc of 3"; since 8 is a simple
path, (, r) is not an arc of 8’. A similar conclusion holds for (i,s). But then the
sequence y’, (/’, s), 8’, (i, r) determines a circuit for which (/’, r) is a chord. This is a
contradiction, and the proof is complete.

FIG.

FIG. 2

3. Irreducibility. We consider in this section linear transformations of Mn of the
form A PAQ satisfying:

(3.1) PAQ is nonnegative whenever A is;

(3.2) PAQ is irreducible (or nearly reducible, or reducible) whenever the non-
negative matrix A is.

As already observed, (3.1) implies that P and Q are nonnegative matrices. Since the
properties of being irreducible, nearly reducible, and reducible are combinatorial
properties of a matrix, there is no loss of generality in assuming that P and (2 are
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matrices of O’s and l’s. In addition, it suffices to consider in (3.2) only matrices A of
O’s and l’s. The n 1 column of all l’s is denoted by e.

LEMMA 3.1. Let P and Q be n n matrices O’s and l’s and let R be a permutation
matrix. Then the following are equivalent:

(3.3)

(3.4)

PAQ is irreducible ]’or each n n irreducible matrix A of O’s and l’s;

(PR )A(R ’Q is irreducible ]’or each n x n irreducible matrix A of O’s and l’s.

Proof. This is a simple consequence of the fact that A is irreducible if and only
if RAR is.

THEOREM 3.2. Let P =[Pii] and Q [qii] be n n matrices of O’s and l’s. Let the
columns ol P be 1, , and the rows of Q be 1, [3n. Then the following are
equivalent"

(3.5)

(3.6)

For each n n irreducible matrix A of O’s and l’s, PAQ is irreducible.

(i) P and Q’ have no zero rows;
(ii) ]’or each 1,..., n, either

(iia) Ol e or [3 e ’, or
(fib) [3iOli > O.

Proof. First suppose that (3.5) holds. If P has a zero row, so does PAQ; if Q
has a zero column, so does PAQ. Since an irreducible matrix can have no zero rows
or columns, (3.6)(i) holds. Suppose (3.6)(ii) does not hold. It follows from Lemma
3.1 that we may assume that both (3.6)(iia) and (iib) fail for 1. Hence there exists
K c:_ {1,..., n} with K # Q5 and K # such that pix =0 for K andq =0 for/" K.
Let A [a/i] be the n x n irreducible matrix for which a12 a a. a2x

a.a 1 and ao- 0, otherwise. Then for B PAO =[bii] and for K and ] K, we
calculate that

bii " PirarsClsi ’* Piasqsi+ Pi,.arlqli=O +0=0.
s=l r=l s=2 r=2

Hence B[K, K] 0 so that B is reducible, a contradiction. Thus (3.6)(ii) holds.
Now suppose (3.6) holds. LetK

_
{1,. ., n}withK # andK # .Let 1 -</" _-<n.

Then it follows from (3.6)(ii) that either there exists r K for which Pri 1 or there
exists s / for which qis 1. Since K and/ are nonempty, it now follows from (3.6)(i)
that there exists I

_
{1,. ., n } with I # Q5 and ! # Q5 such that for ! there exists

r K with Pri !, and for k I there exists s K with qks 1. Now let A [ai] be
an n n irreducible matrix of O’s and l’s and let B PAQ [bii]. Since A is irreducible,
we can choose I and k s I such that aik 1. But then using the above notation,
we see that

brs Y. pruauoqos >= priaikqts 1.

It follows that B[K,/] 0. Since this is true for each K
_

{1, ., n } with K and/
nonempty, it follows that B PA(2 is irreducible. Since this is true for each irreducible
A, (3.5) holds.

COROLLARY 3.3. Let P and O be n n matrices of O’s and l’s such that P and
O have neither zero rows nor zero columns. Then PAO is irreducible ]’or each n n
irreducible matrix A o]’ O’s and l’s i]’ and only if OP >-I,, the n n identity matrix.

Proof. First suppose PAO is irreducible for each n n irreducible matrix A of
O’s and l’s. Then by Theorem 3.2, (3.6)(ii) holds. Since P has no zero column and
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Q has no zero row, it follows that (3.6)(iib) holds for each 1, .., n. Hence QP >-I,.
Conversely, if QP>-I,, then (3.6)(iib) holds for each i= 1,..., n. Since P has

no zero rows and Q has no zero columns, we conclude (3.6) holds. Hence by Theorem
3.2, PAQ is irreducible for each irreducible matrix A of O’s and l’s.

COROLLARY 3.4. Let Q be an n x n permutation matrix and let P be an n x n
matrix of O’s and l’s. Then PAQ is irreducible for each n x n irreducible matrix A of
O’s and l’s if and only ifP >- Q t.

Proof. If P>-Qt, then for an n xn matrix A of O’s and l’s, PAQ>-QAQ; thus
PAQ is irreducible when A is. Conversely, suppose PAQ is irreducible for each
irreducible matrix A of O’s and l’s. Then (3.6) holds. Since Q has no row of all l’s,
P can have no column of all O’s. Hence (3.6)(iib) holds, that is QP >-In or P _-> Q.

An example of a pair of matrices P, Q satisfying the equivalent conditions of
Theorem 3.2 for which QPIn is the following:

1 0 1 0 1 0 0 0

P-
0 0 1 1’ Q-

0 0
0 0 1 1 0

We now consider nearly reducible matrices. Let P and Q be n x n matrices such
that PAQ is nearly reducible for each n x n nearly reducible matrix A of O’s and l’s.
Let B be an n n irreducible matrix of O’s and l’s. Then there exists a nearly reducible
matrix C of O’s and l’s with B _-> C. So PBQ >-PCQ. Since PCQ is nearly reducible,
PBQ is irreducible. Hence PBQ is irreducible for each irreducible matrix B of O’s
and l’s. But the converse does not hold, as is easily seen. Indeed we have the following.

THEOREM 3.5. Let P [Pij] and Q [qij] be n n matrices of O’s and l’s. Then
PAQ is nearly reducible ]:or each n n nearly reducible matrix A of O’s and l’s if and
only ifP and Q are permutation matrices and Q P.

Proof. If P is a permutation matrix and Q P, then by definition PAQ is nearly
reducible for each nearly reducible matrix A. Conversely, suppose PAQ is nearly
reducible for each reducible matrix A of O’s and l’s. We prove that P is a permutation
matrix and Q pt by consideration of a number of cases.

Case 1. Q is a permutation matrix. It follows from Corollary 3.4 that P _-> Qt.
Suppose P Qt. Then for some i, row of P contains at least two l’s. Let r and s be
chosen so that pr qr 1 and Ps 1, where r # s. We may choose a nearly reducible
matrix A whose rth row is different from its sth row. It follows that PAQ >-QAQ
but PAQ QAQ. Since QAQ is nearly reducible, PAQ is not nearly reducible.
This contradiction implies that P Q.

Case 2. P is a permutation matrix. This case is similar to Case 1.
Case 3. Some column of P contains at least two l’s. Using the analogue of

Lemma 3.1 for nearly reducible matrices, we may suppose column 1 of P contains
l’s in rows and/" where /’. Let A be the n x n nearly reducible matrix

0 1 1
1

0
1

Then rows and j of PA equal [*1 1]. If Q _-> R for some permutation matrix R,
then PAQ has a 1 on the main diagonal and cannot be nearly reducible. So QR
for each permutation matrix R. Since (2 has no zero columns, it now follows that
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some row of Q contains at least two l’s. Let row k of Q contain l’s in columns u
and v. First suppose k 1. Then it follows that the 2 x 2 submatrix of PAQ formed
by rows and/" and columns u and v contains no O’s. Hence by Lemma 2.2, PAQ
is not nearly reducible, a contradiction. Thus k 1 and only row 1 of Q can contain
more than one 1.

Let there be r >-2 l’s in row 1 of Q. Suppose n -r >_-2, and let row 1 of Q contain
O’s in columns p and q. Since each column of Q contains at least one 1, it follows
that the 2 2 submatrix of PAQ formed by rows and f and columns p and q contains
no O’s. Using Lemma 2.2 again, we obtain a contradiction. Hence n -r- 0 or 1. First
suppose n-r 0. Then row 1 of Q contains only l’s, and AQ has no O’s in rows
2,..., n. If P had a I in a column other than column 1, then PAQ would have a
row with no O’s and would not be nearly reducible. It follows that

p--

i
Since PBO is irreducible for each irreducible matrix B ot 0’s and l’s, and row 1 of
O contains only l’s, it now follows from Theorem 3.2 that all entries ot O equal 1.
This contradicts the tact that only row 1 ot O can contain more than one 1 (or, use
the fact that PAO now contains no 0’s).

Now suppose n-r 1. Without loss of generality we may assume the unique 0
in row 1 of O occurs in column n. Since no column of O contains only 0’s, there is
a 1 in column n ot O in one ot rows 2,..., n. Hence the only 0’s ot AO occur in
columns l, ., n 1 ot row 1 and rows 2,..., n of column n. Suppose two columns
other than column 1 ot P contained a 1. Then PAO would have two rows each
containing at most one 0 and hence a nonzero entry on the main diagonal. We conclude
that at most one column of P other than column 1 contains a 1. It now follows from
Theorem 3.2, that O has at least n- 2 rows ot all l’s. This contradicts the fact that
only row 1 of O can contain more than one 1. This contradiction now means that
this case cannot occur.

Case 4. Some row ot O contains at least two l’s. An argument similar to the
above shows that this case cannot occur.

Since each row of p and each column of O contains a 1, there are no cases left
to be considered. We conclude that P is a permutation matrix and O P, and the
proof is complete.

Finally we consider reducible matrices, but first we prove the tollowing lemma
concerning decomposable matrices.

LEMMA 3.6. Let P and 0 be n x n matrices o O’s and l’s such that P has no zero
rows and 0 has no zero columns. Then PAO is decomposable or every n x n matrix
A o1 O’s and l’s having a zero row or column if and only if P and O are permutation
matrices.

Proof. Suppose PAQ is decomposable for every A with a zero row or column.
Let A be the matrix all of whose entries equal I except those in the first row which
equal 0. Since Q has no zero columns, it follows that AIQ >-At. Let P’=
P[., {2,. ., n}] and let A A x[{2, ", n},. ] so that all entries of A equal 1. Then

PA Q >-PAx P’A ’.
Since PAQ is decomposable, it now follows that P’ has a zero row. Since P has no
zero rows, we conclude that some row of P equals (1, 0,..., 0). By considering the
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matrix Ai all of whose entries equal 1 except those in row which equal 0(i 1,. , n),
we conclude in a similar way, that for each 1, , n some row of P contains only
O’s except for a 1 in column i. Hence P is a permutation matrix. In the same way, by
considering the matrices A we conclude that Q is also a permutation matrix.

The converse is evident.
THEOREM 3.7. Let P and Q be n x n matrices of O’s and l’s. Then PAQ is

reducible for each n x n reducible matrix A of O’s and l’s if and only if one of the
following hoMs

(3.7) P has a zero or Q has a zero column.

(3.8) P and Q are permutation matrices and Q P’.

Proof. First suppose PAQ is reducible for each reducible A. Suppose (3.7) does
not hold. Since a matrix with a zero row or column is reducible and since a reducible
matrix is decomposable, it follows from Lemma 3.5 that P and Q are permutation
matrices. Since PAQ (PQ)(QtAQ), it follows that (PQ)B is reducible for each n x n
reducible matrix B of O’s and l’s. Since PQ is a permutation matrix, it follows easily
that PQ I,. Hence Q pt. The converse is clear.

If we insist upon both the properties of being irreducible and being reducible be
preserved, we obtain the following.

THEOREM 3.8. Let P and Q be n n matrices of O’s and l’s. Then the following
are equivalent"

(3.9) For each n x n matrix A of O’s and l’s PAQ is irreducible if and only if
A is.

(3.10) P and Q are permutation matrices and Q

Proof. Suppose (3.9) holds. Then P can have no zero row and Q can have no
zero column, and it follows from Theorem 3.7 that (3.10) holds. That (3.10) implies
(3.9) is obvious.

To conclude this section we consider n x n matrices P and Q of O’s and l’s which
satisfy the equivalent conditions (3.5) and (3.6) of Theorem 3.2, and which have the
additional property that the replacement of a 1 by a 0 (in either P or Q) always results
in matrices P’ and Q’ not satisfying (3.5) and (3.6). We call such a pair of matrices
(P, Q) a minimal pair for irreducibility.

Let n be a positive integer. By , we denote the set of all n n matrices P of
O’s and l’s for which there exists an n n matrix Q of O’s and l’s such that (P, Q) is
a minimal pair for irreducibility. The set Q, is defined in an analogous way. It follows
that if (P, Q) is minimal pair of n x n matrices for irreducibility, then P , and
Q Q,, but the converse need not hold. For a P ,, we denote by Q, (P) the set of
all n x n matrices Q for which (P, Q) is a minimal pair for irreducibility. We investigate
the sets ,, and Q,, (P) for P ,.

Let P be an n x n matrix of O’s and l’s. We say that P is in standard form (with
respect to columns) provided

(3.11) P=[P1J,,oO,,w]

where J,,o is an n x v matrix of all l’s (possibly vacuous), O,.w is an n x w matrix of
all O’s (possibly vacuous), and P1 is an n (n -v w) matrix (possibly vacuous) having
at least one 1 and at least one 0 in each column. It follows from Lemma 3.1 that
there is no loss of generality in assuming that P is in standard form.
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THEOREM 3.9. Let P be an n n matrix of O’s and l’s in standard form (3.11)
where v > 0 and w > O. Then P n if and only if each column of P1 contains exactly
one 1. IfP n, then

Ov

is the unique matrix in Qn (P).
Proof. This theorem is readily checked using the conditions of (3.6). The fact

that v > 0 guarantees that P has no zero rows; the fact that w > 0 guarantees that a
matrix Q Qn (P) will have row of l’s and hence no zero column.

THEOREM 3.10. Let P be an n n matrix of O’s and l’s in standard form (3.11)
where v > 0 and w O. Assume the rows ofP have been permuted so that

where P has no zero rows. Then P en il and only i[ each column o[ P contains
exactly one 1. ffP , then O(P) consists o[ all n x n matrices o the orm

Q [P 0 O2]
where each column of Q2 contains exactly one 1.

Proof. Again this theorem is readily verified using the conditions of (3.6). The
fact that v >0 guarantees that P has no zero rows; the condition on Q2 is needed
only to guarantee that Q has no zero columns; the last v rows of Q can contain only
0’s for otherwise we could replace a 1 in the submatrix J,,o of P by 0, contradicting
P,.

When we assume v 0, then the matrix P in standard form (3.11) does not
automatically have the property that it has no zero rows and becomes

(3.12) P [P O,,w]

where P is an n x (n- w) matrix having at least one 0 and at least one 1 in each
column. For P to satisfy (3.6), P must have a 1 in each row. In this case the structure
of P when P , is more complicated.

LEMMA 3.11. Let P be an n x n matrix of 0’s and l’s in standard form (3.12). If
P , then P has no 2 x 2 submatrix of all l’s and no 2 x 3 submatrix whose columns
can be permuted to give the form

1 1

Proof. Suppose P n. Then there exists a matrix Q Qn (P) such that P, Q satisfy
(3.6). Let a l,...,an be the columns of P and /,...,fin the rows of Q. For

1,..., n- w, ai contains both a 0 and a 1. Hence (3.6)(ii) is satisfied if and only
if fin-w+1 fin =e’ and fliai >0 for 1,..., n-w. It follows that if a 2x2
submatrix of P contains all l’s then one of these l’s can be replaced by 0 to yield an
n x n matrix P’ such that P’, Q satisfy (3.6). Since (P, Q) is a minimal pair for
irreducibility, this is a contradiction. Hence P has no 2 x 2 submatrix of all l’s. It now
follows that every 2 x 3 submatrix of P contains at most four l’s with equality if and
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only if the columns of the submatrix can be permuted to give (3.13). If P has such a
2 x 3 submatrix, one of its l’s can be replaced by 0 to again contradict the fact that
(P, Q) is a minimal pair. Hence the lemma holds.

Let P--[P0] be an n x n matrix of O’s and l’s in standard form (3.12) such that
P n. The bipartite graph G(P) associated with P has vertices x 1, , xn, y 1, , y,
with an edge [x, yj] in G(P) if and only if pj 1. It follows from Lemma 3.10, that
G(P) has no cycles of length 4, and a path beginning at a vertex in Y ={yl, , y,}
has length at most 3. Consequently, G(P) has no cycles of any length and a path
beginning at a vertex in X ={x1,’", x,} has length at most 4. In particular, the
connected components of G(P) are trees with the maximum length of a path at
most 4. It follows readily that the connected components of G(P) correspond to s x
submatrices of P whose rows and columns can be permuted to one of the forms:

1 1 1-

(3.14) 1_<_3. .1
0

where s >_- 1 and >_- 1, or

(3.15) =4:

where s -> 3 and r -> 2.

0

Os--l,r

THEOREM 3.12. Let P be an n x n matrix of O’s and l’s in standard form (3.12).
Then P , if and only if there are permutation matrices U and Vsuch that

(3.16) UPV

R1 0 0

RE 0

0 R,

where m >= 1 and ]:or 1,. , m, R has one of the forms (3.14) and (3.15).
Proof. It follows from the discussion preceding the theorem, that if P e ,, there

exist permutation matrices U and V such that (3.16) holds. Conversely, suppose
(3.16) holds. Without loss of generality, we may assume U V =I,. We exhibit a
matrix Q such that (P, Q) is a minimal pair for irreducibility.

First suppose w 0, so that in (3.16), O,,w is vacuous. Let
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where the partitioning of the rows and columns of Q is the same as for P and where

(i) O’
0

if Ri has the form (3.14) or R has the form (3.15) with r >0, and

[]1’1’ ’](ii) Qi
b Os-l,t-2

if Ri has the form (3.15) with r 0, where the column vector a is obtained from the
corresponding column vector of Pi by interchanging O’s and l’s and b has l’s exactly
in those rows where a has O’s.

It is readily checked using Theorem 3.2 that (P, Q) is a minimal pair for
irreducibility.

Now suppose w > 0. Let

Q1 0 0
Q2 0

where the partitioning of the rows and columns of Q" is the same as for P and where,
for 1,..., m,

Qi [1 ""0 ]"1

Again it follows in a straightforward manner that (P, Q) is a minimal pair for irreducibil-
ity, and the theorem is proved.

When P has the standard form (3.12) and P,, it seems that the set Q,(P)
does not admit a compact characterization. However, we do have the following:

THEOREM 3.13. Let P [pq] be an n n matrix of O’s and l’s such that P
P has no column of all l’s and no column of all O’s. Then (P, Q) is a minimal pair
for irreducibility if and only if there exist matrices X [xii] and Y [Y/i] such that
Q X + Y and

(i) X <-P and every column ofX has exactly one 1.
(ii) For 1, ., n, row of Y contains all O’s if row ofX contains at least one

1, while row of Y has exactly one 1 if row ofX contains all O’s; in the latter case
Yii 1 implies Pii O.

Proof. This theorem follows from Theorem 3.2 in view of the minimality assump-
tions on P and Q.

4. Full indeomlmsalility. In this section we consider linear transformations of
M, of the form A --> PAQ satisfying:

(i) PAQ is nonnegative whenever A is,

(ii) PAQ is fully indecomposable (or nearly decomposable or decomposable)
whenever the nonnegative matrix A is.

As in the previous section we may assume that P and Q are matrices of O’s and l’s,
and we need only consider in (ii) matrices A of O’s and l’s. We then have the
following result:
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THEOREM 4.1. Let P [pij] and Q [qij] be n x n matrices of O’s and l’s. Then
the following are equivalent"

(4.1) For each n n fully indecomposable matrix A of O’s and l’s, PAQ is fully
indecomposable.

(4.2) (i) P and Qt have no zero rows.
(ii) There do not exist nonempty proper subsets J, K, L, M of {1,..., n}

such that P[J, K] O, Q[L, M] O, IJl + [Ml n, and IKI + ILI
n+l.

Proof. First suppose that (4.1) holds. Since a fully indecomposable matrix can
have no zero rows or columns, it follows that (4.2)(i) holds. Suppose (4.2)(ii) does
not hold. Then there exist subsets J, K, L, M of {1,..., n} with @J, K, L,
M # {1,..., n} and with IJI + [MI n and IKI / ILl n + 1, such that

PEJ, K] O, OIL, M] O.

Let A be the n n matrix of O’s and l’s such that A[K, L] 0 and all other entries
of A equal 1. Since Igl / IEI -IKI-ILl--< n the matrix A is fu.y indecompos-
able. Let B PAQ. Then

B[J, M] P[J, ]AQ[. M] O.

Since J, M and Isl / [M!- n, it follows that B is not fully indecomposable. Hence
(4.2)(ii) holds.

Now suppose that (4.2) is satisfied. Let A [ai] be an n n fully indecomposable
matrix and let B PAQ [bi]. Consider nonempty subsets J and M of {1,..., n}
with I I/IMI . We show that B[J, M] O, from which it follows that B is fully
indecomposable. Since by (4.2)(i) P and Q have no zero rows, it follows from (4.2)(ii)
that there exist nonempty subsets K and L of {1,..., n} with ]K[ +[LI n such that
P[J, K] has at least one 1 in each column and Q[L, M] has at least one 1 in each
row. Since A is fully indecomposable, we conclude that A[K, L] O. Let k K and
L be determined so that ak 1. Let jJ be determined so that Pik 1, and let
m M be determined so that q, 1. Then it follows that

bi, >-_ pikaktqlm 1.

Hence B J, M] O. Thus (4.1) holds and the theorem is proved.
If P and Q are permutation matrices then (4.2) clearly holds. But there need not

even be permutation matrices P’, Q’ with P _->P’ or Q _-> Q’ in order that (4.2) hold.
An example is given by

1 0 0 0 1 0 1 l-

p= 0 0 0111
11 O=1101"

0 1 11 0 0 0

For a matrix X, let X(i,/’) denote the submatrix of X obtained by deleting row and
column/’. We then have the following.

COROLLARY 4.2. LetP be an n x n matrix of O’s and l s and let Q be a permutation
matrix. Then the following are equivalent:

(4.3) PAQ is fully indecomposable for each n n fully indecomposable matrix A
of O’s and l’s.
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(4.4) Either (i) there exists a permutation matrix P’ with P >=P’ or (ii) ]’or some
integer r with 1 <-_r <-n and all integers with 1 <- <-_n, there exists an
(n 1) x (n 1) permutation matrix Pj such that P(], r) >=Pj.

Proof. We apply Theorem 4.1 with (2 a permutation matrix. For/" 1,. , n 1,
(2 contains an (n-/’)x/" zero submatrix but no (n -/’) x (/" + l) zero submatrix. It
follows that (4.2) is equivalent to the statement that for/" 1,..., n- 1, P has no
(n-/’) x (/" + 1) zero submatrix. Now the well known Frobenius-K6nig theorem [10,
p. 189] asserts that there exists a permutation matrix P’ with P>=P’ if and only if P
has no (n -/’) (/" + 1) zero submatrix for/" 0, 1,. , n 1. If P has no zero column,
it now follows that (4.2) is equivalent to the existence of a permutation matrix P’ with
P>=P’. Now suppose column r or P contains only O’s. It then follows from the
Frobenius-K6nig theorem, that (4.2) is equivalent to there existing an (n 1) x (n 1)
permutation matrix P with P(,r) >=P for/" 1, .., n. Hence the corollary follows.

We now consider the property of near decomposability of n x n matrices. For
n 2, the only fully indecomposable matrix of O’s and l’s is the matrix Ja.a of all l’s
and it is nearly decomposable. Let P and (2 be 2 x 2 matrices of O’s and l’s. Then it
is readily checked that PJa.aO is nearly decomposable (has no O’s) if and only if P
has no zero rows and (2 has no zero columns. For n > 2 we have the following.

THEOREM 4.3. Let n > 2, and let P [Pit] and O [qii] be n x n matrices of O’s
and l’s. Then PAQ is nearly decomposable for each n x n nearly decomposable matrix
A of O’s and l’s if and only ifP and Q are permutation matrices.

Proof. Suppose that PAQ is nearly decomposable for each nearly decomposable
matrix A of O’s and l’s. Then P has no zero rows and Q has no zero columns. From
this it follows that if there is no permutation matrix P’ with P _->P’, then P has a
column with at least two l’s; an analogous conclusion holds for Q. We distinguish
several cases.

Case 1. There exist permutation matrices P’, Q’ such that P->P’, Q >_-Q’. Let
A be nearly decomposable. Then A has at least two l’s in each row and each column.
Suppose P P’. Then there exist i,/’, r with f such that p pi 1. Since row r of
A contains two l’s, it follows that within rows and/" of PAQ there is a 2 x 2 submatrix
with no O’s. By Lemma 2.1, PAQ is not nearly decomposable, a contradiction. Thus
P- P’ and, similarly, Q Q’, so that P and Q are permutation matrices.

Case 2. There exists a permutation matrix P’ with P _-> P’ or a permutation matrix
Q’ with Q _-> Q’. Suppose there is a permutation matrix Q’ with Q _-> Q’. If there is
no permutation matrix P’ with P _->P’, then some column of P has at least two l’s.
Arguing as above we conclude that PAQ is not nearly decomposable. Hence P _->P’
for some permutation matrix P’, and Case 1 applies.

Case 3. There is no permutation matrix P’ with P _-> P’ and no permutation matrix
Q’ with Q-> Q’. In this case there exist i,/’, r with # ] and Pit =Pit 1, and t, u, v
with u # v and qtu qto 1. Choose a nearly decomposable matrixA [akl]With art 1.
Then column of PA contains nonzero entries in positions (i, t) and (], t). It then
follows that the 2 x 2 submatrix of PAQ determined by rows and/" and columns u
and v contains no O’s. By Lemma 2.1, PAQ is not nearly decomposable. Thus this
case cannot occur.

It follows that P and Q are permutation matrices. The converse clearly holds.
For completeness we include the following two theorems which follow immedi-

ately from Lemma 3.6.
THEOREM 4.4. Let P and Q be n x n matrices of O’s and l’s. Then PAQ is

decomposable for each n x n decomposable matrix A of O’s and l’s if and only if one



128 RICHARD A. BRUALDI AND LI QIAO

of the following holds:

(4.5) P has a zero row or Q has a zero column.

(4.6) P and Q are permutation matrices.

THEOREM 4.5. Let P and Q be n x n matrices of O’s and l’s. Then the following
are equivalent"

(4.7) For each n x n matrix A of O’s and l’s, PAQ is fully indecomposable if
and only ifA is.

(4.8) P and Q are permutation matrices.

To conclude, we discuss some interesting problems which arise out of the criterion
(4.2) in Theorem 4.1. First we reformulate that criterion. Let P be an n x n matrix
of O’s and l’s. For k 1, 2,..., n, define Ck(P) to be the largest such that P has a
k x j zero submatrix. It follows that

n >-cl(P) >-.. .>=c,(P)>-_O

with c(P)= n if and only if P has a zero row, and c,(P)=0 if and only if P has no
zero column. We put c (P) (c (P),. ., c, (P)). We define another n-tuple d (P)
(di(P),...,d(P)) by d(P)=c(Pt). Before proceeding we record the following
observation. Recall that if r (r, r2,..., r,) is a monotone decreasing sequence of
nonnegative integers, the conjugate sequence r* (r’, r’, ., r*, is defined by

r’ max {k" rk >j, k 1,..., n}.

Note that Y’.=t r Y-=t r’.
LEMMA 4.6. IfP is an n n matrix of O’s and l’s, then d(P)= c (P)*.
Proof. It follows from definition that c(P)>= if and only if d(P)>=k. By taking

k c(P)*, we conclude that d(P)>=c(P)* for/" 1,..., n. Similarly, c(P)>=d(P)*
forj= 1,. ., n. Since

/=1 j=l /=1 /=1

it follows that d(P) c (P)*.
Let P and Q be n n matrices of O’s and l’s, then condition (4.2) of Theorem

4.1 is equivalent to

(4.9)
ct(P)<n,d(Q)<n and for k 1,... ,n-l,

Ck(P)+d,-k(O)<=n.

Note that cn (P) and dn (P) do not enter into this condition. We say (P, Q) is a minimal
pair for full indecomposability provided P, Q satisfy (4.9), but the replacement of a
1 by a 0 (in either P or Q) always results in matrices P’ and Q’ not satisfying (4.9).
An example of a minimal pair for full indecomposability when n 4 is

1 0 0 0 1 0 1 1
1 0 0 O, O=

1 1 1
(4.10) P=

0 0 1 0 1 0
0 0 0 1 0 0

Here c(P) 3, cl(e) 3, c3(P) 2 and di(O) 2, d2(O) 1, d3(O) 1 SO that Ck(P)+
d4-k (P)= 4 for k 1, 2, 3.
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It seems an interesting but difficult question to characterize the minimal pairs for
full indecomposability. The following property does hold.

LEMMA 4.7. If (P, Q) is a minimal pair ]’or full indecomposability, then there exists
k with 1 <- k <-_ n 1 such that Ck (P) + dn-k (Q) n.

Proof. Assume to the contrary that Ck (P) + d,-k (Q) < n for k 1,.. , n 1. First
suppose that there exists a row of P containing at least two l’s. Let P’ be the matrix
obtained from P by replacing one of these l’s by 0. Then cl(P’)<n and Ck(P’)+
d,_k(Q)<-_n for k 1,..., n 1. Hence(P, Q) is not a minimal pair for full indecom-
posability. Now suppose each row of P contains exactly one 1. Then not every column
of P can contain two or more l’s so that c,-l(P)--> 1. Hence, dl(Q)<n- 1, so that
some column of Q contains at least two l’s. An argument similar to the first leads to
a contradiction again, and the lemma follows.

The converse of the above lemma is not true, as is seen by taking Q as in (4.10)
and

1 0 0 0
1 0 0 0
0 1 1 1"
0 1 1 1

Nor is the stronger statement that Ck(P)+dn-k(Q) n for k 1, , n 1 whenever
(P, Q) is a minimal pair for full indecomposability. A counterexample is provided by
the following minimal pair

0 0 0 1 0 1 0 1

0 0 1
O=

1 0

0 0 1 0 1

where cl(P) 3, c2(P) 3, c3(e)= 2 and dl(O) 2, d2(O) 1, d3(O) 0. Neither is
it true that (P, Q) is a minimal pair for full indecomposability when cI(P) < n, dl(Q) < n
and Ck (P) + d,_k (Q) n for k 1,.. , n 1. A counterexample is furnished by

0 0 0 1 -0 0 0 1
0 0 0 1 0 1 1 1
O0 10’ Q=I 1 1
0 0 1 0 1 1 1

Consideration of the n-tuple c(P) for an n x n matrix P of O’s and l’s leads to
some questions independent of the condition (4.9) and its relation to full indecomposa-
bility. Let c (c 1, , c,,) be an integer n-tuple with n >_- c >--" >- c, >- 0, and let (c)
denote the collection of all n x n matrices P of O’s and l’s with c(P)= c. By taking P
to be the matrix whose kth row consists of Ck O’S followed by (n --Ck) I’S (k 1, , n),
we see that/5 (c) so that (c) # . (If d (dl,. , d,) is an integer n-tuple with
n _->dl_->’" _>-d, =>0 and we define (c, d) to consist of all n x n matrices P of O’s
and l’s with c(P)=c and d(P)=d, then it follows from Lemma 4.6 that (c, d)#
if and only if d c*.)

The following observation is easy to prove. Let tr(P) denote the number of l’s
in the n x n matrix P of O’s and l’s.

LEMMA 4.7. Let P (c). Then tr(P) <-_tr(P) ,i=1 (n -ci).
The following problems appear difficult.
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Problem 4.8. Determine the minimum value trc of tr(P) for P (c) (or for P
satisfying cj(P) <- cj for/" 1, ., n).

An easy lower bound is" trc => max {n (n c 1), (n (n c *))}.
Problem 4.9. Characterize those P (c) for which tr(P)
Call P a minimal matrix of (c) if P (c), but for each matrix P’ obtained

from P by replacing a 1 by a 0, P’ (c).
Problem 4.10. Characterize the minimal matrices of (c).
Let c (2, 1, 0, 0). Then the matrix

-0 0 1 1
1 0 1 0

P=
0 1 0 1
1 1 0 0

is in (c) and tr(P)= 8. Suppose there were a matrix P’e (c) with tr(P’)< 8. Then
some row of P’ has at least 3 O’s so that c(P’) =>3. It follows that tr 8. Now consider
the matrix in (c),

0 0 1 1

0 0
1 1

Then it is easy to check that P1 is a minimal matrix of (c), but (r(P)= 9 >try. It
follows that Problems 4.9 and 4.10 are, in general, different.

Problem 4.8 is related to the well-known problem of Zarankiewicz [12]. For n n
matrices this problem asks for the minimum positive integer z (n,/’, k) such that every
n x n matrix of O’s and l’s containing at least z(n, , k) l’s has a/" k submatrix of
all l’s. If we interchange O’s with l’s, the problem can be reformulated as: Determine
the maximum number tr(n,/’, k) such that every n n matrix P of O’s and l’s with
tr(P)<-tr(n,f, k) satisfies ci(P)=>k. A generalization of this problem is then the
following"

Problem 4.11 (Generalization of Zarankiewicz’s problem). Let c=(cl," ",cn)
be an integer n-tuple with n _-> c =>.. => cn => 0. Determine the maximum value - of
tr(P) for P (c) (or for P satisfying c(P)=>ci for/" 1,..., n).
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MINIMIZING SETUPS FOR ORDERED SETS: A LINEAR
ALGEBRAIC APPROACH*

GERHARD GIERZt AND WERNER POGUNTKEt

Abstract. The purpose of this paper is to give a lower bound for the setup number of an arbitrary
finite ordered set P in terms of the rank of the incidence matrix of P. This bound turns out to equal the
setup number for a rather wide family of ordered sets. For the subfamily of cycle-series-parallel ordered
sets, a recognition algorithm is presented which produces a (setup) optimal linear extension for every
ordered set which is recognized to be cycle-series-parallel.

1. Introduction and basic definitions. Scheduling problems and their complexity
have received attention by many authors in the past few years. We refer the reader
to J. K. Lenstra-A. H. G. Rinnooy Kan [7] for a survey.

This paper deals with the following very special scheduling problem: A single
machine is to perform a set of jobs, one at a time. Certain precedence constraints
imply that some jobs cannot be started unless certain other jobs have been completed.
However, any time a job is performed immediately after a job which is not constrained
to precede it, there has to be a "setup" which causes some fixed additional cost. The
problem is to find a schedule which minimizes the number of setups.

The above situation is reflected by the notions of an ordered set (precedence
constraints) and a linear extension of an ordered set (schedule) (cf. [3], [5]).

By an ordered set, we mean a set P with a binary relation <- which is reflexive,
antisymmetric, and transitive. (Throughout this paper, we will only deal with finite
ordered sets.) An order-preserving bijection f’P--){1, 2,..., IPI} is called a linear
extension ofP. We say that f has a setup at f-(i) (1 -<_ < Iel) if f-l(i) f-(i + 1).

Finally, we define

s(f) := [{i: f has a setup at f-(i)}[,
and the setup number ofP,

s(P) min {s(f): f is a linear extension of P}.

As is customary, we will represent ordered sets by certain diagrams. To illustrate the
above definitions, let us look at the ordered set N described in Fig. l(a). Figure l(b)
and (c) describe two different linear extensions f and f: of N (with the obvious
interpretation: fl(a) 1, fl(b) 2, etc.). Since s(fl) 2 and s(f2) 1, and since at least
one setup is needed for any linear extension of N, S(N)- 1, i.e., f2 is "optimal."

cd N
d c

a b
b d

(a) a f b f

(b) (c)
FIG, 1
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The problem of determining the setup number s(P) and producing an optimal
linear extension for any given ordered set P has been considered by a number of
authors. In most of the papers (cf. [1], [2], [4], [8], [9]), the problem has been looked
at within the framework of graph theory. While good algorithms have been found for
certain restricted classes of ordered sets, it has been shown by W. R. Pulleyblank [8]
that even if attention is restricted to ordered sets not containing a three-element
totally ordered set, then finding the setup number still is an NP-complete problem.
(For the terminology regarding computational complexity, the reader is referred to
M. R. Garey-D. S. Johnson [6].)

2. Further notation and an easy lemma. As usual, for elements a, b of an ordered
set P, we write a < b if a -< b and a # b. If a P, then a := {p PIP -<-a } is called the
order ideal generated by a; if A

_
P, the order ideal generated by A is SA := LlaA Sa;

a subset B of P is said to be an order ideal if B B.
A subset C of P which is totally ordered (i.e., x <- y or y _-< x holds for any x, y C)

is called a chain. An antichain A is a totally unordered set: x y and yx for all
x, y A; the width ofP, w (P), is the maximum size of a subset ofP which is an antichain.

The following is easy to show:
LEMMA 2.1. Let P be an ordered set, A

_
P with SA A, and E := P\A. If f is

a linear extension ofA and g is a linear extension of E, then

defined by

f[] g :P{1, 2,... ,IPI}

f(x) ifxA,
fr g(x):-"

[Al+g(x) ifx E

is a linear extension o[P, and

s(f)+s(g)<=s(f g)<--s(f)+s(g)+ l.

Furthermore, s(f)+ s(g) s(f g) holds precisely in the case where f-X(lAI) <- g-(1).
3. Independent sequences and the setup number. In this section, we give a

characterization of the setup number in terms of the sequence of elements below
which setups do not occur. We assume that an arbitrary finite ordered set P is given
throughout the section.

DEFINITION 3.1. A sequence a 1,’’’, a, P of elements of P is called an
independent sequence if the following are satisfied:

(i) J,a # {a 1};
(ii) for each k {1,..., n 1}, Sa+\{a+} U__< Sa\{a}.
LEMMA 3.2. a) If a 1, ", a, P is an independent sequence, then them is a linear

extension f ofP with s (f) <- [P[- n 1.
b) Iff is a linear extension ofP with s(f) m, then there is an independent sequence

al, , alel-m-1 P.
Proof. a) By induction, we define linear extensions fk of U i_<-k Sai with the follow-

ing properties"

(i) fk(ak) Sa[,
i<__k

(ii) fk +1 -J Sa, fk,
i_k
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Let fx be a linear extension of a1. Since a is the largest element of Sa
follows. Furthermore, f cannot have a setup at f-t(l+al-1), i.e., s (]’1) -< I1-2.

Assume fk has already been defined. From 2.1 (ii), we know that +a+xOz a. Let g be a linear extension of ak+xUk a and fk+X := fk gk fk+a, obviously,
has the properties (i) and (ii). To verify (iii), we have to consider two cases:

Case 1. Ia+Uz al 1. One gets from Definition 3.1 (ii) that a a+x. Then
fk(a) IU +al and Lemma 2.1 now imply

=1 U Sai + I$a+, U $ail-k-2
ink ink

iNk+l

Case 2. [$a+U SatiN2. In this case, a+ is the largest element in
Sa+/U Sag, hence s(g)Nla+lUz $a1-2. Thus, one gets

iNk+l

This shows that the linear extensions f have the desired properties. If P
letting f=f,, we are done. Otherwise, let g be any linear extension of PU,
Obviously, s(g) N [PU, Sa, I- 1 IPI- IU, . Sa, I-

With f , g, one has

i=n i_

b) Let /:P{1, 2,..., [P[} be a linear extension. We set R ={i :i <[PI and
[-(i)Nf-(i + 1)}, i.e., R is the set of places where f has no setup. Obviously,
IPI s ()+ IN I+ 1. We now label the elements of R in such a way that R {i 1
]P[- s (f) 1} and i N i+ for each 1 N k N[P[- s (f) 2.

Defining a := f-t(ig + 1) for 1 N k NIP[- s()- 1, our claim is that the elements
a form an independent sequence. Since f-(i)Nf-(i+l)=a, condition (i) of
Definition 3.1 is satisfied. To show that (ii) holds as well, we set

We first observe that b+ e Sa+{a+}. Let us assume b+ e Ug a, and choose
an N k with b+ e a.

Since f is isotone, it follows that

i+ f(b+) Nf(at) i + 1.

The assumption <k now implies i+ N i + 1 < i + 1 N i+, hence k. But now,
i < i+ implies i+ i + 1 which means b+ a. This shows that
;a+l{a+} Ui Sai{a}.
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COROLLARY 3.3. Them is an independent sequence al, ", a, P if and only if
s (P) <-IPI- n 1.

4. The defect and a lower bound for the setup number.
DEFINITION 4.1. Let P be an ordered set, and let K be a field. By (49p,K we denote

the linear mapping from KP to itself given by

qe,r (f)(a) := E f(b).
b>a

The rank and defect ofP over K are defined by

rkr (P) := dim (im qp,:),

def: (P) := dim (ker Cp,:).

We list some immediate consequences of Definition 4.1"
Fact 4.2. Let P {pl, ’, P,}. Obviously, the mappings i :P -> K defined by

1 ifk=i,
ti(Pk) :-"

0 ifki

form a basis of KP. With respect to this basis {1,’" ", 3,,}, qp,r is described by the
matrix Ap,= (ai,k)i,k with

1 if Pi < Pk,
ai.k 0 otherwise.

Consequently, rk (P)= rk (Ae.) and defoe (P)= def (Ae.K).
Fact 4.3. By induction, it is easy to show that

...:(f)(a)= E Y Y f(b,)
bl>a b2>bl bt>bl-1

for every integer 1. This means that if cl(p, q) denotes the number of (l + 1)-element
chains p pl <p2 <" < pt < pt+l q in P, then

A (CP,K (Pi, Pk) 1)i,k.

For each a P, we define xa KP by

1 if a >p,
Xa(p)

0 otherwise.

Observe that X,, pe.K (i).
The following proposition is of central importance in this paper. It links indepen-

dent sequences (cf. the preceding section) to linearly independent elements of Ke:
PROPOSITION 4.4. Let P be an ordered set, and let K be a field. If the elements

a 1, , a, Pform an independent sequence, then Xl, ",x. are linearly independent
in Ke; in particular, rkc (P)=>n.

Proof. Let Y’.i=l rix, =0, ri sK. Since bl, , b,,-1 is an independent sequence
whenever b 1, , b,, is, it is enough to show that r, 0. By condition (ii) in Definition
3.1, there is a b Sa,\{a,} which is not an element of LJ__<,-1Sai\{a,-l}. It follows that

X. (b)= 1, and Xa, (b)= 0 for any < n. Consequently,

0 rx,,, (b) r, 1 r,.
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Corollary 3.3 and Proposition 4.4 now together imply:
THEOREM 4.5. IfP is an ordered set and K is a fieM, then defK (P)- 1 -< s (P).
It turns out that even if one chooses K F2 to be the two-element field, the

lower bound for s(P) given in Theorem 4.5 is sharp for a suprisingly rich class of
ordered sets. The remainder of this section is devoted to studying properties of this
class. (Fig. 2 shows a small ordered set Q for which defF2 (Q)- 1 < s(P).)

FIG. 2

It is very easy to see that for any ordered set P, w(P)-1 <=s(P). The following
lemma shows that Theorem 4.5 improves this inequality:

LEMMA 4.6. IfP is an ordered set and K is a field, then w (P) <-defK (P).
Proof. Let A be an antichain in P and IPI-- m. We may assume that the elements

of P={pl, p2,"’,p,,} are labelled in such a way that {pl, p2,’",p}=P\A,
{Pt+l, ", Pt+IAI} A, and {p +IAI+I," ’, P-} ’A\A. Let 61, ", 6, be the basis of
KP as defined in Fact 4.2. With respect to this basis, qe.r is described by the matrix
Ae.tc, having a shape like this:

Hence, it follows that rkr (P) <- + rtc(T) <-- + (IPI-(IAI + l)) IPI-IA[ and defoe (P) _->

Ial.
We continue with a list of ordered sets for which deftc (P)-1 s(P) (with a

suitable K) holds.
Example 4.7. If P is a chain with n elements, then deft (P) 1, hence deft (P)-

1 0 s(P). If P is an antichain with n elements, then deft (P) n, i.e., deft (P)- 1
s(P).

Example 4.8. An ordered set {x, yl, x2, y2,...,x,, yn} of size 2n (n ->3) with
the comparabilities

y < X1, X1 > Y2, Y2 ( X2, X2 > Y3, ’, Xn-1 > Yn, Yn < Xn, Xn > y

(and no others) is called a 2n-cycle (see Fig. 3(a)). If P is a 2n-cycle, then it is easy
to check that s(P) n. Furthermore, defF2 (P) n + 1 and hence defF2 (P)- 1 s(P),
although w (P)- 1 n 1 < s(P).

Example 4.9. (This contains Example 4.7 as a special case.) It has been shown
in D. Duttus-I. Rival-P. Winkler [5] that if P is cycle-free, i.e., if P contains no subset
isomorphic to any 2n-cycle or to the ordered set described in Fig. 3(b), then w (P)- 1
s(P). By Lemma 4.6, deft (P)- 1 s(P) for any such P (and any field K).
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X1 X2 X3 Xn-1 X

Yl Y2 Y3 Y,-

(a) (b)

FIG. 3

We next show that the property of an ordered set P that deft( (P)- 1 is the setup
number is preserved by a very general construction, the lexicographic sum.

DEFINITION 4.10. Let S be an ordered set, and let Ps be an ordered set for each
s S. On the disjoint union ss P, we define an order structure =_ by saying that
p_ q holds if and only if either there are s, s’ $ with s <s’, p P, and q Ps,, or
there is an s S with p,qP and p -<_q in P.. The ordered set L,sP := (sP,,)
is called the lexicographic sum of the family (P,),s over S.

We first need the following"
PROPOSITION 4.11. Let P sP be the lexicographic sum of (P)s over S, and

let K be any field. Then

deft (P)- 1 (deft (P)- 1)+ deft (S)- 1.
sS

KP‘.Proof. We identify KPwith s Let(fs),se sKPandp.r((fs)s)
(gs)s. For any s S and p P,

We define "P S by (p) s if p P. induces a linear mapping "KSKe with
([) := [ . Furthermore, we have a linear mapping 8’ Ke Ks which maps ([,),s [

to 8 ([) with 8 ([)(s) Xe,[, (a). Now, for any [ ([,),s, s S and p P, one has

o ,s.rO 8(f)(p) [(,s.r ,)(f)]((p)) (,s.r(*(f)))(s)

E 8(D(t)= E X f,(a).
t>s t>s aPt

Altogether, one has

(49P,K X OP K -I- OS,K 8,

which implies

rkt((P) rk (p.t() =< E rk (op,.t() + rk (Os.c),
sS

and the desired inequality follows. [q

Proposition 4.11 now enables us to prove:
THEOREM 4.12. Let K be a field, let S be an ordered set, and let (Ps)s be a

family of ordered sets. If s(S) deft( (S)- 1, and if s(Ps) defK (Ps)- 1 for each s S,
then

s(,sP)=deft((ssP) -1"
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Proof. Let f be an optimal linear extension of S, and for each s S, let f be an
optimal linear extension of P. We define

by

g(P) :- Ie, l/fs(p)
f(t)<f(s)

with s being the unique s s S such that p Ps.
Obviously, g is a linear extension, and

s(g)= Y. S(fs)+S(f).

Using Proposition 4.11, one now gets

s( [. Ps]-<_s(g) Y’, s(fs)+s(f)= (deft (Ps)-l)+defr (S)-I
\sS I sS sS

-<def (s
and the proof is finished.

If P1 and P. are ordered sets, then the lexicographic sum of (P1, P2) over the
two-element chain {1, 2} is also called the linear sum of P and P2; the lexicographic
sum over the two-element antichain is also known as the disfoint sum of P and P..
The smallest class of ordered sets containing the one-element ordered set and being
closed under taking linear sums and disjoint sums is the class of all series-parallel
ordered sets. Theorem 4.12 now immediately gives:

COROLLARY 4.13. IfP is a series-parallel ordered set, then s(P) deft (P)- 1 for
an arbitrary field K.

For series-parallel ordered sets, the proof of Theorem 4.12 shows that an
"obvious" linear extension is optimal. Several authors have dealt with this class of
ordered sets (cf. [4], [8], [9]). In W. R. Pulleyblank [8], a recognition algorithm for
this class is presented that finds a decomposition (and hence an optimal linear
extension) for every series-parallel ordered set in polynomial time.

We want to consider a slightly larger class in the next section. As a preparation,
we formulate one more consequence of Example 4.8 and Theorem 4.12; the class of
ordered sets P with s(P)= defF. (P)-1 will be denoted by 2.

COROLLARY 4.14. (2 contains all chains and all cycles and is closed under taking
linear sums and disfoint sums.

5. Cycle-series-parallel ordered sets. By 5, we denote the class of all (finite)
ordered sets P with the following properties:

(a) If P contains a subset S isomorphic to N (see Fig. l(a)), then there is precisely
one 2n-cycle C in P such that S

_
C.

(b) If C is a 2n-cycle, C’ is a 2m-cycle, and C C’ , then C C’.
(c) If C

_
P is a cycle and c C is minimal in P, then each minimal element of

C is minimal in P.
THEOREM 5.1. a) The class cS/’ contains all chains and all cycles and is closed

under taking linear and disjoint sums.
b) 5’9a is the smallest class of ordered sets with the properties described in a).
Because of Theorem 5.1, we call the elements of 5’cycle-series-parallel ordered

sets.
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Proof. a) is obvious.
To show b), let P . If P is not connected (i.e., P is a disjoint sum of several

components), then we can treat the components separately. Hence, we may now
assume that P is connected and IPI > 2. We have to show that P is either a cycle or
a linear sum of two ordered sets O and R; by induction, this will conclude the proof
Let M be the set of all minimal elements of P. If IMI-- 1, then P is the linear sum
of M and P\M. Thus, we may assume that IM[--> 2 and set R := {q P: q _-> p for each
pM}.

Case 1. R . We show that P is the linear sum of Q := P\R and R. Let q Q
and r R, and assume q r. Since q R, we may choose a p M with p q. Let s M
with s <=q. One can now easily check that the subset {p, q, r, s} is isomorphic to N.
Since P cSe, there is a 2n-cycle C with {p, q, r, s} C, and each minimal element
of C is minimal in P. Furthermore, since IC1>4, there is an mMC with
m {p, q, r, s}. But now, since s, p < r, and r has only two lower neighbours in C, it
follows that m : r, contradicting r R. This shows that q <-r and P is the linear sum
of Q and R.

Case 2. R . We show that P is a cycle. The first step will be to prove that if
rn M and p > m, then there is a cycle C with {p, rn } C: Since R , there is an
m’M with m’p. As P is connected, there is a smallest k->0 and elements
po, , Pk+l, qo, ", qk P with rn =Po <qo>Pl < <qk >Pk/l m’. It is easy to
see that {Po,’’’,Pk/x} and {q0,’’’,qk} are antichains. Let i=max{j:pi<=p}. If
Pi =Po= m, then {m,p, qi, pi/l}-N; if pg po=m, then {m,p, pi, qi}N; in any case,
there has to be a cycle C with {p, m}_ C.

In the second step, we show that if m, m’ M and m m’, there is a cycle C with
{m,m’}C: Since P is connected, there is a smallest k->_l and elements
po, P, ,P2k P with po=m <p >p2<. "<P2k-l >P2k =m’. It follows that for
each even <_-2k-4, PiPi+3 and p+l Pi+4.

Let us assume that k->2. For each <-2k-3, the subset {p, pi/, p/2, pi+3} is
isomorphic to N. Hence, for each such i, there is a cycle Cg with {p, pi/, P/2, pi+3}--- Ci.
By condition (b) on , we can conclude from {p/l, pi+2,p/3}_ Cf’IC/ that
C C+x for 0-<_ <_-2k -4. Thus, we getp0 m Co C C2k-3 P2k m’, and
m and m’ belong to a common cycle.

If k 1, then there is a p with m <pl >m’. Using the above first step, we get
cycles C and C’ with {m, pl}--- C and {m’, p}_ C’. Again, since p C C’, C C’
follows. This proves the second step.

Using the second step and condition (b) on 6e repeatedly, it is now easy to
conclude the existence of one cycle C with M

_
C. But this fact, together with step

one and (b), implies P C. I-I
Implicit in the proof of Theorem 5.1 is a polynomial algorithm that recognizes

the elements ofS and constructs an optimal linear extension:

ALGORITHM
Input:
Output:

Description"

Step 1:

A finite ordered set P.
The information if P Se and, if the answer is positive, an
optimal linear extension of P.
We present a procedure which encodes each element of P by a
string of integers if P cdSe and which, if P , discovers this
fact. In the positive case, the lexicographic ordering of the strings
obtained will describe an optimal linear extension of P"
A string consisting only of "0" is attributed to each element of P.
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Step 2"

Step 3"

Step 4"

Decompose P into the disjoint sum of connected ordered sets, and
label these arbitrarily P1,’" ", P,,. For any 1 _-< _-<m and x Pi,
add an to the string that was already attributed to x before.
Set J {i: 1 -< <- m, Ie, l> 1, and Pi is not a cycle}. If J , we go
to step 4. Otherwise, for each J, let Mi be the set of all minimal
elements of Pi, Ri := {q P p < q for each p M}, and Qi := P\R.
It has to be checked whether q < p for each q Q and p R. If
this is not the case, then P cSe, and the algorithm STOPS. If it
is true, we add a "0" to the string belonging to each element of
Q and "1" to the string belonging to each element of R. Then
we return to step 2 with P replaced by Q and by Ri.
It follows that P Y. For each 1 <- <- m with IP, > 1, we label
the elements of the 2n-cycle P optimally by {1, 2,..., 2n} and
add the respective integer to the string of each element.

The algorithm is illustrated in Fig. 4 for a particular cycle-series-parallel ordered
set $. The reader should observe that the optimality of the constructed linear extension
follows fromY cg2, which is a consequence of Corollary 4.14 and Theorem 5.1.

6. Some more results---and counterexamples. By Corollary 4.14, the class 2
(i.e., all ordered sets P with s(P)= def (P)- 1) is quite big. In particular, it contains
the class of all cycle-series-parallel ordered sets which we investigated in the preceding
section. At present, we are not able to give a good characterization of ’2. It is the
purpose of this section to present some more--positive as well as negativeresults
on ’2 (and on the corresponding classes ’ with an arbitrary prime p).

As usual, when we consider the product P Q of ordered sets P and O, the order
is taken componentwise. We will mainly deal with products of chains. The following
proposition is needed first:

PROPOSrrION 6.1. If C is a chain and P is any ordered set, then s(Px C)<-_
IcI s (e) + IcI- 1.

Proof. We proceed by induction on the cardinality of C. The case Icl 1 is trivial.
Now, let us assume that IC[ n + 1, and let u be the greatest element of C. Obviously,
the set P x C (Px (C\{u}))t.J (Px {u}). Let f and g be optimal linear extensions of
P x (C\{u}) and of P {u}, respectively. (Observe that P x (C\{u}) is an order ideal
of P C.) We get

s(P C) <-_ s(f [] g) <_- s(f) + s(g) + 1

=s(Px(C\{u}))+s(P)+ 1

<-n s(P)+n-l+s(P)+l

=(n + 1)s(P)+(n + 1)-1

Icl, s (P) + IcI- 1. u3

If P and O are ordered sets and K is a field, then KP is isomorphic to the tensor
product over K

Ke () K.
a canonical isomorphism Kv () K0 --> Kpo is induced by f (R) g (f, g) with

(f, g)(P, q)=f(P) g(q).

This isomorphism induces an isomorphism between the endomorphism rings as well.
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In what follows, to avoid too-complicated formulas, we will identify Ke (R) K and
KeO.

LEMMA 6.2. IfP and Q are ordered sets and K is a fieM, then

(qv,r + idrP) (R) (qo,r + idr) qPO,K + idr’.

Proof. For each pair (a, b) P Q and each f (R) g gP (gO, one has

{[qp,r + idK) (R) (qo,r + idr)](/(R) g)}(a, b)

(qp,r +idr)(f)(a)" (o,K +idr)(g)(b)

(qv,r (f) +f)(a ). (qO,K (g) + g)(b

E Ef(u)’g(v)
u>=a v>--_b

E (f(R)g)(u,v)
(u,v)>--(a,b)

(eo.r(f (R) g)+f (R) g)(a, b)

{fro PO,K + idKo](f (R) g)}(a, b). El

We continue with some applications of Proposition 6.1 and Lemma 6.2 to products
of chains.

PROPOSITION 6.3. Let Cr be the chain with r elements where r is prime. If the
r-element field is denoted by Fr, then

deffr (C)- 1 s(C) r"*-1-1

for each integer m.
Proof. The inequality s(C)<= r"-1-1 is obtained from Proposition 6.1. Hence,

it is enough to show that r"-1 <-defFr (C). (We will drop the subscript Fr in the rest
of this proof.) We now determine def (( c7)r) and make use of Lemma 6.2 and the
fact that (3-= 0 mod r for each 0 < < r.

Since C C-1 x Cr, we get

(qc) [(rcc-1 +idc-1) (R) (pc, + idc)-idc,]

()(--1)r-i(Cy- +idcs-) (R)(pc+idc)
i=0

(-1)r(idc7 (R) idc,) + ((pc7 +idcy-1) (R) (cr +idc,))

(-1)idc+(i. ()07-)(R) (o ()r)=0 i=

--1(-1)idcT+(idcs-l+qcS (R) (idc,

From Fact 4.3, we know that rCc, 0; furthermore, (-1 idc, -idc. We thus get
( c,) -1 (R) idc, which implies by induction that

def (re)= r. def (re’ ,,-1

cS- )=r.r =r

One now gets r"-1 <=def (c) from def (-,)-< r def (qc).
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An immediate consequence of Proposition 6.3 is
PROPOSITION 6.4. If B is a finite Boolean lattice, then B c2, i.e., s(B)=

defF2 (B) 1.
PROt’OSITION 6.5. If Cr and Cs are chains with r and s elements, respectively, then

deft (Cr x Cs)- 1 s(Cr x Cs) min {r, s}- 1 for any field K.
Proof. The inequality s(C x Cs) <_-min {r, s}- 1 easily follows from Proposition

6.1. We assume r<-s and show that r-<_defr (C x Cs). To this end, we choose bases
of Kcr and Kcs, respectively, such that with respect to these bases, 0c,.k is described
by the r x r-matrix

0 1 1
0 0 1 1

Ar
1

0 0

and cs.r is described by the s x s-matrix As of the same shape. Lemma 6.2 now
implies that, with respect to a suitable basis, q crcs., is described by the rs x rs-matrix

As As+E As+E

Ar,
0 As +E

As
where E is the s x s identity matrix. Gaussian elimination leads to the matrix

As E 0

E
0

and it is easy to see that its defect is r.
Proposition 6.3 and Corollary 6.5 might lead to the conjecture that if P is a

product of chains, then s(P) deft (P)- 1 holds with an arbitrary field K. The ordered
set CSs (where Cs is the three-element chain) refutes this, though: s(C)=8 and
delta2 (Cas 7.

We conclude this paper with examples showing that s(P)--defK (P)+ 1 can be
arbitrarily large for an ordered set P: For every ordered set Q out of the series
described in Fig. 5, deft: (Q)= 2 holds, but the setup numbers of these ordered sets
are obviously not bounded.

FIG. 5
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LATTICES OF SIMPLEX TYPE*

A. NEUMAIER

Abstract. Lattices of simplex type provide a common setting for the Leech lattice, a lattice related to
Shult and Yanushka’s [Geom. Dedicata, 9 (1980), pp. 1-72] very regular line system with 256 lines and
Du Val’s [Proc. London Math. Soc., 42 (1937), pp. 18-51] hyperbolic version of the root system E8. Many
other examples are given.

Introduction. The present paper discusses some observations on the borderline
between a few famous topics, reflection groups (Coxeter), extremal lattices (Leech,
Sloane), spherical designs (Goethals, Seidel), line systems (Shult, Yanushka) and
primitive permutation groups.

After a definition of lattices of simplex type, we present a normal form, and
discuss the fact that any lattice of simplex type is a refinement of a "trivial" lattice.
Among the trivial lattices we find the root lattices Ap. Then a number of nontrivial
examples are given, among them the Leech lattice [3], some extremal lattices and a
lattice in R16 whose set of 256 lines through the minimal norm vectors forms one of
the nice tetrahedrally closed line systems of Shult and Yanushka [15].

In 2 we define the hyperbolic transform of a lattice of simplex type. It is a
generalization of a construction of Du Val [19] who studied the root system E8 in a
hyperbolic setting (see also Manin [11]). This leads to lattices of hyperbolic simplex
type, which are slightly more general than hyperbolic transforms. By forming sections
we obtain sequences of lattices, and some examples show that sections give a natural
geometric interpretation to some well-known sequences of combinatorial configur-
ations and associated permutation groups.

Section 3 partly explains the sporadic nature of the examples. We study integral
lattices of simplex type and divide them into two classes: standard and exceptional
lattices. Standard lattices turn out to be related to certain self-orthogonal codes, and
they seem to be abundant. On the other hand, if the minimal norm n is given, there
are only finitely many exceptional lattices generated by norm n vectors. The cases
n 2 and n 3 are discussed in some detail, and relations to star-closed and tetrahe-
draily-closed line systems become apparent.

1. The Euclidean normal form. We motivate our investigation with a property
of the Leech lattice, i.e., the unique even unimodular lattice A24 in R24 with minimal
norm 4 (Conway [3]). In Leech and Sloane [10], there are two constructions for the
Leech lattice. The first [10, 4.4] exhibits a set of 24 vectors in x/ A24 of shape
(-11/2, (1/2)23)mwith respect to a suitable basis--of norm 8 and mutual inner product 4,
and the second [10, 5.7] exhibits a set of 24 vectors in x/ A24 of shape (-2, ()23)__
with respect to another basis--of norm 12 and mutual inner product 3. After scaling,
this leads to vectors zl,..., z24 A24 with

(zi, z)
if #/"

and to vectors z ,..., z [4 A24 with

{4 if/=/’,
(z,z)=

1 if//’.
* Received by the editors August 26, 1981, and in revised form May 21, 1982.

" Institut fiir Angewandte Mathematik, Universitiit Freiburg, West Germany.
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We also note that any two distinct vectors of norm 4 in A24 have inner product
(x, y)_-<2. Thus A24 contains (in two essentially distinct ways) a regular simplex
consisting of 24 minimal norm vectors.

Let us say that a lattice E of dimension p _-> 2 is of strict (Euclidean) simplex type
if there are numbers n > m > 0 such that (with the inner product associated with E)"

(L1) There are vectors zl, ", zp E such that for i,/" 1, , p,

(1) (z, z.) {n if =],
ifi#].

(L2) The minimal norm is n i.e., (x, x) >- n for all x E\{0}.
(L3) If x, y are distinct norm n vectors of E then (x, y)=< m.
If only (L1) and (L2) hold we say that E is of simplex type. (Actually, we should

speak of (strict) simplex type with respect to z 1, ’, z, since, as shown above, A24 is
of simplex type in two essentially different ways. But in order to keep the language
simple we delete the reference to z 1, ’, z,.) Clearly, (L2) implies thatE is a Euclidean
lattice. Also, for #/’, the norm of zi- zj is 2n- 2m; hence (L2) implies the relation

(2) n _-> 2m.

In the extremal case n 2m, we say that E is of strong simplex type.
John Leech (private communication) observed the following geometric interpreta-

tion. A p-dimensional lattice is of simplex type if the vertex figure (the set of minimal
norm vertices) contains a set of p equidistant points forming a regular simplex. If the
lattice is of strict simplex type, this simplex forms a cell of the vertex figure. If the
lattice is of strong simplex type then the origin can be joined to give a regular
(p + 1)-simplex, a fundamental cell of the honeycomb of the lattice. In particular,
every lattice of strong simplex type is strict.

Note that a scalar multiple cE {cx[x E} of a lattice E of simplex type is again
of simplex type, with n’= c2n, m’ c2m. The quotient

n-m
(3) d=_->l

m

is independent of scaling, and hence a useful invariant. In their construction of the
Leech lattice, Leech and Sloane use a particular standard basis with respect to which
the zi take a simple form. Motivated by this, we say that a lattice E is in Euclidean
normal form if there are numbers p and such that in terms of the standard basis
al (1, 0,. ., 0)r,.. ’, a, (0, 0, , 1)T of 0, the following statements hold"

(El) E is a Euclidean lattice of dimension p.
(E2) zi Y.=l a tai E for 1,. ., p.
(E3) 0<2t<p-<t2+2t.

Condition (E2) implies that (1) holds with

(4) n =p-2t+t2, m =p-2t, d=
2

and condition (E3) guarantees that n => 2m > 0, in particular n > m > 0.
THEOREM 1.1. (i) A lattice in Euclidean normal form is of simplex type if and

only if its minimal norm is n p 2t + 2.
(ii) Every lattice of simplex type is isomorphic to a multiple of a lattice in Euclidean

normal form.
Proof. (i) This part is clear from the preceding.
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(ii) Let E be a lattice of simplex type, with parameters p, n, m and d, defined
by (3). The equation d =t2/(p-2t) has a positive solution t=-d +/d(d+p), and
(E3) holds since d _-> 1. Moreover, with c- t-l/n-m, we have n-m =cVt2=dm,
whence m c2t2d-1 c2(p 2t), n c2t2 + m c2(p 2t + t2). NOW put z Y’.’= zt.
Then (z, zi) (p 1)m + n c2(p t) and (z, z) Y. (z, zt) pc2(p t). Now it is easy
to show that the vectors a defined by

z-z i=l,...,p,a
p-t

form an orthonormal basis of R, and we have

/
(5) zi c al tai), i= 1,..., p.

--’1

If we identify a 1, , ap with the standard basis of RP (which amounts to an isomorph-
ism) we find that the lattice c-lE is in Euclidean normal form.

If E is a lattice of simplex type then the sublattice E0 generated by z 1, , zp is
also of simplex type, with the same parameters. We call Eo the trivial part of E, and
say that E is trivial if E Eo, i.e., if E is generated by zl,.. ", zo. Since every lattice
of simplex type is the refinement of a trivial lattice, it is important to determine all
trivial lattices.

THEOREM 1.2. (i) For any dimension p >-2, and any pair (m, n) with n >-2m > 0
there is a trivial lattice of strict simplex type and parameters p, n, m.

(ii) Two trivial lattices are isomorphic if and only if they have the same parameters
p, n, m.

Proof. (i) As in the proof of Theorem 1.1, find c >0 and d => 1 such that rn
c2(p- 2t), n c2(p- 2t + t:). For the standard basis (ai) of , the vectors (5) satisfy
(1); so we have to show thatE (z 1, , zo) is of strict simplex type. Now for x

2we have (x, x) i.aia(zi, z) ,i.iaiti(m + (n m)t;i) (Y. c)2m + (Y’. a )(n m).
2This implies that the z are linearly independent (x 0--> (x, x) 0-, Y. t 0--> all

a 0), hence dim E p. Moreover, if x E\{0} has norm _-< n then the t are integers
not all zero, and Y. ct/2 -< 2 since 2(n m) => n. Hence x is one of +zi, +/-(z z), +(zi + z),
where/" i. In the last case, (x, x) 4m + 2(n m) > n, in the second case (x, x)
2(n- m)> n unless n 2m when (x, x)= n, and in the first case (x, x)= n. Hence E
has minimal norm n, i.e., (L2) holds, and the vectors of minimal norm are

+zi if n >2m, +/-zi, +(zi-zi) if n 2m.

In both cases, (L3) is satisfied, whence E is of strict simplex type.
(ii) By Theorem 1.1, a trivial lattice is isomorphic to one of the lattices just

constructed.
We write T,’’ for a p-dimensional trivial lattice of simplex type with parameters

n, m. The lattices To2’1 arise in connection with extreme forms. Coxeter’s [5] extreme
form Ap is the symmetric bilinear form corresponding to the lattice Ap consisting of
all x Z+1 with xi 0. If we denote by a 1, , a+l the standard basis of 7/+ then
Ao is generated by the vectors z a- ap+l (i 1, , p) which satisfy (1) with n 2,
rn 1. Since the minimal norm of Ap is n 2, Ap is a trivial lattice of simplex type,
hence isomorphic to T’1. Note also that the vectors of minimal norm of A form a
root system and a spherical 3-design (see [2], [9]). The lattices T" arise in a
classification problem. It is not difficult to show that every two-dimensional lattice
generated by its vectors of minimal norm is either a trivial lattice of simplex type (i.e.,
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one of the Tz’" ), or a multiple of 7/2. In dimension p > 2, not every lattice generated
by its vectors of minimal norm is of simplex type; for p _-> 4, counterexamples are the
lattices Do consisting of all x 7/0 with Y. xi =0 mod 2. On the other hand, there are
lattices of simplex type not generated by their vectors of minimal norm; see Example
7 below.

Now we give some examples of nontrivial lattices of simplex type. In each case,
there is a such that the vectors of shape (1p-l, l-t) are minimal norm vectors of
the lattice; hence all examples are in Euclidean normal form (we use a 1,’’., ap as
standard basis of P). We construct examples with the parameters listed in Table 1
(- is the number of vectors of minimal norm).

TABLE

6 2 32
8 240
16 2 512
24 196,560
24 3 196,560
48 52,416,000

strict?

yes
yes
yes
yes
no
yes

2 6 2
2 8 4
4 24 8
4 32 16
6 48 12
6 72 36

C16

S256
.24
A24
P48p, P48q

Example 1. Let E consist of all vectors xiag [6 with
(i) all x are integers congruent to the same value 3’ mod 2;
(ii) the coordinate sum Y xg is divisible by 4.

The minimal norm of E is n 6; there are 32 vectors of norm 6 (forming the polytope
hT6, cf. Coxeter [5]), namely

2 6 of shape +(15, -1),

20 of shape (13 (-1)3);
they form a spherical 3-design. Moreover the corresponding set of 16 lines is the line
system C16 of Shult and Yanushka [15].

Example 2. Let E consist of all vectors xia 8 with
(i) all xi are integers congruent to the same value y rood 2;

(ii) the coordinate sum Y’. xi is congruent to 23, mod 4.
This is the lattice 2E8 defined, e.g., in Leech and Sloane [10]. The minimal norm is
8; there are 240 vectors of norm 8, namely

2 8 of shape +(17, 1),

2 x 56 of shape +(15, (-1)3),
4 x 28 of shape (+2, +2, 06);

they form the root systems E8 [2]. This root system is a tight spherical 7-design [8].
Example 3. Let E consist of all vectors Y’. xgai R6 with

(i) all xi are integers congruent to the same value y rood 2;
(ii) the set of indices for which x mod 4 takes a given value is a -set;
(iii) the coordinate sum Y’. x is congruent to 47 mod 8.

Here a -set is either , or {1,. ., 16}, or a hyperplane in an affine space AG(4, 2)
whose points are labelled 1,..., 16. (There are 30 such hyperplanes, and the -sets
form a self-orthogonal linear code with respect to the symmetric difference.) The
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minimal norm is 24; there are 512 vectors of norm 24, namely

2 16 of shape +(115, -3),

2 240 of shape +(18, 3, (- 1)7), 18 on a hyperplane.

These vectors form a spherical 5-design (Neumaier [12]). The corresponding set of
256 lines can be shown to be isomorphic to the line system 256 Of Shult and Yanushka

Example 4. Let E consist of all vectors . xai R24 with
(i) all x are integers congruent to the same value 3" mod 2;
(ii) the set of indices for which xi mod 4 takes a given value is a Cg-set;
(iii) the coordinate sum Y. x is congruent to 43, mod 8;

but this time a C-set is a subset of {1,..., 24} whose characteristic vector belongs
to the binary Golay code. This is Conway’s [3] description of the Leech lattice
x/ A24. The minimal norm of E is n 32; there are 196,560 vectors of norm 32;
they form a tight spherical 11-design [8].

Example 5. Let E consist of all vectors . xa R24 with
(i) all x are integers congruent to the same value 3, mod 2;
(ii) (x 1," , x24) mod 3 is a codeword of rg;
(iii) the coordinate sum Y. xi is congruent to 23, mod 4.

Now c is either the ternary (24, 312, 9) quadratic residue code, or the (24, 312, 9)
symmetry code; they both contain the words +(124). Hence by Leech and Sloane [10,
5.7], we get in both cases x/-i- A24, with minimal norm 48. As remarked in the

introduction, E is not of strict Leech type.
Example 6. Let E consist of all vectors Y. xa 8 with

(i) all x are integers congruent to the same value 3, mod 2;
(ii) (x 1, ", x8) mod 3 is a codeword of cg;
(iii) the coordinate sum . x is congruent to 23, mod 4;

but c is the (48, 324, 15) ternary quadratic residue code or symmetry code. By Leech
and Sloane [10, 5.7], we get the extremal lattices P48q and P48p with minimal
norm 72, and 52,416,000 minimal norm vectors, cf. also Sloane [16].

Note that in all the examples given so far, the vectors of minimal norm generate
the lattice. In the next example, the situation is different.

Example 7. Let E consist of all vectors . xa 1 with
(i) all xi are integers congruent to the same value 3, mod 3;
(ii) the coordinate sum ’. xi is divisible by 12.

The minimal norm is 18; there are 240 vectors of norm 18, namely

2 15 of shape +(114, -2),

210 of shape (3,-3,013).
But (3,-3,013) (1,-2, 113)-(-2, 1,113); hence the 240 vectors only generate the
trivial part of E, which does not contain, say, 12a 1.

We close this section with some examples whose simplest presentation is not the
Euclidean normal form.

Example 8. Let E consist of all vectors . xia 7 such that:
(i) all x are integers;
(ii) the set of indices for which x is odd is a Cg-set;

where a Cg-set is either , or the complement of a line in the Fano plane PG(2, 2)
whose points are labelled 1, 2,. ., 7 (cf. Example 19; the Cg-sets form a linear code
with respect to symmetric difference). This is the lattice x/ E7. The minimal norm
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is 4, and E contains 126 norm 4 vectors,

14 of shape (+2, 06),
24 7 of shape ((:t: 1)4, 03), zeros on a line.

The lattice is of strong simplex type with respect to the simplex consisting of the 7
vertices of shape (14 03).

Example 9. Let E consist of all vectors xai R15 such that
(i) all x are integers;

(ii) the set of indices for which xi is odd is a -set;
(iii) the coordinate sum Y’. xi is divisible by 4,

where now a -set is either , or the complement of a plane in the projective space
PG(3, 2) whose points are labelled 1, 2,..., 15 (the planes can be taken as the 15
sets {i, + 1, + 2, + 4, + 5, + 8, + 10} mod 15; the -sets again form a linear code).
This is the lattice A15 of Leech and Sloane [10, 3.4]. The minimal norm is 8, and
E contains 2,340 norm 8 vectors,

4 (125)of shape ((+2)2, 013),

15 27 of shape ((+ 1)8, 07), zeros on a plane, even times +.

The lattice is of strong simplex type with respect to the simplex consisting of the 15
vertices of shape (18, 07).

Example 10. Similarly, the lattice obtained from A32 in Leech and Sloane [10]
by equating a coordinate to zero gives a lattice of strong simplex type in R31 with
respect to the simplex whose 31 vertices are those of shape (116, 015) with zeros on
the coordinates of a hyperplane of PG(4, 2).

2. Hyperbolic transforms. Let E be a lattice in P of simplex type, with para-
meters n, m, d (n- m)/m. We adjoin to P an element w orthogonal to " and of
norm -d. In this way we get a hyperbolic space Rw. This space contains the
hyperbolic transform of E which we define as the hyperbolic lattice

H c-lEd-17]w (c /n m);

the hyperbolic transform of an individual element z E is defined as the element

-1 -1Wx =c z-d H.

PROPOSITION 2.1. LetE be a p-dimensional lattice ofsimplex type. The hyperbolic
transform H ofE has the following properties"

(M1) H contains vectors e 1, , ep such that for i, 1, , p,

(ei, w)=(ei, ei) 1, (ei, ej)=O if/1.

(M2) For all x H linearly independent from w,

(x, w)= 1 =>(x, x)-> 1.

Moreover, ifE is of strict simplex type, then H also satisfies"
(M3) If x, y are distinct vectors from the set

HI,I={x sHI(x, w)=(x,x)= 1}

then (x, y)_-<O.
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Proof. (i) The vectors ei=c-lzi-d-Xw (i=1,...,p) belong to H and
satisfy (el, w)=-d-X(w, w)= 1, (ei, ej)=c-2(zi, z)+d-2(w, w)=(n-m)-X(m +
(n-m)Si)-d-X=3i. Hence (M1) holds.

(ii) If x H\(w) and (x, w)= 1 then x c-Xz -d-lw with z E\{0}, and by (L2),
(x,x)=c-2(z,z)+d-2(w, w)>-c-2n-d-x= 1. Hence (M2) holds.

(iii) If x Hx.1 then (x, w) 1 implies that x c-Xz d-Xw with z E. Now
c-2(z,z) (x +d-Xw, x +d-Xw) (x,x)+2d-X(x, w)+d-2(w, w) l+2d-X-d-x

(n m)-Xn, hence (z, z) n. If y Hx.x is distinct from x then similarly y c-Xz ’- d-Xw
with z’ E, (z’, z’)= n, and z’ z. If E is of strict Leech type then by (L3), (x, y)=
c-2(z, z’) + d-2(w, w) <- c-2m d-x 0, whence (M3) holds, l-1

We denote by Rp’x the standard hyperbolic space, i.e., the real linear space of
dimension p + 1 equipped with the indefinite inner product

(x, y) -xoyo +xxy +" + xpy.

Let us say that a lattice H
_
R"’ is of hyperbolic simplex type with respect to w

if (w, w)=-d -< 1 and (M1) and (M2) hold; we say that H is strict if also (M3) holds.
Trivial examples of lattices of strict hyperbolic simplex type are the lattices
(e x, ", ep, d-lw), where

(6) w -x/eo + e + + ep, N >- p + 1

and eo (1; 0,. ., 0)T, ex (0; 1,..., 0)T, ", ep (0; 0,. ., 1)T is the standard
basis of .x. These lattices are just the hyperbolic transforms of trivial lattices of
simplex type, with d N-p.

THEOREM 2.2. (i) The hyperbolic transform of a lattice of (strict) simplex type is
a lattice of (strict) hyperbolic simplex type.

(ii) Let H be a lattice of (strict) hyperbolic simplex type with respect to a vector w
satisfying (w, w)= -d <--1. If d-XwH then E= w-fqH ={x Hl(x, w)=0} is a
lattice of (strict) simplex type with parameters n 1 + d-, m d-x.

Proof. Part (i) follows directly from the definition and Proposition 2.1.
(ii) The vectors zi =ei +d-Xw (i 1,. ., p) satisfy (zi, z)= (ei, e)+d-X(ei, w)/

d-X(ei, w)+d-E(w,w)=Sij+d-x, hence E satisfies (L1) with n=l+d-x m=d-x

Further, if x E\{0} then x’= x- d-Xw is in H\(w) and satisfies (x’, w)= 1, whence
by (M2), l<-(x’,x’)=(x,x)+d-2(w,w)=(x,x)-d-, and so (x,x)>-_l+d-X=n.
Hence (L2) holds. Finally, if x, y are distinct norm l+d-x vectors of E then x’=
x-d-Xw and y’=y-d-Xw are distinct vectors in Hx.x. Hence, if H is strict, 0_->

(x’, y’)= (x, y) +d-2(w, w)= (x, y)-d-x, whence (x, y)-<d- m. So (M3) holds if H
is strict.

Lattices of hyperbolic simplex type have the following obvious hereditary
property"

PROPOSITION 2.3. ffHis a (p + 1)-dimensional lattice of (strict) hyperbolic simplex
type with respect to w, then every p-dimensional sectionH" e (qH {x HI(x, ei) 0}
(i 1,..., p) is of (strict) hyperbolic simplex type with respect to wi w-e.

Note, that if (w, w)--d, then (w ", w") --d- 1. Hence the number

(7) N p + d

remains invariant under forming sections. In fact, the vector eo N-x/2 (-w / e +" +
ep) satisfies (e0, eo)--1, (eo, ei)=O for i-1,...,p; hence eo;ex,’",ep can be
identified with the standard basis of p.x. In the following, we shall do this. Then w
is given by formula (6) above.
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Remarks. 1. Even if H is a hyperbolic transform, i.e., d-lw H, then, in general,
Hi will not contain (d + 1)-lw ", and hence will not be a hyperbolic transform. In
particular, lattices of hyperbolic simplex type form a richer class than lattices of
(Euclidean) simplex type. But it can be shown that if H is a lattice of hyperbolic
simplex type with respect to w and H contains a multiple of d-w then the projection

E x-(w, w----- w x

of H onto w +/- is a Euclidean lattice satisfying (L1) and:
2> 1(L2*) If z Y. azi E then Y. ci 1 implies Y. a

Conversely, if a Euclidean lattice E satisfies (L1) and (L2*) then there is a lattice
H of hyperbolic simplex type (with respect to w) such that E is isomorphic to a
multiple of the projection of H onto w +/-.

2. If H is a lattice of hyperbolic simplex type with respect to w and if H contains
a nonzero, integral multiple of d-w, then the set HI,X is finite. Indeed, the vectors of
H,I are projected to vectors Y az w

+/- with
2

Since this equation describes a bounded domain, the projection of H,l--being a
bounded part of a Euclidean latticemis finite. But each vector of H1,1 is determined
by its projection.

3. If H is of strict hyperbolic simplex type then, by Andreev’s lemma (cf. Vinberg
[18, p. 19]), the set H1,1 determines a hyperbolic polyhedron with the property that
hyperplanes corresponding to nonadjacent faces do not intersect.

4. If H is of (strict) hyperbolic simplex type then the sublattice H’ {x HI(x, w)
integral} is also of strict hyperbolic simplex type and H, H,I. Hence the following
axiom can always be forced to hold:

(M4) For all x H, (x, w) is integral.
Note that (M4) is trivially satisfied if H is a hyperbolic transform, or if H is

generated by
Example 11. The following example, considered first by Du Val [19], is studied

extensively in Manin [11, Chapt. 4], in connection with cubic forms, and led me to
the study of hyperbolic transforms. Let e0, el,’’ ’, ep be the standard basis of
and let H 77’1 be the lattice generated by eo, el,’’ ", eo. For p-< 8, H is of strict
hyperbolic simplex type with respect to w -3e0 + e +" + e. In fact, (w, w) 9 p
-1, and (M1) is obvious. Further if x ceo-Y=l otieiEH and (x, w)= 1 then

2are integers and Y c 3c- 1. Now consider (x, x)=-ct + Y. c2. Modulo 2 we get
(x, x) -a + Y. cti 2t 1 1, whence (x, x) is odd. By the Cauchy-Schwarz inequality, ot2i >=(., oti)2/p _->(3c 1)2/8, whence 8(x, x)_-->-8t-+ (3c 1)2= ( -3)2-8->-8.

2But if (x, x) 1 then we have equality throughout, whence a 3, p 8, c Y’. c
8, which implies x =-w. Since (x, x) is an odd integer, (x, x)>-1 for x #-w, so (M2)
holds. Finally, if x e H1,1 then 1 (x, x) -> (t 3)2-1 or 3 x/_-< a -<_ 3 + V, and

2since a is an integer, -1 _-< a _-< 4. Now the equations Y’. a 3ct 1, Y’. a c + 1,
-1 -< t _-< 4 have only finitely many integral solutions which lead to the list of vectors
in H1.1, given by Manin [11, Prop. 26.1] and shown in Table 2.

From this list, (M3) is easily verified. In fact, for p 8, H 7/’1 is the hyperbolic
transform of the root lattice E8; this can be seen from the fact that both E8 (as defined
above) and E w f’)H are generated by 8 special norm 2 vectors whose mutual
inner products determine the Dynkin diagrams for E8 (i.e., the inner product of two
vectors is -1 if they are adjacent in the diagram, and 0 otherwise). See Figs. 1 and
2, and Coxeter [5].
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TABLE 2

Type of vector R3,1 R4,1 Rs,1 R6,1 7,1 8,1

el

eo-el -e2
2eo- el- e2- e3- e4- e5
3eo- 2el e2- e3- e4- e5 e6- e7
4eo 2e 2e2 2e3 e4 e5 e6 e7 e8
5eo- 2e 2e2- 2e3 2e4- 2e5- 2e6- e7- e8
6e0- 3el- 2e2- 2e3- 2e4- 2e5- 2e6- 2e7- 2e8

3 4 5 6 7
3 6 10 15 21

6 21
7

8
28
56
56
56
28
8

Total number of vectors 6 10 16 27 56 240

Automorphism group
Configuration name

D6 S5 24S5 O(2) 2Sp(6, 2)
prism to4 h35 221 321

20(2)
421

al-a2 a2-a3 a3-a4 a4-a5 as-a6 a6-a7 a7-a8

1/2(-a -a2-a3 + a, + as + a6 + a7 + a8)

FIG.

el-e2 e2-e3 ea-e4 e4-e5 es-e6 e6-e7 e7-ea

eo-el-e2-e3

FIG. 2

The sets H1.1 are related to interesting classical configurations. Their Euclidean
projections are the successive vertex figures of the honeycomb 521 (=Es), the Gosset
polytopes 421,321, 221 and the polytopes hy5 and to[4 (cf. Coxeter [5]). The sets H1,1
are also related to certain famous graphs. For p <- 6, the only occurring inner products
of distinct vectors are 0 and -1, and the graphs obtained by calling two vectors
adjacent if they have inner product -1 turn out to be the hexagon (p 3), the Peterson
graph (p 4), the Clebsch graph (p 5) and the Schlifli graph (p 6) (Seidel [13]);
the latter is related to the 27 lines on a cubic surface (Baker [1]). For p 7, the same
construction yields a graph with 56 vertices, related to the regular twograph on 28
vertices (Taylor [17]) and to the 28 bitangents of a plane quartic curve (Dickson [6]).
For p 8, H1.1 is also related to the set of 240 Cayley units (Coxeter [4]).

Example 12. Let H be the lattice generated by x/e0, e..., ep. For p <-7, H
is of strict hyperbolic simplex type with respect to w =-2x/2e0+el+... +ep. This
is proved as above and for H1.1 we get Table 3.

For p 7, we get the hyperbolic transform of the root lattice ET, using Fig. 3 as
Dynkin diagram. The Euclidean normal form for E7 would have 2x/)-1, and
does not lead to a nice description (but cf. Example 8). For p 6, we get the hyperbolic
transform of the lattice defined in Example 1. For p 4, 5, the graphs corresponding
to H1.1 are the cube and the complement of the triangular graph T(6).
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TABLE 3

Type of vector R4,1 R5,1 6,1 7,1

el

x/eo-el- e2- e3

24eo- 2e e2 e3 e4 e5 e6

3x/eo- 2el 2e2- 2e3- 2e4- es- e6- e7

4x/eo 3e 2e2- 2e3- 2e4- 2e5- 2e6- 2e7

4 5 6

4 10 20

6

7
35

42

35
7

Total number of vectors 8 15 32 126

Automorphism group 23S3 S6 25S6 2Sp(6, 2)

el-e2 e2-e3 e3-e4 e4-e5 es-e6 e6-e7

x/ eo-el-e2-e3-e4

FIG. 3

Remark. The lattice E6 is not of simplex type; cf. Theorems 3.5 and 3.6.
Example 13. Let H be the lattice generated by x/eo, el," , ep. For p -<N- 1,

H is of strict hyperbolic simplex type with respect to w =-x/eo+ e +"" + ep. The
table for H1,1 is Table 4. For p N-1, d 1, and H is also generated by w and
el,..., eo; by a remark above, H is the hyperbolic transform of the trivial lattice
T2,"1 Ap. Since Ao is a root lattice, we have again a Dynkin diagram (see Fig. 4).
For p N- 2, H is the hyperbolic transform of Z.

TABLE 4

Type of vector N-2,1 N-1,1

el N-2 N-1

/’eo-2e e2 eN-2 N-2 (N- 1)(N- 2)
2/eo- 3el 2e2 2eN- N-

Total number of vectors 2(N- 2) N(N- 1)

e2 e3 eN-3 eN-2 eN-2 eN-1

/eo-el eN-2

FIG. 4
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Example 14. Let H be the lattice consisting of all vectors ao/-eo-alel
a23e23 R23’1 such that:

(i) for -0,. ., 23, the number 2ai is integral;
(ii) the set of indices e {0,..., 23} such that ai is nonintegral is a -set;
(iii) ao +" + a23 is integral,

where : is the binary Golay code (cf. Goethals and Seidel [7], also for the numbers
quoted below). H is of strict hyperbolic simplex type with respect to w-
-3/eo+e+"" +e23, and H. (resp. their sections) contain the vectors listed in
Table 5.

Example 15. Let H be the hyperbolic transform of the Leech lattice A24. From
the work of Conway [3], it can be shown that the table for H.I and its sections is
Table 6.

Example 16. Similarly, Shult and Yanushka’s calculations [15] for their line
system 8256 imply that the hyperbolic transform of the lattice constructed in Example
3 has Table 7 as table for Hi,1.

Remark. The projections of the sets H1,1 given in the examples form interesting
spherical t-designs; cf. Delsarte, Goethals and Seidel [8].

TABLE 5

Type of vector 119.1 [20,1 [21,1 [22,1 [123.1

el 19 20 21 22 23

.x/_3e0-(el +.. "+eT) 52 80 120 176 253
x/3eo-(e +" +el6) 5 21 77 253
x/eo -el --(e2+""" +e23) 23

Total number of vectors 72 105 162 275 2. 276

Automorphism group ? L3(4) U4(3) McL 2 Con. 3

TABLE 6

R21,1 R22,1 23,1 R24,1

Total number of vectors 336 891 4,600 196,560

Automorphism group 29L3(4) U6(2) 2 Con. 2 Con. 0

TABLE 7

14,1 15,1 R16,1

Total number of vectors 56 135 512

Automorphism group 23L3(2)? Sp(6, 2) 2a+lSp(6, 2)

3. Integral lattices of simplex type. In this section we classify the integral lattices
of simplex type into standard and exceptional lattices. The aim is to determine all
integral lattices of simplex type; but we are very far from achieving this.

For (m, n)= 1, we relate the standard lattices of simplex type to certain linear
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self-orthogonal codes. From this it appears that standard lattices of simplex type are
very abundant. On the other hand, restricting ourselves to integral lattices generated
by their minimal norm vectors, we are able to show that for given minimal norm n
there are only finitely many such exceptional lattices. For n- 2 and n 3 we push
the analysis further, and find close relations to star-closed and tetrahedrally-closed
line systems (Cameron et al. [2]. Shult, Yanushka [15]).

Let E be an integral lattice of simplex type with (integral) parameters n, m. We
call E standard if (n-m)E is contained in the trivial part Eo of E, and exceptional
otherwise. Note that this definition is no longer scaling invariant. In particular, a
suitable multiple cE of any integral lattice E of simplex type is always standard (take,
e.g., for c the discriminant of E). We also mention that an exceptional lattice of
simplex type contains a unique maximal standard sublattice, namely E’-
(x El(n m )x Eo).

We treat the standard case first. If n-m 1 then E must be trivial. But since
n, rn are integers with n => 2m > 0, this happens only for n 2. In particular, we have:

PROPOS:rON 3.1. A standard integral lattice of simplex type with minimal norm
2 is isomorphic to some Ap.

If n-m => 2 then let us define a code C over the integers mod n- m, consisting
of those p-tuples (/ 1, ,/p) mod n rn such that

1
(8) x Y./3z, / integral

n-m

is in E. Since E is standard and z, , z, E, this code describes E completely.
PROPOSITION 3.2. C is a linear code. Moreover, if (m, n)= 1 then C is self-

orthogonal, and orthogonal to (1, , 1).
Proof. If fl (/x, .,/p), /’= (/, .,/p) C, and if x (as in (8)) and x’=

(n -m)-/z are corresponding vectors of E then/ +/’= (/ +/,..., tip +)
is the codeword belonging to x + x’. Hence C is linear. Since z E, the inner product

1 m

is integral, say, =a +, and we have

n-m
(9) Bl a, a integral.

m

If (m, n)= 1, (9) implies 0 mod n-m, whence C is orthogonal to (1,..., 1).
Finally, if x and x’ are as above then their inner product is given by

m 1
(lO) (x,x’)=

(n -m n -m

Now (x, x’) is integral, and for (m, n) 1, the first term on the right-hand side of (10)
is integral. Hence the second term is also integral, i.e., fll 0 mod n- m, and C
is self-orthogonal.

We are now ready to describe all standard integral lattices of simplex type with
minimal norm 3.

THEOREM 3.3. The standard integral lattices of simplex type with minimal norm
3 are lust the lattices E consisting of all vectors (flz +... + ozp) with integers B such
that (,. ) mod 2 is in a given binary even self-orthogonal code C of minimum
weight at least 6. Such a lattice is generated by its norm 3 vectors if and only if C is
generated by its words of weight 6.
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Proof. Since n _->2m >0 and m is integral we have n =3, m 1. Since E is
standard, Proposition 3.2 implies that E consists of all vectors x
with /=(/l,...,/3,)mod2C, where C is binary (n-m=2), even (here=
orthogonal to (1,..., 1)), and self-orthogonal. Clearly any such lattice L contains
z1,’", z,, and it is easy to see from (10) that L is an integral lattice. So the only
question is whether E contains vectors of norm smaller than n 3. Now x has norm
tz 1/4(Y/3)2 + 1/2(Y/3). A straightforward calculation shows that
is of type +/- (12, 0,-2), (1, 1, 0"-) or (12, 12, 0,-4). Hence E has minimal norm 3
(and is of simplex type) if and only if C has minimal weight _->6. Finally, 3 if and
only if/3 is of type (2, 0"-1) or (13, -13, 0-6); two other possibilities +/-(13, -1, 0"-4)
and +(12, -2, 0"-3) cannot occur if C has minimal weight _->6. Hence E is generated
by norm 3 vectors if and only if C is generated by words of weight 6. I-1

Example 17. Let p=6, C={(06),(16)}. This gives us again the lattice of
Example 1.

Example 18. Replace in the Pasch configuration shown in Fig. 5 each point by
two, and let C be the code of length 12 generated by the characteristic vectors of the
resulting 4 sets of size 6. The corresponding lattice is of simplex type, has dimension
12, and contains 104 norm 3 vectors, namely

2 x 12 from fli +(2, 0),
20 x 4 from/3i (13, -13, 06).

FIG. 5

Example 19. In the same way, the Fan. plane in Fig. 6 gives a 14-dimensional
lattice of simplex type with 2 x 14 + 20 x 7 168 minimal norm vectors.

Example 20. Let c be the code generated by the 16 characteristic vectors of
sets of the shape shown in the 4 x 4-grid in Fig. 7 (this is a well-known biplane). The
corresponding 16-dimensional lattice is of simplex type and there are 2 x 16 + 20 x 16
352 minimal norm vectors.

FIG. 7FIG. 6

Now let us consider exceptional integral lattices of simplex type.
THEOREM 3.4. For given minimal norm n, there are only finitely many exceptional

integral lattices of simplex type generated by norm n vectors.

Proof. Suppose that E is exceptional, and generated by norm n vectors. Then
there is a norm n vector x E such that (n-m)x (z ,..., z,). Put

1
(11) x E Ol.IZl,

n-m
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Then

m
(12) (x, zi) E Oil +Oli ’,

1m
)------(X ,,)+(Xa) n.(13) (x’x)=(n -m n-m

Now not all ci are integral, hence (12) implies that

(14) my,. c a + e, t integral, 0 < e < 1.
n-m

From this, we get

(15) ci Bi e, Bi integral.

Substituting (15) into (14) and (13) gives, after some simplification,

(16) ’,Bt l--{a(n -m)+e(n +re(p- 1))},
m

(17) Z fl(/ 1) n (n m -l{a (or + 1)(n m + e (1 e )(n + m (p 1))}.
m

Now the left-hand side of (17) is a nonnegative integer, and a(a + 1)(n-m)_>0.
Hence we find

(,) e(1-e)(n +m(p- 1)) is an integer <- mn (n -m)<n 3.
Also, (16) implies that e is rational, hence e u/v with coprime integers u, v and
0<u<v since 0<e<l. Now (*) implies that n+m(p-1)=v2w with an integer
w > 0, and the resulting inequality is u (v -u)w < n 3. Since u, v -u and w are positive
integers, this leaves only finitely many choices for u, v and w. Also m is bounded by
0 < m <-n/2. Hence p takes only finitely many values. So the theorem is proved if we
show that for given m, n, p there are only finitely many integral lattices of simplex
type with these parameters. But, in fact, m, n, p determine a unique trivial lattice of
simplex type T,", and any integral lattice has only finitely many integral refinements.
Since every lattice of simplex type is a refinement of its trivial part, the proof is
completed. E

Remark. If d =(n-m)/m is integral then (16), (17)can be written as

(16’)

(17’)

Y’./t- da e (p + d),

2

Since the left-hand side is a nonnegative integer and d(d + 1) is even, we have

(**) e(1-e)(p +d) is an even integer <- m2d(d + 1).

Proceeding as before, we find that e u/v, p +d v2w where u, v, w are positive
integers such that u < v and u (v-u)w is an even integer <=m2d(d + 1). We shall use
equations (16’) and (17’) to determine the exceptional integral lattices of simplex type
with n 2.

THEOREM 3.5. The only exceptional integral lattices of simplex type with minimal
norm 2 are the root lattices E7 (Zl, Z7, 1/2(Z1 +’ + Z7) in 7 and Es
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(z, ", z8, ](z +" + zs)) in Rs; here

(Zi, Zi) {2 if =],
1 ifi].

Proof. We have n 2, m 1, hence d 1. The numbers u, v, w of the remark
above must satisfy u(v-u)w=2, leaving (u, v, w (1, 2, 2), (1,3,1) or (2,3, 1).
Hence eitherp 7, e orp 8, e {, 32-}. To find the exceptional vectors it is sufficient
to solve (1 6’), (17’) for a -> 0 (otherwise replace x by -x). For p 7, (1 6’) and (17’)
hold if and only if a 0,/3 (14, 03), or equivalently if and only if ai =1/2(14, (-1)3);
hence the shape of exceptional norm 2 vectors is +(z + z2 + za + z4-zs-z6-z7).
Each such vector with z,..., z7 generates E7; therefore E7_E. Similarly, for p 8
we find a 0,/ (13, 05) or (16, 02), whence ai 1/2(23, (-1)s) or 1/2(16, (-2)2). Therefore
the shape of an exceptional vector is +1/2(2zl+2z2+2za-z4-zs-z6-z7-zs) or
"+" ](Z "" Z2 -[- Z3 -" Z4 -[- Z5 "" Z6-- 2Z7-- 2Z8), and E8

_
E. Now any vector of integral norm

in g7 (resp. R8) which has integral inner product with all vectors of E7 (resp. E8) is
itself in E7 (resp. Ea); this can be shown in a similar way as we found the norm 2
vectors. Hence E -E7 or E E8.

Proposition 3.1 and Theorem 3.5 are related to the following theorem which is
implicitly in Cameron, et al. [2].

THEOREM 3.6 (Cameron, Goethals, Seidel, Shult). An integral lattice generated
by norm 2 vectors is isomorphic to one of the root lattices Ao ={x 7/’+1[Y. Xi "-0},

x-ZD={xZlY.xeven}, Es=As+1/27/(16,(-2)3), E7=A7+2 (14,--14), or E6-
E7 (06, 12) +/-.

Proof. Any two norm 2 vectors x, y (y +x) have inner product {0, + 1}, whence
the corresponding set S of lines has angles 60 or 90. Since (x, y)=-1 implies that
z --x-y also has norm 2, S is star-closed in the sense of Cameron et al. [2]. Hence
by [2, Thin. 3.5], the norm 2 vectors generate one of the lattices mentioned.

For minimal norm 3, we give only a partial result"
THEOREM 3.7. An exceptional integral lattice of simplex type with minimal norm

3, generated by norm 3 vectors, can exist only in dimensions 6, 7, 14, 16, 22, 23, 25,
30 or 47.

Proof. We have n 3, m 1, d 2, and (**) requires that e(1-e)(p + 2) be an
even integer -<_6. With e rational, 0< e < 1, this leaves the values in Table 8 for p
and e:

TABLE 8

p 6 7 14 16 22 23 25 30 47

1 12 _1 12 _1 1234 _12 13 16
8 3 3 5 5 5 3 4 4 7

Remark. Let E be an arbitrary integral lattice of minimal norm 3. If x, y E
have norm 3, y +/-x then (x, y)2 < (x, x)(y, y) 9, whence -2 _-< (x, y) _-< 2. But if
(x, y) +/-2 then (x : y, x w y 3 2 2 + 3 2, a contradiction. Hence (x, y) {0, +/- 1},
and the set of norm 3 vectors of E form a set E of vectors of type {0, 1/2} in the sense
of Shult and Yanushka [15]. Moreover, if x, y, z are norm 3 vectors with (x, y) (x, z)
(y, z) 1 then w -x y z has also norm 3, and (x, w) (y, w) (z, w) 1.
Hence E is tetrahedrally-closed.
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This explains the occurrence of some of Shult and Yanushka’s line systems in
the present context. In fact, at least four of their examples occur" C16 (p 6; Example
1), C28 (case p 7 of Example 11; projection to w+/-), S256 (p 16; Example 3) and
a system of 2300 lines (case p 23 of Example 15; projection to w). In fact, the
last three examples come from exceptional lattices.

Acknowledgments. I am indebted to Prof. J. Seidel who interested me in the
relations between combinatorial configurations and hyperbolic spaces. I recall with
pleasure the discussions I have had with him on this subject. Further thanks go to
John Leech and the referee for useful comments.
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GENERATING NONISOMORPHIC MAPS WITHOUT STORING THEM*
T. R. WALSHt

Abstract. In 1964, A. B. Lehman found a code for rooted planar maps which he later generalized to
rooted maps of arbitrary orientable genus. By generating all the code words of a given length and keeping
only those which are maximal, with respect to a predefined linear order on the set of code words, among
all those coding different footings of the same map, one can generate nonisomorphic maps of a given genus
with a given number of edges. The necessary algorithms are described, along with a brief discussion of the
generation of planar maps which have certain prescribed properties, such as 2-connectedness.

Introduction. Since Edmonds [6] reduced maps of orientable surfaces to com-
binatorial objects, it has been possible to store maps in a computer and to decide
quickly whether two maps are isomorphic [9], and thus to generate by computer
exactly one representative from each isomorphism class of maps satisfying a given set
of conditions (such as planarity or 3-connectedness). If one can somehow produce at
least one representative from each isomorphism class of such maps, one can store
exactly one representative from each class (if they fit in the memory!) by storing each
new map as it is generated if and only if it is not isomorphic to any of the maps
already stored. Tutte described such a scheme for generating 3-connected planar maps
[20, p. 454], and Duijvestijn thus generated all the nonisomorphic 3-connected planar
maps with up to 22 edges in order to investigate squared squares [5]. A similar scheme
for generating 0-, 1-, 2- and 3- connected planar graphs appears in [12].

Here we present a method for generating nonisomorphic maps without having
to store them. We apply to maps an idea used by Faradzhev [7], and independently
by Read [17], to generate nonisomorphic graphs. Like Heap [8], who generated the
8-vertex graphs, and Baker et al. [2], who generated the 9-vertex graphs, Faradzhev
and Read defined a linear order on the set of n n 0-1 matrices, which code
vertex-labelled graphs, and chose the largest matrix from among those which code
the same graphs but with different labellings--the canonical matrix for that graph.
But whereas Heap and Baker converted each matrix into the canonical matrix for the
same graph and then compared it with the canonical matrices already stored, Faradzhev
and Read tested each matrix to see if it were already canonical, and thus avoided
storing any matrices. We apply that idea of "testing for canonicity" to A. B. Lehman’s
code for rooted maps [13]: we generate all the code words which satisfy a given set
of conditions and throw away all those words which can be made "bigger" by coding
the same map but with a different rooting. In this waywe have generated nonisomorphic
maps with a given number of vertices, edges and faces, and also several sets of
nonisomorphic planar maps, including 2-connected maps and 1- and 2-connected
plane graphs.

The first section of this article describes Lehman’s code and some of its properties
and presents an O(m 2) algorithm which uses this code to construct the multiplication
table for the automorphism group of an m-edge map of arbitrary orientable genus.
The basic scheme for generating nonisomorphic maps is presented in 2 and applied
to maps of arbitrary orientable genus in 3 and to planar maps with certain prescribed
properties in 4. Table 1 gives the number of nonisomorphic maps of genus g with
rn _-< 6 edges and n-< m + 1 vertices. Table 3 gives the types of planar maps whose

* Received by the editors June 20, 1980, and in revised form June 1, 1982.
t Department of Computer Science, University of Western Ontario, London, Ontario, Canada N6A

5B9.
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generation we have programmed and Table 4 gives the number of nonisomorphic
maps of each type for small m. Two definitions of isomorphism are considered: one
in which an isomorphism is assumed to preserve the orientation of the imbedding
surface, and one without this restriction. The computations were done on the BESM-6
computer in the Computing Centre of the U.S.S.R. Academy of Sciences in Moscow,
which executes 106 operations/second. The average time taken to do the computations
described here are given in Tables 2 and 3.

1. Lehman’s code for rooted maps. Edmonds’ theorem can be worded as follows:
PRO’OSITION 1 [6]. For every connected graph G (loops and multiple edges

allowed), and for every cyclic order of the edge-ends incident on each vertex, there is a
topologically unique 2-cell imbedding ofG in an oriented surface such that the clockwise
order of the edge-ends around each vertex are as specified.

A. Jacques ([11], [4, p. 13]) and Lehman ([13], [24, p. 193]) independently defined
a map as an object which is essentially a connected graph with a cyclic order defined
on the edge-ends at each vertex, and the definition we give is a hybrid of their
definitions. Let X be a finite set of darts, let r be a permutation on X, and let a be
a fixed-point-free involution on X. This defines a graph whose edges are the cycles
of a and whose vertices are the cycles of r. An edge e and a vertex v are incident if
they have at least one common dart d, so that d can be regarded as an end of the
edge e incident to v, and o- imposes a cyclic order on the edge-ends incident to v. If
the group generated by r and a is transitive on X, so that the graph is connected,
then the triplet (X, or, a) is called a map. In agreement (up to conjugacy) with
Edmonds’s scheme, the dual of (X, r, a) is the map (X, ra, a) (where permutations
are multiplied from right to left), and so the faces of (X, or, a) are the cycles of the
permutation ra. If a map has n vertices, m edges and f faces, then its genus g is
defined by the Euler-Poincar6 formula

(1) n-m+f=2(1-g).

A planar map is a map of genus 0.
An isomorphism from (X, o-, a) onto (X’, r’, a’) is essentially a graph isomorphism

which preserves cyclic order. More precisely, it is a 1-1 correspondence b :X X’
such that for all d in X, b (r(d)) r’(b (d)) and 4 (a (d)) a’(b (d)), so that an
automorphism of (X, r, a) is a permutation on X which commutes with o, and a. An
isomorphism is the combinatorial equivalent of an orientation-preserving homeo-
morphism between two maps on oriented surfaces. The equivalent of an orientation-
reversing homeomorphism is a reflection: an isomorphism from (X, r, a) onto
(X,, ,-, ,).

A rooted map (X, r, a, d) is a map (X, o,, a) with a distinguished dart d, its root.
It is easy to prove either topologically [21, p. 252], [3, p. 16] or combinatorially [24,
p. 208]:

PROPOSITION 2. Every automorphism of a map except the trivial automorphism is
fixed-point-free.

So if an isomorphism from a rooted map (X,r,a,d) onto another one
(X’, r’, a’, d’) is defined as an isomorphism 4 from (X, r, a) onto (X’, r’, a’) such
that 4(d)= d’, then a rooted map has only the trivial automorphsim. This makes it
possible to code nonisomorphic rooted maps without considering their symmetries.
Lehma [13] and R. Cori [4] each found codes for rooted planar maps. Either code
could be used to generate planar maps (indeed, some of the same results have been
obtained with both codes, such as the enumeration of various classes of planar
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maps--see [4], [25] and [26]) and Cori’s code has been published, but we used
Lehman’s code because it is simpler and has been generalized to nonplanar maps.
Lehman’s code was described in 14, p. 83], and his generalization to rooted maps of
arbitrary genus appears in [13] and [22, p. 92], but since [4] is in French and neither
[13] (notes for a graduate course) nor [22] (a Ph.D. thesis) has been published, we
summarize the results here.

Lehman’s code is a generalization of the classical code for rooted plane trees in
terms of parenthesis systems. Aparenthesis system on ppairs is a wordp s
consisting of p left parentheses and p right parentheses such that the function E(i),
defined as the number of left parentheses minus the number of right parentheses
among the first symbols, is nonnegative for all 1, 2,..., 2p. The mate to a left
parenthesis si is the right parenthesis st, where/" is the smallest integer greater than
such that E([)=E(i)-I. The mate to st is si, and s and st together constitute a
parenthesis pair. Define the rooted plane tree lr(P)= (X, or, a, dl) with p edges as
follows:

X ={dl, d, , dz,}, and for 1, 2,. , 2p,

(2) a (d) dr, where st is the mate to s, and

o’a(di) bi+l, where bp+l means bl.

The parenthesis system P is the usual code for lr(P).
An integer system on c pairs is a word I s l, s,..., szc consisting of 2 copies

each of the integers 1, 2,..., c such that the first occurrences come in increasing
order: if s st, </’, sk Sh, k < h, and si < sk, then < k. The mate to each symbol is
the other copy of the same integer. Define the rooted map l(I)= (X, r, a, dl) with c
edges and 1 vertex as follows:

X {dl, d.,.. , dc}, and for all 1, 2,. ., 2c,

(3) a (d) dr, where st is the mate to si, and

r(di) di/l, where d.c/l means

The genus of (X, r, a) is given by (1), where n 1, m c, and f is the number of
cycles of o-a, and the genus of ! is defined to be the genus of l(I).

A parenthesis-integer system on m pairs is a word S s1," ", sz, constructed by
merging a parenthesis system P on p pairs with an integer system I on c m -p pairs.
Define I(S) to be the rooted map (M, dl) (X, r, a, dl) with m edges andp + 1 vertices,
where

X {dl, d2, d2m}, and for all 1, 2, , 2m,

a (d) dr, where st is the mate to s, and
(4)

tr(di) if si is an integer,
di+l (dzm+l dl)

[tra (di) if si is a parenthesis,

and let T(S) be the spanning tree of M whose edges are the cycles (d, dr) of a such
that (si, st) is a parenthesis pair. Then Ir(P) (T(’), di), where si is the first parenthesis
in S, and l(I) is the rooted 1-vertex map (M/T(S), dl) formed by contracting the
edges of T(S) and shifting the root to dr, where st is the first integer in $. The genus
of S is defined to be the genus of the (rooted) map lr(S). It is easy to show that $ and
I have the same genus: removing a parenthesis pair (s, st) from $ merely deletes the
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darts d and di from the cycle(s) of o,a containing them, so that M and M/T(S) have
the same number of faces and thus the same genus.

Lehman has shown that for every rooted map (M, d) and for every spanning
tree T of M there exists a unique parenthesis-integer system S such that l(S) is
isomorphic to (M,d) and T= T(S) ([13], [22, p. 93]). To find a unique system
S l- (M, dr) which codes (M, d) (with no spanning tree) it is necessary to choose
a canonical spanning tree. He chose the spanning tree T(M, d) constructed by
executing a depth-first search [18, p. 147] of M starting with the vertex containing
dr, with the darts in each vertex explored in an order determined by r and by the
dart of entry to the vertex. The system S l- (X, r, a, dr), which we call the Lehman
code for (X, or, a, d), is constructed during the search, one symbol for each new dart
reached. His coding algorithm, a modification of the Tr6maux-Tarry maze algorithm
[19], is given as Algorithm 1 in Fig. 1. When l(S) is constructed according to (4), the
darts are renumbered d, dz, ., d,, in the order in which Algorithm I reaches them,
and this renumbering defines the ismorphism taking (M, d) onto l(S).

For example, suppose

X {1, 2, , 12}, o- (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)

ALGORITHM 1. Coding the rooted map (X, tr, a, r) with m edges
BEGIN {Algorithm 1}
d r; {d is the current dart}
mark the vertex containing d; it has now been reached}
k 0; {k counts the fronds}
FOR 1 to 2.m DO BEGIN {for i}

IF the edge e containing d is unmarked THEN BEGIN {outer then} {e has not yet been explored}
IF the vertex containing a (d) is marked THEN BEGIN {inner then}
{the vertex at the other end of e has already been reached}
k-k+l;
mark e with k; {this excludes e from the canonical tree}
sik;
d tr(d)

END {inner then}
ELSE BEGIN {inner else}
{the vertex at the other end of e has not yet been reached}
mark e with -1 (or a heavy line); {to include e in the tree}
s - left parenthesis;
d ra (d);
mark the vertex containing d {it has now been reached}

END {inner else}
END {outer then}
ELSE IF e is marked with a positive integer THEN BEGIN {else if}
{e has already been excluded from the tree and numbered/’}
si];
d tr(d)

END {else if}
ELSE BEGIN {outer else}
{e has already been included in the tree}
s right parenthesis;
d ira (d)

END {outer else}
END {for i}

END. {Algorithm 1}

FIG. 1
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and

a (1, 7)(2, 6)(3, 11)(4, 10)(5, 9)(8, 12).

Then trc (1, 8, 10, 5, 7, 2, 4, 11)(3, 12, 9, 6); so n =4, m =6,/e= 2 and g 1. If dart
8 is the root, then T ={(8, 12), (10, 4), (6, 2)} and S ((1(23))2)13. A drawing of this
map, with its root represented by an arrow and its tree-edges drawn in heavy lines,
and with the torus represented by a square whose opposite sides are identified in
pairs, is shown in Fig. 2a. In this drawing tr is represented by counterclockwise
rotation. The darts are reached in the order (8, 10, 5, 6, 3, 1, 2, 4, 11, 12, 9, 7). Renum-
bering the darts so that dart 8 is called 1, dart 10 is called 2, etc., yields lr(S) (see
Fig. 2b).

7 12

a b c

s= (((3)))m

FIG. 2

We summarize the foregoing in
PROPOSITION 3. Two rooted maps (X, tr, a, dl) and (X’, tr’, a’, d’ are isomorthic

if and only if they have the same Lehman code. I1 they are isomorphic, then the unique
isomorphism 4"X X’ takes di onto d l, where the bits o] X and X’ are numbered in
the order in which they are reached during the execution ojCAlgorithm 1 or, equivalently,
according to formula (4).

A parenthesis-integer system $ is called correct if it has no subword i(i), whose
integers form a pair and whose parentheses form a pair, but whose symbols are not
necessarily adjacent in $. A proof of the following theorem, also due to Lehman, can
be found in [22, p. 98].

PROPOSITION 4. A parenthesis-integer system is constructed by Algorithm 1 as the
code for some rooted map if and only if it is correct.

In terms of the canonical spanning tree T, this means that if a frond e--that is,
an edge not in T--joins two distinct vertices u and v, then one of these, say v, lies
on the path in T from u to the root-vertex of T (this was proved in [18, p. 148] for
a graph with a depth-first-search spanning tree), and that if dl, d2, and d3 are the
darts in v such that d3 is in e and dx and d2 are on the path, with dx on the edge
closer to the root-vertex (if v is the root-vertex, make d the root of T) then cr

restricted to these three darts is (d, d2, d3).
By Propositions 3 and 4, lr is a 1-1 correspondence from L(g, p, c) onto K(g, p, c),

where L(g, p, c) is the set of correct parenthesis-integer systems of genus g with p
parenthesis pairs and c integer pairs, and K(g, p, c) is the set of (isomorphism classes
of) rooted genus-g maps with p + 1 vertices and p + c edges.
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A rooted planar 1-vertex map is the dual of a rooted plane tree, and so can be
coded by a parenthesis system, composed of square brackets to distinguish it from
the code for a rooted plane tree. The previous discussion can thus be specialized to
rooted planar maps. Rooted planar maps with distinguished spanning trees are coded
by parenthesis-bracket systems, constructed by merging two parenthesis systems, one
made of parentheses and the other of brackets, and rooted planar maps are coded by
correct parenthesis-bracket systems in which there are no subwords [(]) composed of
two pairs. Algorithm 1 can be adapted to code rooted planar maps by initializing k
to 1 and keeping it fixed (deleting the line "k k + 1"), and changing the line "s k"
to "s - left bracket" and the line "s -/"’ to "s right bracket".

It should now be easier to read [25] and [26], where this code was used to count
rooted maps by genus.

Proposition 3 leads to the following test for isomorphism between two maps.
PROPOSITION 5. Given two maps (X, t, a) and (X’, tr’, a’), fix one dart d in X.

Then (X, tr, a) is isomorphic to (X’, tr’, a’) if and only if there exists a dart d’ in X’
such that the rooted maps (X, tr, a, d) and (X’, tr’, a’, d’) have the same Lehman code.

Since Algorithm 1 can be executed in O(m) operations, this test can be done in
O(m2). Better algorithms have been found for planar maps [9] since Lehman obtained
his code, but for nonplanar maps this is the only isomorphism test of which we are
aware.

Similarly, the number of automorphisms of the map (X, tr, a) is equal to the
number of darts d’ in X for which l-1 (X, or, a, d’) l-1 (X, tr, a, d) for a fixed d in X.
The automorphisms of a map can be counted in O(m2), and without increasing the
complexity by more than a multiplicative constant, one can construct the multiplication
table for its automorphism group. Given a map M (X, tr, a), fix a dart d in X, find
S S1, S2, S2m l; (X, r, a, dl) using Algorithm 1, and order the darts of X
accordingly. For every dart d such that l;(X, , a, d)- $, let ag.. be the number k
such that dk is the flh dart reached during the coding of (X, tr, a, d). Then by Proposition
3, the automorphism $ taking dx into d takes di into dk. So if an automorphism $.
taking dx into di exists, then Sg$i(d)= $1(di)= dk and so, by Proposition 2, $4 Sk.
The matrix (a..), restricted to those columns ] for which an automorphism $i exists,
is a multiplication table for the automorphism group of M.

In our example, S has already been found and the darts renumbered as in Fig.
2b. Continuing the above procedure, we find that

(5) (a,.)

1 2 3 4 5 6 7 8 9 10 11 12
3 12 7 5 10 2 9 6 1 11 4 8
7 8 9 10 11 12 1 2 3 4 5 6
9 6 1 11 4 8 3 12 7 5 10 2

Restricting (ai.j) to the columns beginning with 1, 3, 7 and 9 we get the required
multiplication table.

To see if (X, tr, a) has a reflection onto itself, we first construct (X, tr-, a) (Fig.
2c) and apply Proposition 5. In our example, l-I(X, r-, a, 4)=8 so there is a
reflection b-4 which takes dart 1 into dart 4, and in the process of coding, the darts
are reached in the order

(6) (4, 6, 11, 1,9,2, 10, 12,5, 7,3,8).

We can now write the multiplication table for the group of automorphisms and



GENERATING NONISOMORPHIC MAPS WITHOUT STORING THEM 167

reflections’

(7)

1 3 7 9 -4 -11 -10 -5

3 7 9 1 -5 -4 -11 -10

7 9 1 3 -10 -5 -4 -11

9 1 3 7 -11 -10 -5 -4

-4 -11 -10 -5 1 3 7 9

-11 -10 -5 -4 9 1 3 7

-10 -5 -4 -11 7 9 1 3

-5 -4 -11 -10 3 7 9 1

where reflections are represented by negative numbers to avoid possible duplication
of entries. The numbers 4, 11, 10 and 5 in the first row of (7) are the 1st, 3rd, 7th
and 9th entries of (6), since they represent the reflections b-441, t-at3, -4t7 and
t-4t9. The first five rows of (7) are (5) and (6) restricted to columns 1, 3, 7, 9, 4, 11,
10, 5, with appropriate sign changes. The remaining rows can be filled in using the
associative law; for example a_11,7=t_llt7(1)=(t_4t3)t7(1)-t_4(t3t7)(1)
b-4q9(1) t-4(9) --5.

2. Generating nonisomorlhie maps. We present some algorithms for generating
K (g, p, c), the set of nonismorphic maps (or, more precisely, a set of nonisomorphic
maps which includes one representative from each isomorphism class of maps) of
genus g with p + 1 vertices and p + c edges.

Let M (X, tr, a) be a map in K (g, p, c) and consider the set of rooted maps
(M, d), d X, and their Lehman codes l-1 (M, d). In general, M will give rise to
several code words, one for each isomorphism class of rooted maps (M, d). To get a
unique code word for M, we impose a linear order (defined later) on the set L(g, p, c)
(of correct genus-g parenthesis-integer systems on p parenthesis pairs and c integer
pairs) and define the canonical code l-(M) forM to be the largest code word derived
from M by choosing some root d and coding the rooted map (M, d).

Now suppose we generate the whole set L(g, p, c) exactly once (an algorithm
which does this will be presented in 3). We will generate every code word to which
M gives rise, and in particular, we are sure to generate l-(M), so we can safely throw
away all the other code words for M and keep only 1-(M), and in this way we
generate M exactly once.

Having generated a system S, we decode it to get the rooted map/r(S) (M, d)
which S codes, and then we test to see if S is the canonical code for M (X, r, a).
For every dart d’ in X, we use Algorithm 1 to construct the system S’= l- (M, d’).
If ever we construct a code word S’ which is larger than S, we know (without trying
any more darts) that S is not canonical and we throw S away; if we exhaust every
dart d’ in X without ever constructing a code word $’ larger than $, then we know
that S is canonical and we count M.

The linear order we chose for L(g, p, c) is lexicographical, with )=0, (= 1, and
each integer increased by 1. The set Lo(p, c) of correct parenthesis-bracket systems
is also ordered lexicographically, putting )= 0, (= 1, 2, 3. The advantage of a
lexicographical order is that it will often be unnecessary to construct the whole system
S’ in order to decide if S’ is greater than $. As soon as the ith symbol s’iin S’ is
found, it is compared with the ith symbol si in S. If s > s, then S’> $ and so $ is not
canonical. If s < s, then S’< S, and again the construction of S’ can be stopped. Only
if s’i s do we need to construct the next symbol of S’ unless 2m, and in this case
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S’-$ and we have found an automorphism of M. If S is canonical, we find all the
automorphisms of M.
We leave it to the reader to write a description of the above nonisomorphic

map-generation algorithms in GOTO-free pseudo-Pascal. Suffice it to say that the
worst-case estimate for the number of comparisons required to test a word with 2m
symbols for canonicity is 4m 2, assuming that every dart d’ is tried and that every
symbol of S’ is constructed. Then since every map with 2m edges will give rise to at
most 2m code words, its generation requires at most 8m 3 comparisons, and in general
O(m 3) operations since testing systems for canonicity is much slower than generating
them. The following average-case time estimate seems to correspond more closely
than the pessimistic worst-case estimates with the time-trials we conducted. Assume
that M has only the trivial automorphismthis is true for almost all mapsso that
as the darts d,d2,... ,dE,n are used as roots, the corresponding code words
$, $2," ", $2, are all distinct. Assume also that every linear order of these code
words is equally likely, and that we stop at S if $ > Sx. It is easy to show that the
expected value of is not 2m but ln(m)/O(1), so that the average time to test S is
O(m In m) and the average time to generate M is O(m 2 Inm).

For planar maps the partitioning algorithm of [9, p. 329] can be modified to a
canonicity test for a rooted planar map (X, or, a, d). If d is not placed in the first block
B (1) according to the degrees of the vertices and the faces containing d and a (d), or
if d is ever moved out of B(1), then (X, or, a, d) is not canonical; if the algorithm
terminates with d still in B (1), then (X, or, a, d) is defined to be canonical. Care must
be taken that the order in which the darts are moved and the blocks into which they
are put does not depend on their names. So in line H all the darts d f(e, D), e B (i),
are placed in MOVE in such a way that if d B (j) and dE ( B (i2) with/’ (i2, then
d comes before d2 in MOVE (this can be arranged using a bucket sort [1, p. 77]).
Since all the darts in a given block will be moved in a body, their order in MOVE is
irrelevant. If the algorithm terminates and declares (X, tr, a, d) to be canonical, it still
runs in O(m log m); if not, it finishes "prematurely", so the average-case time estimate
may be less. However, see Table 2.

Suppose we want to generate nonisomorphic maps no two of which are related
by a reflection. Once a word S has been generated and found to be the canonical
code for M (X, or, a), we construct M- (X, cr-, a), the reflection of M, and test
every dart d’ inX to see if l- (M-, d’) _-> $. If a dart d’ is found such that l- (M-, d’) >
S, then S can be thrown away, since l-(M-) will at some time be generated. If a
dart d’ is found such that l-x (M-, d’)- S, then M- is isomorphic to M, and so M
is counted. If l-x (M-, d’)<S for every d’ in X, then M is counted, and if we want
to count all nonisomorphic maps as well, then we count M- as well as M.

The number of nonisomorphic planar maps with rn <_-6 edges and the number
"up to reflection" (with two maps considered equivalent if they are related by a
reflection) generated by this method appear in Table 1. These numbers agree with
Liskovets’ formula [15] and Wormald’s table [27, p. 34], respectively, and the maps
of genus 1 and 2 with _-<4 edges agree with those drawn by hand in [22, p. 204-210]
(there was one disagreement but the computer turned out to be right). So the problem
of generatingK (g, p, c) can be considered to be reduced to that of generatingL(g, p, c).
This will be taken up in 3, and the generation of subsets of Lo(p, c) is the topic of
4.

3. Generating rooted maps of a given genus. The set L0(p, 0) of parenthesis
systems on p pairs is easily generated with the help of the function E(i), defined
earlier. The first system is ((. (0)" )); for this system E(i)= min(i, 2p- i). Given
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TABLE 1

The number of nonisomorphic maps of genus g with m edges and n vertices, and the number @ of
such maps no two of which are related by a reflection

g=0 g=l g=2 g=3

m n # @ # @ # @ = @

0 1
0 sum 1

1
2 1

sum 2 2

2
2 2 2 2
2 3
2 sum 4 4

3 1 2 2
3 2 5 5
3 3 5 5
3 4 2 2
3 sum 14 14

4 3 3
4 2 14 13
4 3 23 20
4 4 14 13
4 5 3 3
4 sum 57 52

6

11
24
11

6

10
20
10

46 4 4

5 1 6 6 46 35 53 38
5 2 42 35 180 125 53 38
5 3 108 83 180 125
5 4 108 83 46 35
5 5 42 35
5 6 6 6
5 sum 312 248 452 320 106 76

6 1 14 12 204 132 553 328 131 82
6 2 140 104 1198 728 1276 739
6 3 501 340 2048 1226 553 328
6 4 761 504 1198 728
6 5 501 340 204 132
6 6 140 104
6 7 14 12
6 sum 2071 1416 4852 2946 2382 1395 131 82

40

a system P s l, $2,""", S2R in L0(p, 0), we construct the next system as follows. Let
be the largest number such that st-’(’ and such that E(i)> 1; if no such exists,

then P is the last system 00"" 0 and we stop. Change si to ’)’, reducing E(i) by 2.
Now complete the string with ((... (0)"’")), updating the function E accordingly;
the index k of the rightmost left parenthesis is defined by E(k)= 2p- k. Although a
few of the systems may take as many as p operations to generate, it can be shown
that the average number of operations is bounded above by a number independent
of p.
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TABLE 2

The average time in milliseconds on the BESM-6 to do certain computations on a map

Computation Time

Testing a 6-edge rooted planar map for canonicity
-with the Lehman code 5.0
-with the V log V isomorphism test 12.5

Testing a rooted map for "canonicity up to reflection"
-7 edges 6.7
-11 edges 11.0

Generating a parenthesis system of arbitrary length 0.33
Generating a parenthesis-integer system of arbitrary length with at least as many integers as

parentheses 0.33
Generating an integer system on 6 pairs and finding its genus 1.8
Generating a genus-3 integer system on 6 pairs by eliminating systems on 6 pairs which are

not of genus 3 12.7
Generating a genus-3 integer system on 6 pairs from a genus-2 integer system on 4 pairs 3.0

The set LIgL(g, 0, c) of integer systems on c pairs can be generated as follows.
The first system is 112233 cc. Given some system, the next one is found as follows.
If the second 1 is not the rightmost symbol, exchange it with its right-hand neighbor
and return the resulting system; otherwise move the second 1 back to the second
position and try the second 2" if possible exchange the second 2 with its right-hand
neighbor and return the resulting system, otherwise move the second 2 back to the
fourth position and try the second 3, and so on. If we are starting with some system
other than 123 ...cc 321, it will be possible to exchange the second occurrence
of some number 1, 2,..., c- 1 with its right-hand neighbor and return the next
system; otherwise we will convert 123 cc 321 back to 112233 ...cc and then
try to move the second c. So if we stop when we are required to move the second c,
we will have generated all the integer systems. The average time taken to generate
an integer system is easily shown to be independent of c.

Now suppose we have an integer system or a bracket system I s l, s2,’’ ", SEc
and a parenthesis system P tl, t2,’’’, tEp, and we want to merge P with I in all
possible ways so as to create a correct parenthesis-integer system (or parenthesis-
bracket system). For the first system we put all the parentheses to the left of all the
integers. Then the parentheses move to the right in the following increasing order of
priority: the first left parenthesis, its mate, the second left parenthesis, its mate, and
so on. Algorithm 2 of Fig. 3 takes a given system and produces the next one, if there
is one.

Figure 4 shows the 35 systems formed by merging P- (0) with I- 1212 in the
order in which they are produced by successive applications of Algorithm 2. We pick
up the action after system 15-(1021)2 has been produced. The highest priority
parenthesis is the third. It can be moved, so we get system 16= (1(2)1)2. Now the
third parenthesis cannot be moved without creating the forbidden subword 1(1); so
it is deleted to leave (1 (21)2 and the next highest priority parenthesis--the second--is
tried. Since its mate is now gone, it can be moved until it hits the fourth parenthesis.
It is moved one step to yield (12(1)2. Then the fourth parenthesis is inserted in the
leftmost spot consistent with the order of P to yield system 17: (1201)2. Again, the
third parenthesis cannot be moved without creating the forbidden subword 1(1); so
it is deleted, the second parenthesis moved, and the third parenthesis replaced again
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ALGORITHM 2. Given a correct parenthesis-integer system $ whose integer subsystem is I
sl, s2,"" ", s2c and whose parenthesis subsystem is P= tl, t2,’’ ", t2p, p >0, change S to the next
correct parenthesis-integer system. PR is an array of dimension 2p giving the increasing order of
priority in which the parentheses are to be moved: PR (2i- 1) and PR (2i) are the indices in P of
the ith left parenthesis and its mate. IPR points to PR.

BEGIN {Algorithm 2}
NEXT FALSE; {NEXT will become true when the next system has been found}
IPR 2*p + 1;
REPEAT
IPR IPR 1 {back-track down one level of priority}
-PR (IPR); {get the index of the parenthesis to be moved}

IF there is a symbol Sg in I to the immediate right of ti, and if the mate to ti is not to the right
of the mate to sk in S
{so that ti can be moved without creating a forbidden subword}
THEN BEGIN {then}

exchange Sk and
WHILE IPR < 2,p DO BEGIN {while}
{replace all the deleted symbols of P as far left as possible in S}
IPR IPR + 1; {advance up one level of priority}

PR (IPR); {get the index of the parenthesis to be replaced}
insert ti immediately to the right of the nearest parenthesis to the left of t in P which is
currently in S

END; {while}
NEXT TRUE {S is now the next system}

END {then}
ELSE delete t from S {since it cannot be moved}

UNTIL NEXT OR (IPR <-1); {otherwise backtrack}
IF IPR -< THEN WRITE (’ALL DONE’)

END. {Algorithm 2}

FIG. 3

1:(0)1212 11:(0121)2 19: (01212) 29:1(0)212
2:(01)212 12:((1)21)2 20: ((1)212) 30:1(02)12
3:((1))212 13:((12)1)2 21: ((12)12) 31:1((2))12
4:(10)212 14:((121))2 22: ((121)2) 32:1(20)12
5:(012)12 15:(1021)2 23: ((1212)) 33:12(0)12
6:((1)2)12 16:(1(2)1)2 24: (10212) 34:121(0)2
7:((12))12 17:(1201)2 25: (1(2)12) 35: 1212(0))
8:(102)12 18:(1210)2 26: (12012) ALL DONE
9:(1(2))12 27: (12102)
10:(120)12 28: (12120)

FIG. 4. The 35 correct parenthesis-integer systems formed by merging P (0). with I 1212. The array
PR is (1,4,2,3).

to yield system 18: (1210)2. Now parenthesis 3 cannot be moved because parenthesis
4 is in the way; similarly parenthesis 2 cannot be moved. So both are deleted and
parenthesis 4 is moved: (1212). Parentheses 2 and 3 are now placed as far left as
possible to yield system 19-(01212). Now parenthesis 3 can be moved until it hits
parenthesis 4 to yield systems 20 through 23 in quick succession. The reader is invited
to follow this algorithm until system 35 1212(0) has been produced. Then all the
parentheses are deleted and the message "ALL DONE" is written.

To generate Lo(p, c) where p > 0 and c > 0, we generate all the bracket systems
B on c pairs, and for each of these we generate all the parenthesis systems P on p
pairs, and for each of these we insert P into B in all correct ways, using Algorithm 2.
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To generate LI L(g, p, c), we generate all the integer systems I on c pairs and
sort them by genus, and for each of these we generate all the parenthesis systems P
on p pairs, and for each of these we insert P into ! in all correct ways.

Now suppose we want to generate L(g, p, c) for a fixed g > 0. We could generate
all the integer systems on c pairs and then eliminate all those not of genus g. But if
a very small fraction of them are of genus g it is more economical to proceed as
follows. We find all the integer systems I0 in L(g, O, 2g) coding rooted genus-g maps
with 1 vertex, 1 face and 2g edges. For each of these, we generate all the parenthesis
systems Po on c-g pairs. Each correct insertion of Po into Io codes a rooted genus-g
map (X, tr, c, d) with 1 face and c edges. We then find the dual (X, trt, c, d) of this
rooted map, which has 1 vertex and c edges and is also of genus g, and we use
Algorithm 1 to find the integer system I which codes it. We then proceed as before,
inserting parenthesis systems on p pairs into all such integer systems L

To generate L(g, O, 2g) we could generate all the integer systems on 2g pairs
and then eliminate those not of genus g. It is shown [24, p. 213] that of the
(4g)!/22(2g)! rooted maps with 2g edges and 1 vertex, just (4g)!/22(2g + 1)!that
is, 1 out of 2g + lalso have only 1 face and are therefore of genus g, and a natural
(2g + 1)-to-1 correspondence was later found by Lehman [14]. Since it takes O(m)
operations to find the number of faces in an m-edge map, for each integer system in
L(g, O, 2g) we waste O(g2) operations in generating 2g other systems on 2g pairs
and discovering that they are not of genus g. It is more economical to proceed as follows.

Lehman has shown (see [13] and [22, p. 71]) that the genus of the integer system
I aib]cidje, where a, b, c, d, e are segments of L is one greater than the genus of
the system I0 adcbe. Of course I may have many such representations, so we seek
a canonical one and then produce all the genus-(g + 1) systems aibjcidje exactly once
by dividing each of the genus-g systems canonically into 5 parts as adcbe. One such
choice is to let the first of aibjcidfe be the leftmost integer forming a subword ijij
with some/" and the first j of aibjcidje be the leftmost integer forming a word ijij with
this i. It turns out that we can set 1:

PROPOSITION 6. For any system I s, s2, , s2 coding a rooted 1-vertex 1-face
map, there exists a subword 1/’1/" such that I can be represented as lbjc ld]e.

Proof. We identify di with si in (3), so that tr(s) si+a, tr(s2) sx, and a(si) is the
mate to s. Then the permutation trc is cyclic on the symbols of I. Clearly the second
1 cannot be adjacent to the first 1 (otherwise the cycle of era containing the second
1 would be of length 1) or at the end of I (otherwise the cycle of get containing the
first 1 would be of length 1). So there must be at least one symbol between the ls
and at least one symbol after the second 1. Starting from any symbol between the ls
and applying era often enough we must be able to get to some symbol after the second
1, because tra is cyclic, so there exists a symbol s between the ls such that era (s)=j,
say, comes after the second 1. The other copy of/" is tr(s), but since s is between the
ls and j # 1, tr(&) must also be between the ls. So I can be expressed as lbfc 1die,
Q.E.D. [3

Now if I lb[c ldje is a canonical representation, then no symbol in b can have
its mate in d or in e. This holds also for I0 dcbe. So we have the following algorithm
for creating all possible systems I from a given I0. Three dividing lines Ha, H2, H3
are to be placed in the 4g + 1 slots formed by the 4g symbols of I0. The order and
direction in which H and H3 move are immaterialwe suppose them to move from
right to left, with H3 laid down first and Hx moving from H3 to the first slot. For any
position of Ha and H3, HE begins at H3 and moves to the left, stopping when it comes
to a symbol whose mate is either to the left of Ha or to the right of H3. The divided
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system dHlcH2bHae is changed to I g + 1, b, g + 2, c, g + 1, d, g + 2, e, and if desired
the numbers in ! are changed to put the first occurrences in ascending order.

For example, in Fig. 5 we show the 21 ways of dividing the one system 1212 in
L(1, 0, 2), and the 21 corresponding systems in L(2, 0, 4). Each of these systems can
be divided to generate L(3, 0, 6), and so on.

divided Io unordered ! ordered I

1:1212555 34312124 12134342
2:1215255 34231214 12314342
3: 12512 34123124 12341342
4: 12125 34212314 12343142
5:1521525 32421314 12324143
6: 1212, 34121234 12343412
7: 12125 32412134 12342413
8:12125 31241234 12342314
9: 1212 32124134 12324314

10: 1212 31212434 12323414
11:1215552 34312142 12134324
12:1251552 34131242 12313424
13:152152 34213142 12341423
14:1212 34121342 12343124
15:$12,152 31412342 12324134
16:1255512 34312412 12134234
17:1525512 34231412 12314243
18:$12,$12 34123412 12341234
19:1555212 34314212 12132434
20:$155212 34134212 12312434
21:$$$1212 34341212 12123434

FIG. 5. The 21 genus-2 integer systems I on 4 pairs ]ormed
by dividing the 1 genus- 1 integer system on 2 pairs Io 1212.

4. Generating rooted planar maps with prescribed properties. The degree of a
face or a vertex of a map is the number of darts it contains. An edge is called a loop
(an isthmus) if both its darts belong to the same vertex (face). A vertex and an edge
are called incident if they have at least one dart in common. Two or more edges which
are not loops are called parallel edges if they are all incident with the same pair of

TABLE 3

The types ofplanar maps generated and the average time in milliseconds taken to generate
a rooted map of each type

Code Type of planar map Time

1 Without faces of degree 1 0.33
2 Without loops 0.37
3 Without faces of degree 1 or 2 0.43
4 Connected plane graphs (no loops or parallel edges) 1.0
5 Without faces or vertices of degree 1 0.56
6 Without loops or isthmuses 0.94
7 Connected plane graphs without vertices of degree 1 2.1
8 2-connected maps 0.51
9 2-connected maps without faces of degree 2 0.85
10 2-connected plane graphs 1.2
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vertices. Clearly, a map with a face (vertex) of degree 1 has a loop (an isthmus), and
a loopless map with at least 2 edges which has a face of degree 2 has parallel edges.
If the edge-set of a planar mapM can be partitioned into two disjoint nonnull subsets
$ and T so that there is just one vertex v incident with both a member of $ and a
member of T, then v is called a cut-vertex of M. Clearly, a planar map with at least
2 edges which has either a loop or an isthmus has a cut-vertex. A planar map without
cut-vertices is called 2-connected. If the edge-set of a 2-connected planar map M can
be partitioned into two disjoint subsets S and T with at least 2 edges apiece so that
there are just 2 vertices u and v incident with both a member of $ and a member of
T, then {u, v } is called a cut-pair of M. Clearly a 2-connected planar map with at least
4 edges which has either vertices of degree 2 or parallel edges has a cut-pair. A
2-connected planar map without cut-pairs is called 3-connected.

This section deals with the effective generation of rooted planar maps with (or
rather, without) the above-mentioned properties. A list of the types of planar maps
we have generated appears in Table 3. See also Table 4.

Certain properties of a rooted planar map (M, d) are easily interpreted in terms
of its code 1-1 (M, d). Lehman has proved the following two propositions [13], [22],
[26].

PROPOSITION 7. IfS $1, $2,"" S2m l-l (X, tr, a, d), thenS* s*2,, s,-x,
S’E, s l-/ (X, air a, atr-X(d)), where (* ], [* ), )* [, ]* (" to get from S to $*

change all the brackets to parentheses and vice versa and turn the whole system backwards
[22, p. 106].

PROPOSITION 8. For each property R listed in Table 5, the rootedplanar map (M, d)
has property R ifand only ifS l-/ (M, d) sx, $2," $2m has one ofthe configurations
in the corresponding set 1- (R ).

We prolong this list in
PROPOSITION 9. The conclusions of Proposition 8 hold for the pairs R, l- (R in

Table 6.

Parallel edges are larger to express in terms of the code, but one can test for
them by means of the adjacency matrix.

TABLE 5

R l-1 (R)

a face of degree 1 [22, p. 133]
a vertex of degree 1 [22, p. 133]
a loop [22, p. 151]
an isthmus [22, p. 151]
a cut-vertex [22, p. 145]

a pair of adjacent brackets, or sl and $2m are a bracket pair;
a pair of adjacentparentheses, or s ands2m are a parenthesis pair;
a bracket pair surrounding a parenthesis-bracket system;
a parenthesis pair surrounding a parenthesis-bracket system;
a nonnull proper segment which is a parenthesis-bracket system.

TABLE 6

a face of degree 2

a vertex of degree 2
a cut-pair

a bracket pair surrounding a single right parenthesis, or two bracket pairs, one
immediately inside the other, or s2, s2,, is a bracket pair and s is a left
parenthesis, or two bracket pairs sx, si and si+, s2,;

$* has one of the above 4 configurations;
two nonnull segments a and b with a total of least 4 and at most 2m -4 symbols

such that the mate in $ of any symbol in a or b is also either in a or in b.
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Evidently one could generate any of the subsets of rooted planar maps listed in
Table 3 by generating all the correct parenthesis-bracket systems and testing each
one for the presence of the appropriate configurations listed in Propositions 8 and 9.
Some idea of the inefficiency of this procedure can be obtained from the observation
that the proportion of m-edge rooted planar maps which are 2-connected is asymptotic
to 2(9/16)", whereas we have generated the rooted 2-connected planar maps in an
average time per map of only 50% greater than the average time taken by Algorithm
2 to generate an arbitrary planar map.

We spare the reader the tedious details of the algorithm used for each class of
maps--the descriptions and/or listings (in FORTRAN!) are available on request.
Suffice it to say that instead of inserting parenthesis systems into bracket systems we
insert individual pairs of brackets into parenthesis systems (which is like inserting
fronds into rooted trees) and we avoid insertions which will make forbidden configur-
ations inevitable. In most cases this involves straightforward branching and bounding,
but in the case of 2-connected planar maps we also use

PROPOSITION 10. If S is a parenthesis-bracket system with no subword [(]), then
S has no nonnull proper segments which are also parenthesis-bracket systems if and
only if the following 3 conditions are satisfied:

1. Every bracket pair encloses at least one parenthesis and no bracket pair encloses
all the parentheses (that is, there are no faces of degree 1).

2. The first and lastparenthesesform a pairmthe outside pair (that is, the root-vertex

of the canonical spanning tree T is of degree 1).
3. Given any parenthesis pair si, sj in S except the outside pair, let Sk be the right

parenthesis of the pair immediately surrounding si, s (k is the smallest number greater
than such that E(k)<E(j)). Then there is a bracket pair which forms the word ([))]
with si, si and Sk. (That is, for every vertex v of T except the root and the leaves and for
every son s of v there is a frond joining s or one of its descendants to some proper ancestor
o .)

The number of nonisomorphic 2-connected maps with m _<- 10 edges was checked
against the counting formula in [16]. The corresponding numbers for the other 9
classes of planar maps in Table 3 were checked using polynomial-time counting
algorithms we obtained in [23].

The problems of generating 2-connected planar maps with faces of degree 2 or
vertices of degree 2 and of generating 3-connected planar maps by these methods are
considerably more difficult and are as yet unsolved. In [10, p. 142] there is a test for
the 3-connectivity of graphs with depth-first-search spanning trees which could be
applied to Lehman’s code. A program based on that principle could generate 3-
connected planar maps, no two of which are related by either isomorphsim or reflection,
without using as much storage space as Tutte’s scheme [20]. But it is not at all clear
which program would run faster.
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THE HAMMOND SERIES OF A SYMMETRIC FUNCTION AND ITS
APPLICATION TO P-RECURSIVENESS*

I. P. GOULDEN,t D. M. JACKSONt AND J. W. REILLY

Abstract. We give a method for determining the exponential generating function for the coefficient
of x" x,P in a symmetric function S in the indeterminates x 1, ",x,. This generating function is called
the Hammond series of S, and we use it to show that the counting series for certain combinatorial problems
satisfy linear recurrence equations with polynomial coefficients. These problems include p-regular labelled
graphs and square matrices with row and column sums equal to p.

1. Introduction. Let [(a a)(b b)... IT denote the coefficient of
(a a )(b b). in the formal power series T which is a symmetric function
in each of the sets {a 1, , an}, {b l, , b}’ of commutative indeterminates. We
call such coefficients the regular coefficients of T. In this paper we present a method
for calculating the exponential generating function for regular coefficients, where
p, q,... are fixed. We call this power series the Hammond series (or H-series) of T,
because of its connection to the Hammond operators.

In the later sections of this paper we use the H-series to determine whether
certain sequences of regular coefficients satisfy a linear recurrence equation of fixed
order, with polynomial coefficients. Such sequences are called polynomially-recursive
(or P-recursive). This term is of considerable importance computationally since it
means that the nth term of such a sequence may be computed in an amount of time
which is linear in n and space which is independent of n (assuming that the time
taken to multiply two integers is independent of their size).

We establish P-recursiveness for a sequence by deriving a linear differential
equation, with polynomial coefficients, for its H-series. Power series with this property
are called differentially-linite (or D-finite). The equivalence of D-finiteness and P-
recursiveness is discussed in Stanley [6].

Regular coefficients arise in a variety of contexts and the problem of calculating
them is a classical one which has been considered by MacMahon [3] in his combinatorial
work on symmetric functions. We use the H-series to study two combinatorial configur-
ations, namely

a) p-regular labelled graphs and simple graphs on n vertices for n 0, 1, 2 and
b) n n matrices with row and column sums p over the nonnegative integers for

n =0, 1,2,....
This enables us to establish the P-recursiveness of (a) for p 4 and (b) for p 3,

an open problem cited by Stanley [6].
The following notation is used. Let x (x l, x2,’’’ and y (y l, y2,"" ") be sets

of indeterminates. If i= (il, i,... ), then x denotes xlx... and [xi]/(x) denotes the
coefficient of x in the formal power series f(x). Let 0/0y denote (0/0y l, 0/0yz’’ ").
We say that i=>j, where (h,h,"" "), if il h, iz >=/’:, "’’.

We begin by considering an arbitrary symmetric formal power series T in the
single set t= (tl, tz,...) of commutative indeterminates, since the extension to the
multisymmetric case is straightforward. Let z(il, i2,.. (h, h, ") J, where ]k is

* Received by the editors March 12, 1982, and in final form June 7, 1982. The work of these authors
was supported (in part) by the Natural Sciences and Engineering Research Council of Canada under Grants
U0073 and A8235.
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the number of occurrences of k in (il, i2,"" ’). We define the H-series of T(t) to be
the formal power series g, in the indeterminates y (yl, y2, ), such that

[Y’]. g(y)= [t’]T(t),

where j! =/’1!/’2!’" ". The H-series, g, of T is denoted by H(T).
For regular coefficients, we observe that

[z][t t]T(t)= . f(z),

where f(z)=(H(T))(O,..., 0, z, 0,...), where z occurs as the pth argument. The
H-series therefore enables us to obtain a univariate exponential generating function
for the regular coefficients of the multivariate generating function T.

2. The H-series. Let Sk --tk + t +’’’ and let s (s l, $2,""" ), where Sk is called
a powersum symmetric function. Now the symmetric power series T(t) can be expressed
uniquely in terms of the power sum symmetric functions, to give T(t)= G(s(t)). We
adopt the notational convention that the H-series, H(T)(y), of T(t) may also be
denoted by H(G)(y) without ambiguity, since G and T are used only in this context.

The next theorem enables us to express the H-series for OG/Os, and s,G in terms
of the H-series for G. We shall use this theorem later to deduce a system of differential
equations for H(G)(y) from a system for G(s). It happens that the latter system is
often easy to derive.

THEOREM (H-series). Let g(y) be the H-series for a symmetric function T(t) and
let T(t) G (s(t)). Then

1)
,,,_,I O’

\0-./ (y) ,_->oE (-1) (m 1)!--Oy, g(Y)’

where m il + i2 +" and the summation is over (il, i2, such that il + 2i2 +
n.

2) (H(s,G))(y) y, + . y,+, g(y).
i>_l

Proof. 1) Let At(t) denote the monomial symmetric function defined by

At(t)= E tl=[xt] 1-I (l+xlt+x2t+’’’).
|-->0 k _-->

"r(i) =i

Since T(t) is a symmetric function in t, t2, there exist c (i), independent of t, such
that

whence

T(t)= Y’. c(i)At(t)

H(T)(y) E c (i) .
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Let E,(x)= s=o (-1)"-l(m- 1)!xS/i!, where m and the range of summation are
defined in 1). Then .,-1E,(x)z" log (1 + zxl + z2x2 +" ), so that

E As(t)xs= I-[ (l+xlti+xzt +...)=exp E log (l+xlti+x2t +’’’)
i->O il il

exp E E E.(x)t exp E E. (x)s. (t).
i->-I nl n=>l

From this we obtain

x 0 0 0

s-_>-o
As(t)= ,->oE xSAs(t) exp .=IEE. (x)s.

E. (x) exp E. (x)s. E. (x) E Ai(t)xi.
nl jO

The application of Ix] to this equation yields

---As(t)= E Ai(t)[xS-’]E.(x).(2.1)

Thus

so from (2.1) we have

\O-- so c(i)H As(t),

\-./ X c(i) E {[xs-’]E.(xl}H(Ai(t))
i=>O ji

X c (i) X [xS-i]E. (x)y’/j!
io ji

0-

Now let - since . Thus

H(OG 0k

\--.1 X c(i) X [x]E.(x) (y’/i!)
i=o =o y

kY. [xk]E. (x) ’. c (i)yS/i!
k>o Oyk t_o

E,,I-=-IH(T) and 1) follows.
\0y/

2) Let 8, (0, , 0, 1, 0, ), where the one appears in the nth position. Thus,
by definition we have

’(! . "r(j)=l

E E X 1+]1x/22+/2 ..,
,r(1)=. -(j) =i

where (11, 12, and (]1,/’_, ). Now the effect of is to change a single kth
power in to a (k + n)th power, for some k, in all possible ways. Each of the resulting
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monomials may be obtained in i,/k + 1 ways. Thus, if m (m 1, ),

s,,A= E (1 +i,+t,) E x’x’ ...+(1 +i,,)
k => ’(m) i+15,, +k -lk ’(m)

and

H s. io c (i)Ai C. y, H(G),

X1 X2

where C, (y, O/Oy) y, + Yi_->l y,+i O/Oyi. The result follows immediately. [3
It follows from the H-series theorem that H(s O]I/Os{ G)=

C (y, 0/0y)... E/x (0/0y) H(G). Thus any differential equation for G(s) may be
translated, by means of the H-series theorem, into a differential equation for H(G).
We note that C, (y, 0/0y) and E, are reminiscent of Hammond operators for symmetric
functions (MacMahon [3] and Hammond [2]).

3. Preliminary application. In this section and 4 and 5 we consider the enumer-
ation of p-regular labelled graphs and simple graphs. We now set up a system of
differential equations for labelled simple graphs and demonstrate the use of the
H-series theorem for the 2-regular case.

Let T(t) be the ordinary generating function for simple labelled graphs, where t]
marks the degree of vertex ] for ] _-> 1. The generating function for the pair {i, ]} of
distinct vertices is 1 + tt] since if and] are not joined by an edge there is no contribution
to the degrees of and ], while if they are then there is a contribution of 1 to each
of the degrees of and ]. Thus

T(t) I’I (1 + t,tj).
l<=i<]

We next derive G(s), where G(s(t))= T(t). Now

T(t) exp log l-I (1 + tit]) exp (-1
l<--_i<] k =1 l<=i<]

1 )_ (t)},=exp1 -(-1 l{s(t)-sz

1  _l{sG(s) exp (-1) -szt,}.

whence

The system of differential equations which G(s) satisfies is

0G 1
=S2k+lG fork->_0,
OS2k+l 2k + l

(3.)
1

0szk 2-- {(-1)k -sz}G for k -> 1.

This is the general system of equations for labelled simple graphs. For the moment
we confine our attention to 2-regular simple graphs.

Let rz(n) denote the number of 2-regular simple labelled graphs on n vertices.
Then

r:(n) [t t]T(t) [Y] U(yl, y),
Ln!.l
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where U(yl, y2)=H(G) (yl, y2, 0,...). Thus, applying the H-series theorem to T(t)
and setting Y3 Y4 0, we have

OU OU OU 2U
yiU + y2, 2 -U-y2U.

Eliminating OU/Oy and O2U/Oy and then setting y=0, we have dV/dy2
{(1-y2)-l-(l+y2)}V/2 and r2(n)=[yz/n!]V, where V(y2) U(0, y2) and V(0)= 1.
Since V is differentiably finite (or D-finite) it follows (Stanley [6, Thm. 1.5]) that
{r2(n)ln _->0} is P-recursive. Indeed, applying [yz/n l] to both sides of this ordinary
differential equation for V we have

2r2(n + 1)-2nr2(n)-n(n 1)rz(n -2)=0,

where r2(0)= 1 and r2(k)= 0 for k < 0. We note that we may solve the differential
equation to obtain

V(y2)=(l_y2)_X/2exp{ y2 !.}2

the well-known generating function for the number of cycle covers of the complete
graph on n vertices. This may, of course, be obtained by a direct argument, but its
derivation here has illustrated the use of the H-series.

It is important to note that the ordinary generating function for labelled graphs
is, by a similar argument,

where

T’(t) I-I (1 t,ti)- O’(s(t)),
li<j

G’(s)=exp E 2-{s(t)+S2k(t)}.
The system of differential equations associated with G’(s) is

(3.2)

OG’ 1
=s2k+G’ fork_->O,
(952k+1 2k +1

OG’ 1

Os2 2k
{1 + s2}G’ for k _-> 1.

Systems (3.1) and (3.2) are strongly related to each other. Accordingly, in 4 we
shall give certain details for calculations with (3.1) but totally suppress the correspond-
ing details for calculations with (3.2) since they are similar.

4. The P-recursiveness of the numbers of 3- and 4-regular labelled graphs and
simple graphs on n vertices. Let rv(n) be the number of p-regular simple labelled
graphs on n vertices. We apply the method of 3 to the cases p 3 and 4 to derive
differential equations with polynomial coefficients for Y’.,->o r,(n)(x"/n !). The calcula-
tions are of course more prolonged, and we have suppressed their details because
they add nothing of conceptual importance to the argument.
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We consider first the case p 3. Applying the H-series theorem to system (3.1)
for G(s) and putting Y4 Y5 0, we have

0A(3) 0A (3)

a)
0A(3) ylA(3)+ Y2 0yl

+ Y3 ’0y2

(4.1) b) 20A
(3) 02A(3) OA(3)

-(1+y2)A(3)-y3

OAt O:Aa OaA
c) 3 oY3 3 ’’ 0y +’0Y13 y3A(3)’

where A(3)(y 1, Y2, Y3) H(G)(yt, Y2, Y3, 0," ") and r3(n)=[y’/nt]A3).
Let B3)(y A(3)(yY3) 0, Y3). By inspection we may express OB(a)/Oy3 and

02B(a)/Oy solely in terms of OB(3)/Oy We therefore have a system of two simultaneous
linear equations for the unknown OB(3)/Oyl. Eliminating OB3)/Oyl between these
equations and setting y 0, we obtain a second order linear ordinary differential
equation in y3 for B(3)(0, y3), with polynomial coefficients, so {ra(n)ln->0} is P-
recursive. To simplify this equation we note that r3(2n + 1) 0 for n ->_ 0 since the sum
of the degrees in a graph is even. Thus B3)(0, y3) is a power series R3(x) in y32 x. Now

0B (3) dR3 02B (3) OR3 02R3
2x and 2+4xY3

0y3 -X ’t9’y3 OX OX2
Thus R3(x)=>_or3(2n)x"/(2n)! satisfies the differential equation given in Table
4.1(i). This agrees with Read [4]. A similar argument applied to system (3.2) gives
the ordinary differential equation for Q3(x)=Y.,oq3(2n)x/(2n)!, where q3(2n) is
the number of labelled 3-regular graphs on 2n vertices. This is given in Table 4.1(ii).

TABLE 4.1 (i)
The differential equation for the number of 3-regular

simple labelled graphs.

0 x(-x2-2x +2)2

1 -6(x + 6x’ + 6x 32x + 8)
2 36x2(-x2- 2x + 2)

x" d2Ra(x) dRa(x)
Ra(x)= E ra(2n) "d2(x) +St(x) do(x)Ra(x) 0dX ax +

TABLE 4.1(ii)
The differential equation [or the number of 3-regular

labelled graphs.

d(x)

0 x 10x4 + 24x _4x2_44x -48
1 -6(x5-6x4+6x3+24x2+16x-8)
2 36x2(x2-2x -2)

x" d2Oa dO3
03(x) Y’. qa(2n) "2(x) (x)+l(X) (x)+o(x)Oa(x)=O
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The case p 4 may be treated in a. similar way. Applying the H-series theorem
to system (3.1) for G(s) and putting y5 Y6 0, we have

(4.2)

OA (4) OA (4) OA (4) OA (4)

0y
yA(4) + Y2

0y 0y2 0y3

0A(4) 02A (4) OA (4)

2 -(1 + yz)A4) y3
0yOyz Oy

OA4) OZA4) 03A(4) OA
3 3+ y3A(4)

Oy3 Oy Oyz Oy 3t + y40y
OA (4) 02A (4) 02A (4) 03A (4) 04A (4)

4 -4 2 +4 =(1-y4)A(4),
ay4 ay ay3 ay ay] ay2 ay

where A(4)(yx, y2, y3, y4)= H(O)(yx, y2, Y3, Y4, 0,’" ") and r4(n)=[yT/n!]A (4).
Let (4) (4)B (yl, y4)=A (yl, 0,0, Y4). By inspection, we may express

linearly in terms of B (4), OB(4)/0yl, 82B(4)/y alone for m _-> 1. In fact, when we carry
this out for m 1, 2 (using the symbolic algebra system VAXIMA, as described in
8) and set y =0, we find that the coefficient of OB(4)/Byx at y =0 is 0 in both

equations. Eliminating O2B(4)/0y2 at y =0 between these two equations, we obtain
a second order differential equation for R4(x)=,,_or4(n)(x"/n!), where R4(x)=
B(4)(0, x). This differential equation is given in Table 4.20) and demonstrates that
R4(x) is D-finite so {r4(n)ln -> 0} is P-recursive. The corresponding differential equation
for 04(x) -o q4(n )(x"/n !), where q4(n is the number of 4-regular labelled graphs,
is deduced in a similar way from system (3.2) and is given in Table 4.2(ii).

We have therefore established the following result.
COROLLARY. {rp (n)ln --> 0} and {qp (n)ln --> 0} are P-recursive for p 2, 3, 4.

TABLE 4.2(i)
The differential equation ]’or the number of 4-regular simple labelled graphs.

i(X)

0 --X4(X + 2X4 + 2X 2 + 8X --4)2

1 -4(x13+4xX2-16xX-loxg-36xS-220xT-348x6-48xS+200x4-336x3-240x2+416x-96)
2 16x2(x-1)2(xS+2x4+2x2+8x-4)(x +2)

x" d2R4(x)
R4(x) n>-oE r4(n) ." b2(x)

dx2 +l(X)
dR4(x)

+to(x)R4(x)=O
dx

TABLE 4.2(ii)
The differential equation ]’or the number of 4-regular labelled graphs.

,i(x)

0 xX4-4xa3-8xX2+44xX-8xX-40xg-244xS+288x7 + 192x6 + 1056x5-944x4-2688x
+448x + 1408x + 384

1 -4(xXa-4xX2+8x+22xg-20xS-92xT-36x6+48xS+760x4-464xa-400x2+ 160x +96)
2 16x?(x + 1)2(x-2)2(x5-2x4-2x2+8x +4)

X dZQ4
+ dO4

O4(x)= E q,(n)’,2(xl--x2 (xl-x+O(X)O=OnO
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Using the recurrence equations implied by the above differential equations for
g3, R4, 03, 04, we have calculated ro(n) and qo(n) for p 3, 4 and n _-<20. These
numbers are displayed in Tables A and B of the Appendix.

Read [4] has already given the differential equation associated with {ra(n)ln --> 0}.
Read and Wormald [5] have given a system of simultaneous recurrence equations for
{r4(n)ln => 0} and an inspection of these indicates that the P-recursiveness of {r4(n)ln -->
0} may be deduced quite easily. The differential equations for {qp(n)ln --> 0} for p 3
and p =4 appear to be new. We draw the reader’s attention to the fact that the
H-series theorem enables us to write down the system of partial differential equations
for the H-series for arbitrary p without difficulty. However, the reduction of this
system to a single ordinary differential equation in yp is a technical task which we are
unable to carry out for the general case.

5. A combinatorial construction. The differential equations for the H-series
associated with p-regular simple labelled graphs may be given a direct combinatorial
interpretation. This is achieved by distinguishing precisely k monovalent vertices for
k 1,..., p. This clearly involves a difficult case analysis, which is long even for the
case p 3. It is noteworthy that in this instance the H-series theorem carries out this
case analysis automatically. In this section we give a combinatorial interpretation of
system (4.1) for simple labelled 3-regular graphs.

Let be the set of simple labelled graphs whose vertices have degree at most
3 Then the power series A<3)(y y2, y3) of 4 is the exponential generating function
for the elements of ’ with y marking vertices of degree for 1, 2, 3. Thus if
a (i, i2, i3) is the number of graphs in with i vertices of degree/" 1, 2, 3, then we
have

At3(y Y2, Y3) . a(i, i2, i3)
y? Y2 Y:

il,i2,i3>--0 i! i2! i3!

The combinatorial derivations of (4. l a, b, c) are now given. To obtain these we count
the graphs in once for each set of distinct monovalent vertices for 1, 2, 3. For
this purpose the/-set is regarded as being distinguished.

Equation (4.1a). Distinguish exactly one monovalent vertex in each element in. The generating function for this is y OA(3)/Oy 1. We now derive this in another way.
1) The distinguished monovalent vertex is adjacent to a vertex of degree one,

forming a component consisting of a single edge joining two vertices. The generating
function for this is y2A

2) The distinguished monovalent vertex is adjacent to a vertex of degree two.
We may construct such graphs by distinguishing a monovalent vertex, v, and then
connecting this by an edge to a new monovalent vertex u. Now u is the distinguished
monovalent vertex adjacent to a bivalent vertex v. The generating function for this
is ylY20A(3)/Oy We note that the operator y20/Oyl arises because a monovalent
vertex is first distinguished and then connected to another vertex, making the former
bivalent.

3) The distinguished monovalent vertex is adjacent to a vertex of degree three.
Following 2), the generating function for this is yly30Aa)/Oy2.

It follows that

OA (a) OA (3) OA (3)

and we have derived (4. l a) combinatorially.
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Equation (4.1b). Distinguish two distinct monovalent vertices in each element in
M. The generating function for this is (y/2!) 02A(3)/Oy. We now derive this in another
way.

1) The two distinguished vertices are connected by a path of edge-length 1,
forming a component consisting of one edge. The generating function for this is
(y/2!)A(3).

2) The two distinguished vertices are connected by a path of edge-length 2. There
are two subcases.

i) The path contains exactly one bivalent vertex. The generating function for
this is (y2/2!)y2A3, since (y/2!)y2 is the generating function for a component
consisting of a path of edge-length two.

ii) The path contains exactly one trivalent vertex. Such graphs may be obtained
by joining a distinguished monovalent vertex in an element of M to two new
monovalent vertices, which are themselves the distinguished monovalent vertices in
the resulting graph. The generating function for this is (yZt/2!)y3 OA/Oyl.

The generating function for these two cases is therefore

I 1 OA (3)

2- Yy2A’3’+.t YYa 0yl

3) We may obtain the remaining such graphs by deleting from a graph in M a
vertex, u, of degree 2 connected to distinct vertices a and b and connecting a
distinguished isolated vertex a’ to a and a distinguished isolated vertex b’ to b. The
vertices a’ and b’ are the distinguished monovalent vertices and are not connected
by a path of edge-length 1 or 2. The generating function for this is

since a’, b’ may be labelled in two ways.
It follows that

02A (3) OA() OA (3)

0y 2
0y2

+A(3) +y2A(3) +y3
0yt

and we have derived Equation (4.1b) combinatorially.
Equation (4.1c). Distinguish three distinct monovalent vertices in each element

in M. The generating function for this is (y/3!)O3A(3/Oy. We now derive this in
another way.

1) Exactly two of the distinguished vertices are joined by a path of edge-length
one. We may construct such graphs by joining two isolated vertices, u and v, by an
edge and by distinguishing one monovalent vertex w in a graph in M. The generating
function for this is (y/2!)y OA()/Oy.

2) At least one pair of distinguished vertices are joined by a path of edge-length
two. There are three subcases.

i) All three distinguished vertices are joined by paths of edge-length exactly
two. Thus the distinguished vertices are the monovalent vertices of a component
whose remaining vertex has degree three. The generating function for this is therefore
(y/3!)y3A (), since the component may be adjoined to any element in M.

ii) Exactly two of the distinguished vertices are joined by a path of edge-length
equal to two. There are two subcases.



188 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

a) The path contains a bivalent vertex. Such graphs may be constructed from a
path of edge-length two joining two distinguished vertices and a graph in ,d with
exactly one distinguished monovalent vertex. The generating function for this is
y2(y/2!)yl 3A(3)/Oy 1.

b) The path contains a vertex of degree three. We may construct such graphs by
considering a path uvw, of edge-length two, and a graph in M with exactly two distinct
distinguished monovalent vertices a and b, separated by more than one edge. The
vertices v and a are now identified, and u, w and b are the distinct distinguished
vertices of the resulting graph. The generating function due to all graphs in M treated
in this way is (y/2l)yly302A(3)/Oy. But this set includes graphs in which two
distinguished monovalent vertices are separated by a single edge, and hence form a

(3)component, enumerated by y21, adjoined to an element of M, enumerated by A(3).When this is treated in the above manner, the generating function is (y2/2!)y3ylA
so the contribution of this case is

1 "02A(3) (3))2-- yy3 ( y A

3) No pairs of the distinguished monovalent vertices are joined by paths of
edge-length at least one or two. We may construct such graphs by deleting from a
graph in M a vertex of degree three connected to vertices a, b and c and connecting
a to a’, b to b’ and c to c’, where a’, b’, c’ are isolated vertices. In the resulting graph,
a’, b’, c’ are the distinguished vertices. The generating function for this is y 3A(3)/3y3
since a’, b’, c’ may be labelled in 3! ways.

It follows that

OaA ca) OA (3) 02A (3) OA
+ 3y3 2y3A (3)

y3 =3(1+y2) y y +6
0y3

from (4. lb). Thus

0A(3)]3(1 + y2)A (3) + 3y3 ’0yl J
-2y3A(3)+6 0A

(3)

0 OA(3) 02A(3)] OA(3)
-3 1. 2 y j 2y3A (3) + 6

OY2 Oy3

03A (3) OA (3) 02A (3)

Oy + 3 y3A(3)+3
Oy3 Oy Oy2

and we have combinatorially derived (4.1c). This completes the combinatorial treat-
ment of system (4.1).

6. Bisymmetric H-series. In the final part of this paper we consider the extension
of the H-series theorem to the bisymmetric case. As an application of this extension
we enumerate n x n matrices over the nonnegative integers with line sum p (each row
sum and column sum equals p) for p 2, 3.

Let r (rl, r2, and c (c 1, c2, be sets of indeterminates, and let

T(r, c)= E c(i, j)Al(r)A(c),
i,|>0

where A is the monomial symmetric function defined in 2. Then the H-series of T
is

(H(T))(x, y)= c(i, j)(z(i)! -(j)!)-lx+(i)y+(|).
i,l_-->0
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Let T be the ordinary generating function for nonnegative integer matrices, with
r and ci marking the sums of the elements in row and column respectively. Now
a k in row and column contributes k to the ith row sum and the/th column sum
so the generating function for the (i, /’)-element is 1 +(ricj)+(ricj)2+ whence

T(r, c)= I’I (1- riQ)-1.
i,jl

Clearly T is bisymmetric since it is symmetric in r and in e. Let ,k rk "- r2k +"" and
tk C k + C +" "for k -> 1, the power sum symmetric functions for r and e, respectively.
Now

1
T(r,e)=exp E log(1-&cj)-l=exp Y’. - E k k

ric,
i,]l k >l i,]>l

SO

1
G(s, t)= exp ->E -st.

The system of differential equations satisfied by G(s, t) is

oG 1 oG 1
(5.1)

Os k tG fork_->l,
Ot k sG

fork_->l.

We illustrate the use of the H-series theorem in the bisymmetric case by applying
it to nonnegative integer matrices with line sum two in this section and line sum three
in 7. Let l(n) be the number of n x n nonnegative integer matrices with line sum
p. Then

/2(n) [x.  lo’:’ X"nlJ x2, Yl, Y2),

where D(2)(x 1, x2, yl, y2) (H(T))(xl, x2, 0,. yl, y2, 0,...). Applying the H-
series theorem to system (6.1) and setting Xa x4 0 and Y3 3:4 0 we
have the following system of equations for D(-)(xl, x2, yl, y2).

(6.2)

ODc’.) OD (:) OD (2) OD (2)

a) -----=ylD(2)+y2 a)’ -----=x1D(2)+x2
Oxl Oyl Oyl Oxl

b)
0D(2) 1 020 (2) 1 00 (2) 1 02D (2) 1 x2D(2)"
Ox2 20x =y2D(2)’ b)’

0y2 2 0y2 =
From (6.2a) and (6.2a)’ we obtain

(6.3)
0D(2)

(Yl + y2xl)(1 x2Y2)-ID (2).
c3x

Differentiating (6.2b)’ partially with respect to x2 we have

2
02D (2) 03D (2) OD (2)

+D(2)
2 +X2

0X20y2 0y 0X2 0X2

Eliminating OD(2)/Ox2 from the right-hand side of this equation by means of (6.2b)
we have

O2D (2) 04D (2) 02D (2) 02D (2)

(6.4) 4 +x2 +x2Y2D(2)+2D (2).
Ox2 Oy2 0x Oy2 + y2 0y oX



190 I. P. GOULDEN, D. M. JACKSON AND J. W. REILLY

We wish to eliminate xl and yl. Thus let E(2)(x (2)(0,2, Y2)=D x2, 0, Y2) so that,
from (6.3),

02D (2)

Xl=Yl=0
y2(1 -x2Y2)-lE(2

From (6.2a)’ we have

and

04D (2)

2(1 + X2Y2)(1- X2Y2)-2E(2)

02D (2)

Xl=Yl=0
--X2(1 x-l,. (2)

X2Y2) /3

Substituting these expressions into (6.4) and simplifying we obtain

(4-8x2Y2 +4xy)
02E(2)

OX2 Oy2
(4 2xy +xy )E2).

But a matrix with line sum 2 must be square, so Et2)(x2, y2) Mt2)(x2y2), where
M(2(z) Y.,__>o/2(n) z"/(n !)2.

Thus M(2(z) satisfies the differential equation

4z(1 z)2
d2 )2 d M(2)(z)_(4 2z 2 3)M(2)M(2)(z)+4(1-z -z +z (z) 0,

SO M(2)(z) is D-finite and {/2(n)[n 0} is P-recursive. By inspection this equation may
be rewritten as

2z(1-z)-dfz+2+2z-z G(z) 0, where G(z) {2(1 d }M(2)(Zz) zz-(2-z) ).

But G(z) is a formal power series with no negative exponents so G(z)- 0, yielding
the recurrence equation

12(n + 1)= (n + 1)212(n)-1/2n2(n + 1)/2(n 1)

for n _>-" 0, where lz(0)= 1,/z(-1) 0. This simplifies the recurrence equation given by
Anand, Dumir and Gupta [1]. The differential equation may be solved to give

G(z (1- z )-l/2 exp (),
which may be obtained immediately by a combinatorial construction involving cycles.

7. Nonnegative integer matrices with line sum 3. Now

X3 D(3)(Xl, x2, x3, Yl, Y2, Y3),13(n .. n !_l

where D(3)(x 1, X2, X3, Yl, Yz, Y3)= (H(T))(xl xz, x3, 0,’’" Yl Yz, Y3, 0,’’" ), and T is
given in 6. Following 6 we apply the H-series theorem and set x4 x5 0
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and y4 y5 0 to obtain the following system of equations for D

ylD(a)+y2 +y3

OD() OD
-’X3a)’ 3yl-x1D(3)+x2 cx1

00 (3) 1 02D (3) 1 (3) 1 0D (3)

(7.1)

b)’
OD(3) 1 02D

OD(3) 02D(3) 1 03D(3) 1
+ y3D (3)c)

Ox3 OX OX2 3 Ox 3

C)’
OD (3) 02D (3 1 030 (3) 1

l- x3D (3)

0Y3 0yl0y2 3 0y3 3

By inspection we may express 3 0y2 at x2 0, y2 0 linearly in terms
of O (3), OD(3)/c3x OD(3)/c3y 02D(3)/c3x1, 1, 10yl at xz yz 0 for > 1. Moreover, when
we carry this out for 1, 2 (again using VAXIMA) and set x y 0, we discover
that the coefficients of OD(3)/Oxl and OD(3)/Oyl are 0 in both equations. Eliminating
02D(3)/Oxl 0yl at xl =x2=yl =y2=0 between these two equations, we get a linear
equation involving 04D(3)/Ox Oy, 02D(3)/Ox3 0y3 and D (3), all at xl x2 Yl y2 0.
But D(3)(0, 0, x3, 0, 0, Y3) E(3)(x3Y3), where

zE(3)(z) ._--oE 13(n) (n!)----"
Finally, this partial differential equation for E(3)(x3Y3) can be transformed to a
fourth-order ordinary differential equation for E(3)(x), with polynomial coefficients
in x, by making the substitution x x3y3. This differential equation is displayed in
Table 7.1.

We therefore have the following result.
COROLLARY.

{13(n)ln -> 0} is P-recursive.

TABLE 7.1
The differential equation for the number of nonnegative integer matrices with line sum 3.

0 x11-7xl+30xg-16xS-43x7+51x6+238xS+630x4+36x3-1944x2-1152x+576
-9(x 1-4x9 +22xS-8xT-4x6+8x5+88x4+252x3+ 120x2- 320x +64)

2 -9(xl-4x9 +22xS-8xT-22x6+8x5+ 106x4+234x3+48xZ-320x +64)x
3 324x’(x4-x + x +4)
4 81x5(x4-x2 + x +4)

x d4E(3)
E3)(x) E 13(n) b4(x) + b3(x)

.>-0 (.)2 dx4

dE(3)

+ bl(x) -x+o(x)E(3)= 0

d3E3) d2Et3)

dx
+t2(x) dx-’-’----
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This appears to be a new result (see Stanley [6, p. 186]). The recurrence for {/3(n)ln > 0}
which follows from the equation in Table 7.1 has been used to compute /3(n) for
n _-< 15. These numbers are given in Table C of the Appendix.

8. Concluding comments. Each of the differential equations displayed in tables
in this paper was obtained by using the symbolic algebra system called VAXIMA.
The elimination procedures for R4, 4 and E3) were so substantial that we could not
have carried them out by hand. Each of the tables given in the Appendix was computed
from the corresponding differential equation by means of VAXIMA. The computer
calculations were carried out at the University of Waterloo. VAXIMA is based on
the MACSYMA system developed at the Massachusetts Institute of Technology.

Appendix.
TABLE A

Numbers of 3-regular simple labelled graphs (i) and labelled graphs (ii).

r3(rl) q3(tl)

0 1
2 0 2
4 1 47
6 70 4720
8 19355 1256395
10 11180820 699971370
12 11555272575 706862729265
14 19506631814670 1173744972139740
16 50262958713792825 2987338986043236825
18 187747837889699887800 11052457379522093985450
20 976273961160363172131825 5703510582280129537568575

(i) (ii)

TABLE B
Numbers of 4-regular simple labelled graphs (i) and labelled graphs (ii).

r4(n) q4(n)

0 1 1
1 0 1
2 0 3
3 0 15
4 0 138
5 1 2021
6 15 43581
7 465 1295493
8 19355 50752145
9 1024380 2533755933
10 66462606 157055247261
11 5188453830 11836611005031
12 480413921130 1066129321651668
13 52113376310985 113117849882149725
14 6551246596501035 13965580274228976213
15 945313907253606891 1985189312618723797371
16 155243722248524067795 321932406123733248625851
17 28797220460586826422720 59079829666712346141491403
18 5993002310427150494060340 12182062872168618012045410805
19 1390759561507559001823665540 2804416350168401031334025488653
20 357920518512934324278467820756 716675823235860386364568072658826

(i) (ii)
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TABLE C
Numbers of n x n nonnegative integer matrices with line sum 3.

n /3(n)

0 1
1 1
2 4
3 55
4 2008
5 153040
6 20933840
7 4662857360
8 1579060246400
9 772200774683520
10 523853880779443200
11 477360556805016931200
12 569060910292172349004800
13 868071731152923490921728000
14 1663043727673392444887284377600
15 3937477620391471128913917360384000
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TRADITIONAL GALLERIES REQUIRE FEWER WATCHMEN*
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Abstract. Chvfital’s watchman theorem shows if the walls of an art gallery form an n-sided polygon
then at most In/3] watchmen are needed to guard it, and that this number is best possible. In this paper
it is shown that if every pair of adjacent sides of the polygon form a right angle then at most In/4] guards
are needed, and again this result is best possible. Our proof depends on showing that any finite region
bounded by a finite number of edges, each of which lies parallel to one of a fixed pair of perpendicular
axes, has a partition into convex quadrilaterals.

1. Introduction. The following question is due to Victor Klee. Suppose the walls
of an art gallery form an n-sided polygon. How many guards are needed so that every
wall is seen by some guard, where it is assumed that the guards are stationary but
can see in all directions? In 1975 Vaclav Chvfital [1] showed that In/3] are always
sufficient, and moreover there are galleries which require at least this number (see
Fig. 1). In 1979 Steve Fisk [2] gave a very short proof of this result which goes as
follows. Let G be a graph which is obtained from triangulating the polygon. It is well
known that any such graph can be three-colored. In any such coloring one of the
colors, say green, is used at most In/3] times. If a guard is placed at every vertex
colored green, then it is easy to see that every wall is seen by some guard since every
wall is in some triangle and every triangle has one green vertex.

In this paper we consider art galleries whose walls form an n-sided right-angled
polygon, i.e., a polygon in which all angles are right angles. Figure 2 shows such a
gallery requiring In/4] guards. We will prove that this number is always sufficient.
The crux of the argument depends on showing that right-angled polygons can be
convexly quadrilateralized. In other words the interior can be partitioned into convex
quadrilaterals by adding nonintersecting lines between vertices. An example is shown
in Fig. 3(a). If G is the graph obtained from a convex quadrilateralization of any
polygon by adding the pair of diagonals to each quadrilateral (see Fig. 3(b)), then it
is easy to prove that G can be four-colored by induction on n. Now because the

FIG. 1

FIG. 2
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(a) (b)

FIG. 3

quadrilaterals are convex, placing guards at each vertex colored by the least frequently
used color, completes the solution.

At this point we should point out that in our proof the polygons are assumed to
be nonself-intersecting though it is clear that the results also hold for cases where
intersections occur (see Fig. 4 for example) since small perturbations can be used to
reduce these to the nonintersecting case. The same however is not true when we
consider art galleries whose interior is not simply connected. Figures 5(a) and (b)
show that In/3] and In/4] guards respectively are no longer sufficient in these cases.
Notice that although the gallery depicted by Fig. 5(b) is right-angled it is not true that
all walls lie parallel to some fixed pair of perpendicular axes. Let us call regions,
whose boundaries consist of line segments parallel to some fixed pair of perpendicular
axes, rectilinear. We have been able to prove that every rectilinear region with a finite
number of edges can be convexly quadrilateralized. Unfortunately it is not true that
the graph obtained by "completing" the quadrilateralization is always four-colorable
as can be seen by examining the graph in Fig. 5(c). Thus the question of whether
In/4] guards are always sufficient to guard a nonsimply connected rectilinear gallery
with n edges remains open.

The remainder of this paper is devoted to proving the existence of convex
quadrilateralizations for finite rectilinear regions. It is convenient for the argument
to extend the result to the situation in which the region lies not in the plane, but in

FIG. 4
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(a)
(b)

(c)

FIG. 5

(a) (b)

FIG. 6

any Riemann surface corresponding to a function with branch points outside itself.
This corresponds in the gallery case to having several levels with ramps leading from
one to another. Some examples are shown in Figs. 6(a) and (b).

We therefore prove:
THEOREM. If R is a closed region bounded by a finite number of straight edges,

each parallel to either of two perpendicular axes in a Riemann surface corresponding
to a function with singularities outside R, then R has a convex quadrilateralization.

The proof is inductive in that we will show that if every "smaller" region than
R has a convex quadrilateralization then R does too. Our notion of smaller is defined
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as follows. A region S is smaller than R if the number of connected components of
the complement of S is less than the corresponding number for R or if these two
numbers are equal and S has strictly fewer vertices than R. Thus for example any
simply connected region is always smaller than a nonsimply connected region, and
when restricted to simply connected regions, smaller just means fewer vertices.

We will think of the edges of R as being parallel to either the x or y axis and
hence refer to them as horizontal or vertical edges. Similarly we will refer to horizontal
and vertical coordinates of points and edges of R.

Remark. We may assume that no two horizontal [vertical] edges in R have the
same vertical [horizontal] coordinate.

To see this, notice that for any general finite rectilinear region R, one may take
a sequence of finite rectilinear regions which converges to R, such that none of these
regions have "offending" edges. Moreover since there are only finitely many different
quadrilateralizations, we may assume that each region in the sequence has the same
convex quadrilateralization. Finally since convexity is closed under taking limits, this
quadrilateralization must also be a convex quadrilateralization of R.

Let us say that a finite rectilinear region is reducible if whenever every smaller
finite rectilinear region is convexly quadrilateralizable then so is R.

The inductive argument falls into two parts. First we show that any region R
having one of several configurations is reducible. We then conclude the proof by
showing that every finite rectilinear region has at least one of these configurations.

2. Retluetions. In this section after introducing the necessary terminology, we
will give reductions for rectilinear regions which contain any one of three configur-
ations. In many places in this paper our proofs depend on certain configurations having
particular properties which appear to follow obviously from the relevant definitions.
In fact the first lemma is a case in point. However, as is often true in geometrical
problems, despite their "obvious truth" it seems to be both time-consuming and tricky
to provide rigorous proofs of these assertions. Rather than distract the reader with
the details of the proofs now, here we will simply state these observations, leaving
the proofs for the next section where we will develop sufficient machinery to cope
with the problem.

We begin by defining notation to describe features of rectilinear regions.
Edges are of four kinds, which we shall call top, bottom, left and right, referring

to how they bound the region. Thus a top edge means one which bounds the region
from above. For a region R we use int (R) to denote the interior of R, i.e., those
points lying inside R but not on any edge of R. We will also refer to the complement
of R as the exterior of R. If x and y are points in R we use Ix, y] to denote the line
segment joining x and y, whereas (x, y) denotes that line segment without its endpoints
and Ix, y) and (x, y denote the appropriate half-closed line segments.

We say that two points x and y are visible to one another or that x sees y, if
(x, y) is contained in int (R). Similarly two edges S and T see each other if there
exist points x and y on S and T respectively, which see each other. For points or
horizontal edges we will often use expressions such as x "is higher than" y to indicate
that x’s vertical coordinate is greater than y’s. Likewise when referring to horizontal
coordinates we will say things like x "is to the left of" y.

A top edge S and a bottom edge T which see each other are neighbors if S is
higher than T and there is no bottom [top] edge visible to S [T] whose vertical
coordinate lies between those of S and T. A tab is a pair of neighboring edges which
are connected to each other by a vertical edge. We say that a tab is a down-tab if its
top edge extends further, either to the left or right, than the bottom edge. Otherwise
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it is an up-tab. In Fig. 7, (i) is a pair of neighboring edges which is not a tab, (ii) is a
down-tab and (iii) is an up-tab.

If x is either a point or vertical edge and y is either a point or horizontal edge,
we will use x # y to denote the point whose horizontal coordinate is that of x and
vertical coordinate is that of y.

(i)

FIG. 7

x y#x

R(x y)

x#y y

FIG. 8

Given two points x and y, we will denote the rectangle with corners x, y, x # y
and y # x by R (x, y). Figure 8 illustrates these definitions.

Our first lemma describes properties of a pair of neighboring edges.
LEMMA 2.1. Let Tand S be neighboring edges, where T is the top edge. Then there

is a vertical edge M at least as far left as the left endpoints of T and S, whose top
[bottom] endpoint is at least as high flow] as T [$]. Similarly there is a vertical
edge N on the right of T and S with analogous properties. Moreover the interior of
R (M T, N S), i.e., the rectangle spanned by M, N, Tand S, is completely contained
in the interior of R.

a b

FIG. 9
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The proof is given in the next section (see Lemma 3.5). In the case that T and
S actually form a tab, then either M or N joins T to $ and is called the side edge of
the tab; the other is called the facing edge of the tab.

We will find it useful to note the following remark"
LEMMA 2.2. ff [a, b and [c, d] form the horizontal edges ofa tab then any convex

quadrilateralization Q ofR must include the quadrilateral with corners a, b, c, d.
Proof. Let [a, b] be the top edge, [c, d] the bottom edge, and assume that they

are joined by the edge [a, c ]. See Fig. 9 for illustration. Then by Lemma 2.1 and the
assumption that no two horizontal edges have the same vertical coordinate, every
vertex of R other than d which is visible to a must lie lower than d. This implies that
a can be connected in Q by edges only to b and c and possibly other vertices lower
than d. If it is connected by an edge [a, x] of this latter kind in Q, then c can only
be connected to a and d in Q and cannot possibly be part of a convex quadrilateral.
Thus the only edges of Q containing a are [a, b] and [a, c]; likewise the only edges
containing c are [a, c and [c, d]. Thus one must have the quadrilateral (a, b, c, d).

We may now note the following reduction.
LEMMA 2.3. If R possesses a pair of neighboring edges which are not a tab, then

R is reducible.
Proof. Assume every region smaller than R has a convex quadrilateralization.

Let the top edge of the neighboring pair be [a, b], with a to the left of b, and the
bottom edge be [c, d] with c to the left of d. Suppose for example that c is to the
right of b; all other cases may be handled similarly. Let b’ be the point d # b, and let
c’ be the point a # c.

Consider the multilevel region, R’, obtained by replacing [a, b and [c, d] by two
tabs, one having edges [a, b’], [b’,d], [c,d], the other having edges [a,b], [a,c’],
[c’, d]. Since the insides of these overlap we can imagine one forming a dead-end
up-ramp and the other a similar down-ramp. See Fig. 10 for an example.

If R’ is disconnected then both connected components are smaller than R since
they have fewer vertices. On the other hand if R’ is connected then its complement

i i

\\\\ \ c
\\\\

FIG. 10
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has one less connected component than the complement of R. To see this consider
two points x and y in the exterior of R, where x is just above T and y is just below
$. Clearly x and y are in the same component of the exterior of R’, as they are
connected by a path going around either one of the new tabs; but since R’ is connected
x and y must be in different connected components of the exterior ot R.

In any case by our assumption R’ has a convex quadrilateralization Q’, and by
Lemma 2.2, (a, b’, c, d) and (a, b, c’, d) are quadrilaterals in Q’. Now replacing them
by the quadrilateral (a, b, c, d) we obtain a convex quadrilateralization of R. [3

Before describing the next reduction, we must introduce a little more terminology
about tabs. We define the top-tip and bottom-tip of a tab to be the endpoints of its
top and bottom edges, respectively, that are closest to its facing edge. If Z is an up-tab
[down-tab], then its step-point is the upper [lower] endpoint of its facing edge and its
step-edge is the horizontal edge containing its step-point. We say that an up-tab Z
[down-tab] is bad if its step-edge is a bottom [top] edge, and if no edges of R intersect
the interior of the rectangle R(s, t), where s and are the step-point and top-tip
[bottom-tip] of Z respectively. Naturally a good tab is any tab which is not bad.

We are now ready to give a reduction for regions containing a good tab.
LEMMA 2.4. IfR has a good tab Z, then R is reducible.
Proof. We give the proof for the case that Z is an up-tab; the other case follows

by a symmetric argument. Let [a, b ], [a, c] and [c, d] form the top, side and bottom
edges of Z, respectively, and let s be the step-point of Z. Let Ix, y] be the lowest
horizontal edge which intersects the interior of R (b, s), and let e be the upper endpoint
of the vertical edge containing b. We assume without loss of generality that [a, c] is
a left edge and that x lies to the left o y.

We must deal with two cases: whether x is to the left of b or not. The method
of argument is of the same form as in Lemma 2.3" in either of the cases we replace
R by a new region R’ obtained by cutting R and splicing tabs on the wounds. Again
by analogous arguments each of the connected components R’ will be smaller than
R yielding by inductive assumption a convex quadrilateralization Q’ of R’, and as
before we will be able to replace quadrilaterals of Q’ by some convex quadrilateral
to obtain a convex quadrilateralization of R.

It will be important to note that no edges intersect the interior of the rectangle
R(b c, s y). By Lemma 2.1, no edge intersects int (R(b 4c, s b)), and by the
definition of [x, y ], no horizontal edge intersects int (R (b, s 4 y)). Combining this with
the fact that no other horizontal edge has the same horizontal coordinate as [a, b we
see that we have shown that no horizontal edge intersects int (R (b 4 c, s 4 y)). However
it is easy to see that no vertical edge may intersect either, since by 2.1 one of its
endpoints (and hence a horizontal edge) would lie in int (R (b, s 4 y)). It is this fact
that allows us to conclude that the edges we add to obtain R’ in the next paragraph
form tabs.

When x is to the left of b, we replace the edges [x, y], [e, b], [a, b], [a, c] and
[c, d] by the tab [b y, y l, [b 4 y, b 4c], [b c, d] on say a down-ramp and the
"sideways" tab [e, b ], [b, y b ], [y b, y on an up-ramp along with [x, y ]. Now any
convex quadrilateralization of R’ must contain the quadrilaterals (b : y, y, d, b 4 c)
and (e, b, y b, y), and replacing them by (e, y, b, d) and adding (a, b, c, d) yields a
convex quadrilateralization of R. This case is shown in Fig. 11.

When x is not to the left of b, we make the identical replacements. Let Q’ be a
convex quadrilateralization of R’. Again for the same reason as before, the first of
these is a tab and we may conclude that (b y, y, d, b 4 c) is a convex quadrilateral
in Q’. Now however it is not necessarily true that (e, b, y b, y) be in Q’, since [e, b ]
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FIG. 11

and [y # b, y are no longer a "sideways" tab. However it is necessary that y # b lie
in only one quadrilateral in Q’. Otherwise the line segment separating two of them
would necessarily go either to the left of [e, b], preventing any convex quadrilateral
containing b, or above Ix, y l, preventing any such quadrilateral from containing y,
because of the fact that there are no edges (and hence no corners) of R in the interior
of R (b, y).

One can similarly show that Q’ contains either (e, b, y 4 b, y) or (b, x, y, y b).
We may therefore replace this quadrilateral and (b y, y, d, b c) by (e, b, d, y) or
(b, x, y, d) respectively, then adding (a, b, c, d) to obtain a convex quadrilateralization
of R. See Fig. 12 for a diagram of this case.

c b#c d

FIG. 12
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FIG. 13

We are now ready to present the final reduction after one more definition. We
say that an up-tab Z and a down-tab W form a tab-pair if the step-edge of Z is the
bottom edge of W and the step-edge of W is the top edge of Z. Some examples are
shown in Fig. 13.

LEMMA 2.5. IfR contains a tab-pair, then R is reducible.
Proof. Let [a, b l, [c, d] and [a, c] form the top, bottom and side edges of the

up-tab, while [h, i], If, g] and [i, g] form the top, bottom and side edges of the
down-tab. If we replace [a, b ], [a, c ], If, g] and [i, g] by [a 4# f, f], [a 4# f, c ], [b, g 4# b]
and [g 4# b, l, we obtain a region R’ whose connected components are smaller than
R as before. By inductive assumption these have convex quadrilateralizations with
quadrilaterals (c, d, f, a 4# f) and (h, i, g 4# b, b) which may be replaced by (a, b, c, d),
(g, h, i, f) and (b, d, f, h) to give a convex quadrilateralization of R. This is shown in
Fig. 14.

a-#f ,, g

C

FIG. 14
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3. Properties of rectilinear regions. In this section we will show that every finite
rectilinear region must have one of the following three configurations: a pair of
neighboring edges that do not form a tab, a good tab or a tab-pair. Let us say that a
rectilinear region R is irreducible if it contains none of the above configurations. We
will show that every irreducible rectilinear region has an infinite sequence of distinct
horizontal edges. To begin with however, we will concentrate on proving some
elementary facts about rectilinear regions, which will yield the results we needed in
the preceding section.

First we must introduce some more notation. For any interior point w of R
consider the vertical line L passing through w. It is easy to see that the first edge that
L intersects above w must be a top edge (or possibly the corner of a top edge and a
vertical edge). We call this top edge the top-bounding edge of w. Similarly we define
bottom-, left- and right-bounding edges of w.

We will use expressions such as x lies vertically above an edge $ to mean that
some point of $ has the same horizontal coordinate as x and is lower than x. Formally
we should add here that the line joining x to S lies on the Riemann surface containing
R; "obvious" restrictions of this type will hereafter be omitted. Similarly x lies
horizontally between a and b means that its horizontal coordinate lies between those
of a and b.

One of the standard remarks that we often need to make is that no edges of R
intersect some rectangle or more general region. Our first aim is to establish some
simple results of this form that we can apply whenever necessary. The following lemma
is the basic tool that we will use over and over again for many different purposes.

LEMMA 3.1. Let $ be a horizontal edge, z an interior point of R lying vertically
above S and w a point ofR at least as high as z such that w sees z. Then there is some
bottom edge T, whose vertical coordinate is between those of S and w, which is visible
tOW.

Proof. Choose T to be a horizontal edge such that some point of (w, z] lies
vertically above some point u of T, and such that the distance from u to is minimal.
First note that T is a bottom edge since by its minimum distance property, T is the
bottom-bounding edge of . Thus since the vertical coordinate of T is clearly between
those of S and w, it suffices to show that u is visible to w. Obviously no horizontal
edge intersects (u, w) since taking u’ to be the point of intersection and ’ to be the
point on (w, z] vertically above u’, it is clear that u’ would be closer to ’ than u
to v. A similar argument shows that no vertical edge intersects (u, w) since its
upper endpoint u" and the point " on (w, z vertically above u" would be closer than
u and

COROLLARY 3.2. Suppose x is a point outside R, z is a point in the interior of R
vertically above x and w is a point at least as high as z which sees z. Then w sees a
bottom edge higher than x.

Proof. Use Lemma 3.1, where S is the bottom-bounding edge of z.
COROLLARY 3.3. Suppose x and y are points of neighboring edges T and S

respectively, such that x is visible to y. Then no edge intersects int (R (x, y)).
Proof. Without loss of generality let T be the top edge. Since one of the diagonals

of int (R (x, y)) lies in the interior of R, it is easy to see that it suffices to show that
no horizontal edge intersects int (R (x, y)). Suppose B is a horizontal edge intersecting
int (R (x, y)). If B lies below (x, y), then by Lemma 3.1, T sees a higher bottom edge
than S. On the other hand if B lies above (x, y), then by a symmetric version of
Lemma 3.1, S sees a lower top edge than T. However both of these are impossible
by the definition of neighboring edges. [-1
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The next lemma notes another useful fact.
LEMMA 3.4. If T is a top edge which sees a lower bottom edge S, then them are

interior points of T and S which are visible to each other.
Proof. It is straightforward to show that if any point z in T sees a lower bottom

edge then it can see an interior point of that edge. Applying this followed by the
symmetric fact for higher top edges completes the proof.

We are now ready to give a proof of the first lemma of the last section.
LEMMA 3.5. Let Tand S be neighboring edges, where T is the top edge. Then there

is a vertical edge M at least as far left as the left endpoints of T and S, whose top
[bottom] endpoint is at least as high flow] as T [S]. Similarly there is a vertical
edge N on the right of T and S with analogous properties. Moreover the interior of
R(M # T, N S), i.e., the rectangle spanned by M, N, Tand S, is completely contained
in the interior of R.

Proof. By Lemma 3.4 we can find x and y, interior points of T and S, respectively,
which see each other. Choose M to be the rightmost vertical edge which is a
left-bounding edge of some point of (x, y). We first show that we may assume that
M lies strictly to the left of both x and y. This is obviously true if x and y have the
same horizontal coordinate, so assume without loss of generality that x is to the left
of y. Now M is at least as far left as x since by Corollary 3.3, M cannot intersect the
interior of R (x, y). If M is not strictly to the left of x replace x by any point x’ of T
whose horizontal coordinate lies strictly between those of x and y. It is clear that x’
and y are visible to each other, M is strictly to the left of both x’ and y and M is
still the rightmost left-bounding edge of points on (x’, y).

We next show that if w is a point of M which is lower than T and higher than
S, then w is visible to both x and y. Suppose w is not visible to x. Then there is some
point v of (w, x) which is on an edge of R. Let u be the point on (x, y) with the same
vertical coordinate as v, and let v’ be the rightmost point of [v, u] which is on an
edge. Then by definition v’ is on the left-bounding edge of u, and hence is at least as
far left as M. This shows that v, and hence x, is at least as far left as w, a contradiction
since M is to the left of x. A similar argument shows that w is visible to y.

The edge N is defined analogously to M as the leftmost vertical edge which is a
right-bounding edge of some point of (x, y), and by analogous reasoning every point
of N lying lower than T and higher than S is visible to both x and y. A direct
consequence of this is that both M and N must span the vertical width of T and S,
since otherwise one of their endpoints, and hence a horizontal edge, would be visible
to both x and y, and moreover this horizontal edge would be lower than T and higher
than $, contradicting T and S being neighboring edges.

All that remains is to show that no edges intersect the interior of the rectangle
R(M T, N S). In fact it suffices to show that no horizontal edge intersects the
interior of R(M T, N S), since it is clear that because there are line segments
from x to points on M and N which lie entirely in the interior of R, any vertical edge
intersecting int (R(M T,N $)) would have to have at least one endpoint in
int (R (M 4 T, N 4 $)). Thus suppose some bottom edge P intersects int (R (M
T, N 4 S)). Choose a point w on either M or N, visible to x, such that some point
z of (w, x) lies vertically above P. Then by Lemma 1 there is a bottom edge which
is higher than $ and visible to T, a contradiction. The symmetric argument handles
the case that P is a top edge

If $ is a top [bottom] edge we define n (S) to be the highest [lowest] bottom [top]
edge which is visible to S and lower [higher] than $. If R is a finite irreducible
rectilinear region, then for any horizontal edge $, we must have n k($)= n k/2($) for
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some k. Moreover since n k (S) and tl k+l(s) are neighboring edges, by the irreducibility
of R they must form a tab, which we call g(S).

We will need the following lemma concerning the horizontal location of S relative
to g(S).

LEMMA 3.6. Let S be a horizontal edge which does not form part of g(S), and let
b, d and N be the top-tip, bottom-tip and facing edge of g(S) respectively. I[ S is a top
[bottom edge, then the horizontal coordinate of every point of S lies between those of b
[d] and N.

Proof. Let/’(S) k, where k is the smallest integer such that n k ($) is an edge of
g(S). The proof is by induction on/’(S). For simplicity’s sake suppose g(S) is a down-tab
opening to the right. Thus d is to the left of b, which is to the left of N. First suppose
S is a top edge and n (S) is the bottom edge of g(S). Let x and y be points of S and
n(S) respectively which see each other. Notice that just above b, the exterior of R
lies immediately to the left of b and to the right of N. Thus if the horizontal coordinate
of x is not between those of b and N, then some point of (x, y) lies vertically above
a point of the exterior which is higher than b. But now by Lemma 3.2, x sees a lower
bottom edge which is higher than n (S), which contradicts the definition of n (S). Thus
we have shown that x lies horizontally between b and N. A similar argument shows
that every point of S lies horizontally between b and N since for any point w of S
we can find a point z which is vertically below w and visible to x because S is a top
edge. If w is not between b and N, then some point of (x, z) lies above a point in the
exterior of R which is impossible by Corollary 3.2 again.

A symmetric argument handles the case that S is a bottom edge with n (S) the
top edge of g(S).

Now suppose the lemma holds for k- 1 and that S is a top edge with nk(S) a
horizontal edge of g(S). Then since by assumption every point of n (S) lies horizontally
between d and N, it is easy to see that the preceding argument can be applied to
obtain the desired result. The case that S is a bottom edge is entirely analogous.

We give one final lemma before completing the proof of the main theorem. This
is the lemma that will enable us to find an infinite sequence of edges if R is irreducible.

LEMMA 3.7. Suppose R is irreducible and that S is a bottom edge such that g(S)
is a down-tab not containing S as an edge. Then there is a bottom edge h (S) which is
higher than S and is not part of a down-tab.

Proof. Let P be the step-edge of g(S). As R is irreducible P is a top edge, which
is higher than $ by Lemma 3.6 because g(S) is a bad tab. Also P is not visible to
because it is a top edge which is lower than the top edge of g($). Let d and N be as
in Lemma 3.6, and let w be the step point of g(S). Let x be an interior point of $,
and let y be the point closest to x on (x, w) which is on an edge of R. Now since y
is visible to x and higher than x, y cannot be an interior point of a bottom edge; also
y is not on a top edge because y is lower than the top edge of g($). Thus y is on
some vertical edge M. Let h (S) be the horizontal edge meeting the upper endpoint
of M. Clearly h (S) is higher than S. Also h ($) is no higher than P by the definition
of a bad tab, since like S it has points with horizontal coordinates strictly between
those of d and N. We will now show that h($) is a bottom edge. First notice that
h (S) is a top edge if and only if h(S) lies on the same side of M as the line [x, y].
But then if h (S) is a top edge it is vertically above a point on (x, y), and by a symmetric
version of Lemma 3.1, x can see a top edge at least as low as h (S). This is a contradiction
since h (S) is lower than g($).

Finally h(S) is not part of a down-tab since if it were the top edge T of the
down-tab would have to lie vertically above some point of (x, y), and again by Lemma
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3.1, x would be able to see a top edge at least as low as T. But now we reach a
contradiction as before since by the same argument as for S and h (S) we have that
T is at least as low as P, which is lower than g(S).

THEOREM 3.8. IfR is irreducible, then R has infinitely many edges.
Proof. Suppose R has only finitely many edges. Then clearlyR has some neighbor-

ing pair of edges, and since R is irreducible these form a tab. Without loss of generality
let us assume it to be an up-tab. Let Z be the up-tab of R which has the highest top
edge [a, b], and let P be the step-edge of Z. Note that P is a bottom edge since Z
must be a bad tab as R is irreducible. In order to obtain a contradiction it will suffice
to show that R has a bottom edge S which is higher than [a, b] and not part of g(S).
To see this note that g($) must be a down-tab because it is higher than [a, b], and
we may apply Lemma 3.7 to obtain another bottom edge h(S) higher than [a, b]
which is not part of a down-tab and hence not part of g(h (S)). Repeating this argument
we obtain an infinite sequence S, h (S), h (h (S)), h (h (h (S))),... of distinct edges in R.

We may assume that P is part of g(P), since otherwise we may take S to be P.
Let [e, b be the vertical edge meeting [a, b ], and let S be the horizontal edge meeting
[e, b at e. Let d and f be the step-points of Z and g(P) respectively. Since g(P) and
Z do not form a tab-pair, f is higher than [a, b ]. Moreover the horizontal coordinate
of e lies between those of f and d since no edge intersects the interior of R (b, d) as
Z is a bad tab. But now since likewise no edge intersects the interior of R (f, d),
clearly e must be lower than f. Also notice that since S cannot intersect R (b, d) either,
S must be a bottom edge.

Finally suppose S is an edge of g(S), and let T be the top edge of g(S). Since
g(S) must be a down-tab we can find a point x of T whose horizontal coordinate lies
strictly between those of b and d. Also x must be both higher than e, lower than the
top edge of g(P) and cannot have the same vertical coordinate as P. However this is
impossible since this area is covered by the interiors of the rectangles R (b, d) and
R (f # V, d), where V is the top edge of g(P), and thus no edges intersect this area
at all. Thus S is not part of g(S), and we are done.
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FINDING LEAST-DISTANCES LINES*

NIMROD MEGIDDOt AND ARIE TAMIRt

Abstract. We consider the following problem related to both location theory and statistical linear
regression. Given n points in the plane find a straight line L so as to minimize the weighted sum of the
distances of the points to L relative to either the Euclidean metric or the/1-metric. We present O(n log n)
and O(n log2 n)time algorithms for the Euclidean and rectilinear cases, respectively.

1. Introduction. We consider the following problem which is related to both
location theory and statistics: Given n points in the plane (x 1, y 1), , (x,, y,) together
with positive weights wl,"’,w,, find a straight line L so as to minimize
," wid(x, y" L), where d is the distance function from L relative to either thei=1

Euclidean metric or the/1-metric.
The location theory aspects of the problem are obvious. One may think of locating

a portion of a new railroad so as to minimize the average cost to the users who have
to reach the tracks from different small towns. The problem is also closely related to
linear regression, with the difference that here we minimize the sum of distances
instead of the squared distances. The latter case is computationally much easier since
there are easy formulas available for the least-squares line. This is true both in the
case where the distance is measured parallel to one of the axes and also when the
distance is measured vertically to the line.

We note that the problem is related to the classic Weber problem [5], [13]. The
Weber problem is to find a single point so as to minimize the average distance from
it to n given points. When the problem is posed with respect to the Euclidean metric
no polynomial time algorithms are known even when all the weights are equal. Relative
to the/1-metric the Weber problem is separable into two one-dimensional problems
and hence is solvable in linear time by a weighted-median-finding algorithm 1].

Following the terminology of location theory we call our problem the l-line
median problem. We present in this paper an O(n 2 log n) algorithm for the Euclidean
problem and an O(n log2 n) algorithm for the rectilinear problem.

2. The Euclidean problem. In this section we focus on the Euclidean case. It is
easy to see that a l-line median can always be chosen so as to contain one of the n
given points. This is because a parallel translation of the line which contains none of
the points results in a linear change in the objective function as long as none of the
points is reached. We, however, claim that a l-line median can be chosen so as to
contain at least two of our n points. This will enable us to consider only a set of O(n 2)
candidate lines for the l-line median.

LEMMA 1. Relative to the Euclidean metric there exists a l-line median which
contains at least two points from the set {(x 1, y 1)," ", (x,,, y,)}.

Proof. We have already argued that at least one point lies on the line. Thus, we
assume without loss of generality that the point (xl, y l) lies on the line. Moreover,
we may translate the coordinate system so that xl y 0. In other words, we may
pose our problem as of finding a straight line of the form ax + by 0 which minimizes
the sum of weighted distances from the points (xi, y) (i 2,..., n) to the line. The
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distance between a point (xi, yi) and a line ax +by =0 (a2+b 2 50) is equal to
(a2+b2)-l/2[axi+byil so, formally, we now wish to minimize the function

f(a, b) i=2 wi[axi + byi[ subject to the constraint a 2 + b 2 1.
Suppose (a*, b*) is an optimal solution for the optimization problem we have

posed. Let S+={i 2<-i <-n, a*xi+b*yi>-O} and S-={i" 2<-i <-n, a*xi+b*y <-0}. It
follows that

f(a*,b*)= Y. wi(a*xi+b*y)-Y, w(a*xi+b*yi)
iS iS-

( . WiXi WiXi)a * -t- ( . WiYi . wiyi)b *.
iS iS- iS iS-

Let a and denote the coefficients of a* and b*, respectively, in the latter equality,
i.e., f(a*, b*) aa* +b*. A necessary condition for (a*, b*) to minimize f(a, b)
(subject to a 2 + b 2 1) is that it is also an optimal solution for the following optimization
problem:

minimize aa + fib,
a,b

s.t. axi + byi >-_ 0 (i S+),

axi + by <= 0 (i S-),

a2+b2=l.
If a *x + b*y 0 for some (2 _-< _-< n), then the lemma holds since the line a*x + b*y
0 passes through (x 1, y 1) and (x, y). Thus, assume a *x + b*yi 0 for all (i 2, , n ).
We now observe that the constraints ax + by => 0 (i $/) and ax + by <= 0 (i $-) are
not binding at the point (a*, b*). This implies that (a*, b*) is in fact an optimal solution
for the problem of minimizing aa +/3b subject only to a 2 + b 2 1. We note that under
the present assumptions a2+/32 0, since otherwise all the points are colinear, which
in turn implies a*xi + b*y 0 for all i. The latter optimization problem has a unique
local minimum (a’, b’), where a’ -a(a 2 +/32)-1/9 and b’ -/3(a 2---2)-1/2 and the
corresponding objective-function value is -(ct2+/32)1/2. Thus (a*, b*)= (a’, b’) and
hence aa* +/3b* -(a 2 + fl2)1/2 0. This however is a contradiction since aa* +b*
"i=2 Wila*Xi +b*Yl ->0. It follows that at least for one (2<_-i <-_n) a*x +b*y =0 and
that completes the proof.

An obvious consequence of Lemma 1 is that a l-line median can be found in
O(n 3) time: Enumerate all the O(n 2) candidates and compute the weighted sum of
distances in each case.

We now develop an O(n 2 log n) algorithm for the l-line median problem. The
idea is to sort the candidate lines according to their slopes and then enumerate them
in that order so that it takes only constant time to evaluate the sum of distances in
each case. Let -o < s --< s2 --<" --< st --<’ --< s,, _-< oo denote these slopes and assume
that together with each slope we have an associated pair of points.

A necessary condition for a line ax + by + c 0 to be a l-line median is that it
separates the set of points into two sets of approximately the same weight; more
precisely, if W Y’.=I w, T/ {i" ax + by > -c} and T- {i" ax + byi < -c}, then the
necessary condition is that Y’.T W, Y. T-W <X-W."-’2 In other words, the number-c
has to be a weighted-median of the set H H(a, b)= {ax + bye} of the "heights" of
the different points above the line ax + by O.

Obviously, for every pair (a, b) there is such a number c. Imagine that we increase
the slope of our line continuously from -oo to +oo, always selecting the number c so
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as to satisfy the necessary condition. Consider the linear order induced on the set of
points by heights relative to the line. This order changes only when the slope of the
line coincides with one of the s;s, in which case the ranks of the two points associated
with the critical slope are interchanged. This observation enables us to keep track of
the sets T/, T- as we continuously change the slope of the line. Specifically, the sets
T/, T- change only when the pair of points involved in a critical slope consists of no
more than one member from either set. We note that some of the critical slopes may
coincide (if three or more points are colinear), however this does not affect the
complexity of the algorithm since we traverse all the pairs of points in any case. Given
a, b and the sets T+, T-, c may be redefined as -max {ax + bye: i T+} and then the
weighted sum of distances becomes

(a2+b2)-/2[( WiXi . wx)a + ( ,
iT iT- iT

WiYi-- . wiyi)b-(E wi- .
iT- iT iT-

Suppose that we keep track of the sets T/ and T- as well as the quantities. WiXi, WiXi, E wiYi, E wiYi, E Wi, E wi, max{axi+byi:iC=T+}
iT iT- iT iT- iT iT-

when we sweep the slopes in a nondecreasing order. Then it takes only O(n 2) time
to evaluate the objective function at all O(n 2) critical slopes and choose the optimal
slope. (To avoid the square-root operation we may instead maximize our objective
function squared.)

3. The rectilinear problem. In the present section we consider the l-line-median
problem in the case where the distances are measured rectilinearly, i.e.,

d(x,, y,; x,, y,)= Ix,-x l + ly,-y[.

It turns out that the distance between a line {ax +by +c 0} and a point (x, y) is
given simply by laxi + by, + c I/max (la l, [b I). In other words, if the slope of the line is
between -1 and 1, then the distance is measured from the point to the line in parallel
to the y-axis; otherwise it is measured in parallel to the x-axis. Thus, we can solve
two problems" one in which all distances are measured in parallel to the y-axis and
another one in which they are measured in parallel to the x-axis; we then select one
of the two accordingly.

We shall now describe an algorithm for finding a straight line y ax + b so as to
k

minimize Y’--- wly ax bl. This problem resembles the problem of linear regression
where we seek best fit in least squares. However, we do not have available a nice
formula for this least-distances line like the one for the regression line. Nevertheless,
the present case is more favorable than the Euclidean one due to convexity properties
which are discussed below.

Let f(a, b) Ei=I wly-axi-hi and g(a) minb f(a, b). Obviously, f(a, b) is con-
vex and this implies that g(a) is convex.

We will find the minimum of g(a). We note that the function g(a) is linear on
intervals between consecutive slopes of lines determined by two of the given points.
Thus, g(a) is piecewise linear with breakpoints only at these values. The latter can
be proved along the lines of Lemma 1. It is easy to devise an O(n 2 log n) algorithm
like the one in 2. We will, however, develop a more efficient algorithm, exploiting
the convexity of g.

It is easy to verify that, given a, the number b b(a) which minimizes f(a, b) is
a weighted-median of the set {y-axe}. Thus, g(a) can be evaluated in O(n) time [1].
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Furthermore, even if a is a breakpoint of g, we can evaluate the one-sided derivatives
g (a), g’_ (a) of g at a. This is carried out as follows. Let $- {i" y axi < b},
SO {i" yi axi b} and S+ {i" y ax > b}. We know that w (S-), w (S+) =2< -W.. (For
any X_ {1, 2,..., n}, w(X)=Y.ixw.) Consider the set S with the order induced
by the x’s. According to our choice of b, SS . Thus, there exists an S such
that the sets SO- {] SO. x >x} and SO+ {/" S: x <x} satisfy w (S-) + w (S-) -< W
and w (S+) + w (S+) _-< 1/2 W. If e > 0 is sufficiently small, then b (a + e Yi (a -t- e )xi.
This implies that g ’+ (a Y’.is-tso-.wx s+tsO+ wx. So+ and SO- can be obtained
in O(n) time, [1], which is, therefore, also the time to compute g (a). The evaluation
of the left-hand side derivative is analogous. Thus we conclude that for a given a, it
takes O(n) time to compute g(a), g’+(a) and g’(a).

(a) <0, then a <a*Let a* denote the slope of the l-line-median. For any a if g +
(a) and that implies a a*and if g’(a)>0, then a _->a* otherwise, g’(a)<O<g+

This enables us to search for a* efficiently.
We will search for a’ by applying a general method for solving parametric

combinatorial problems first introduced in [6]. Efficient implementations are achieved
with the aid of parallel computation algorithms as explained in [7]. The application
in the present case is as follows. We utilize a parallel sorting algorithm by Preparata
[8] which employs n log n "processors" and runs in O(log n) time. We will sort the
set {1,..., n} by the numbers {y-a*x} without actually knowing the value of a*.
Instead, throughout the process an interval [ct,/ such that ct _-< a*-<_/3 will be main-
tained. At any stage, the interval will have the property that the outcomes of all the
comparisons executed so far will be independent of a provided a e [a,/ ]. Finally, the
entire order will be constant over the current interval.

Suppose that we sort the set {yi-axe}, where a is restricted to some interval
[c,/ ], but unspecified yet. Then, when we need to compare some y-ax with y- axi,
the ratio a’= (y- y)/(x-x) becomes critical for that comparison. However, we can
test in O(n) time whether a’_->a* or a’_-<a* and update the interval accordingly.
Corresponding to each step in Preparata’s sorting scheme, there will be n log n such
critical values produced, one by each processor. We can search the set of critical
values for a*, namely, we will perform a binary search until our interval is narrowed
down so that it does not contain any critical value in its interior. This binary search
requires O(log n) tests, where each test decides whether a critical point is to the left
or to the right of a*. Thus a single stage requires O(n log n) time. However, the
entire sort runs in O(log n) stages, so that our algorithm finds in O(n log2n) time an
interval [c0,/0] such that a* [a0,/30] and g(a) is linear over [a0,/0]. Finding a* is
now straightforward.

To conclude this section we contrast our O(n log2 n) algorithm with the different
solution approaches to the problem which have appeared in the statistics literature.
The first approach was to apply infinite iterative processes to find the least weighted
absolute deviation line. References [4], [10] represent this approach. It should be
noted that some of these iterative procedures do not even guarantee convergence
(e.g., [10]). The second approach (e.g., [2], [3], [12]) was to formulate and solve the
problem as a linear programming problem. These methods (which are also applicable
to the multidimensional case) are finite, but it is not at all clear whether their bounds
are polynomial in the number of points. To our knowledge, the method in [9], [11]
is the only one which has a polynomial bound. Using our notation, the method amounts
to the evaluation of all the breakpoints of the piecewise linear function g(a), which
are between some arbitrary value a and a* (the minimum of g(a)). In the worst-case
all the breakpoints of g(a) may have to be looked at. Since no method is known to
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perform this task in 0 (n 2) time, our O(n log2 n) algorithm improves considerably over
all existing methods.
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A MINIMAL TOTALLY DUAL INTEGRAL DEFINING SYSTEM FOR THE
b-MATCHING POLYHEDRON*
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Abstract. Totally dual integral linear systems are intimately related to polyhedra that have the property
that every nonempty face contains an integer point. A minimal totally dual integral defining system for a
certain polyhedron related to b-matchings is given.

1. Introduction. The study of dual integrality is the study of integral optimal
solutions to dual linear programs.
Dual integrality is studied in complexity combinatorics for several reasons. One is

that often a combinatorial problem is better described as the dual of another problem.
Another is to obtain combinatorial min-max theorems via the duality theorem of
linear programming.

Alan Hoffman [5] introduced the concept of total dual integrality, which was
latter studied and used by Edmonds-Giles [3].

A finite linear system Ax <= b, with A and b rational, is called totally dual integral
(TDI) when the dual linear program of the linear program

max {cx Ax <-b}

has an integral optimal solution for integral c such that it has an optimal solution.
TDI linear systems are intimately related to integer polyhedra (those polyhedra

that have the property that every nonempty face contains an integer point).
This paper investigates the relation of TDI linear systems to a combinatorial

problem known as the b-matching problem. A minimal TDI defining system for a
certain integer polyhedron related to b-matchings is given. Pulleyblank [9] indepen-
dently obtained this result in a different way, using the results contained in [8].

2. TDI linear systems and integer polyhedra. The relation of TDI linear systems
to integer polyhedra is made clear by the following two theorems.

THEOREM 1 (Edmonds-Giles [3]). IfAx <- b is a TDI linear system with b integral,
then

P={x Rn:Ax <-b}

is an integer polyhedron.
THEOREM 2 (Giles and Pulleyblank [4]). Let

P={x R":Ax <=b},

where A and b are rational. IfP is an integer polyhedron, then there exists a TDI linear
system A’x <- b’ with b’ integral such that

P ={x: A’x <=b’}.

Theorem 1 is a nice generalization of a theorem of Hoffman [5].
The above theorems can be combined to produce an interesting and useful

technique for proving that a particular linear system is a defining system for an integer

* Received by the editors October 13, 1981, and in revised form August 19, 1982.
f Department of Combinatorics and Optimization, University of Waterloo, Waterloo, Ontario, Canada
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polyhedron. Suppose the goal is to prove that

P={x H": Ax <=b}

is an integer polyhedron (often the goal is to prove that P is the convex hull of a
certain set of integral points). By multiplying the inequalities by a positive constant
if necessary, it can be assumed that b is integral. By Theorem 2, a set of inequalities
that are implied by Ax <-b can be added to Ax <-_ b to form a TDI linear system with
integral right-hand side. Theorem 1 implies that the polyhedron defined by the new
system is an integer polyhedron. But the polyhedron defined by the new system is P.

The importance of the condition that b be integral in the above development is
shown by the following theorem.

THEOREM 3 (Giles and Pulleyblank [4]). For any finite, rational, linear system
Ax <- b, there is a positive rational number d such that dAx <-_ db is a TDI linear system.

3. b-matchings. Before b-matchings are described, some notation will be given.
For a real vector x (x: I) and S _/, where I is a finite set, let

x (S) E {x,: 6 S}.

Let G be a graph with node set VG and edge set EG. For in VG, let N(i)
denote the set of nodes adjacent to (i is not adjacent to itself). For S

_
VG, let 6 (S)

denote the subset of edges of G that are incident to exactly one node of S (for in
VG, 6(i) will denote 6({i})) and let y(S) denote the subset of edges having both ends
in S. Let G[S] denote the graph with node set S and edge set y(S). For j in EG, let
(/’) denote the subset of VG that makes up the two ends of/" (each edge is assumed
to have two distinct ends). If Se is a collection of subsets of VG and is an edge of
G, let

(j) {R : j y(R )}.

Let b (bi: VG), where bi is a positive integer for each in VG. A b-matching
in G is an integral solution to the linear system

(3.1) xi >-0 for every/" in EG,

(3.2) x (8 (i)) <_- b for every in VG.

Let P(G, b) denote the convex hull of the b-matchings of G.
Edmonds has proved the following theorem by means of a good algorithm known

as the blossom algorithm.
THEOREM 4 (Edmonds [2]). A defining system for P(G,b) is (3.1) and (3.2)

together with

(3.3)
x(y(S)) <- [b(S)/2J for all S

_
VG such that ISl >-- 3 and

b(S) >= 3 is an odd integer.

A perfect b-matching of a graph G is a b-matching of G such that x(6(i))= b
for all in VG. A near perfect b-matching of G deficient at node is a b-matching
of G such that

x(6(i))=b,-1

and

x(6(v)) bo for all v in VG-{i}.
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A graph G is called b-critical if for every in VG there exists a near perfect
b-matching of G deficient at node and IVGI _-> 3.

A balanced edge of G is a pair of nodes i,/" that are joined by one or more edges
and satisfy bi bj.

For a graph G and positive, integral b, let

3 {S
_
VG: G[S] is b-critical and G[S] contains no

cutnode for which bi 1}

and

{i VG: belongs to a component of G that is a balanced
edge; or b(N(i)) > bi and if b(N(i)) bi + 1, then y(N(i)) }.

A theorem of Pulleyblank can now be stated.
THEOREM 5 (Pulleyblank [7]). A minimal set of inequalities that define P(G, b)

is (3.1) together with

(3.4) x (6 (i)) <= b for every in

and

(3.5) x(y(S)) <- [b(S)/2J for every S in :.
That (3.1), (3.4), and (3.5) is a defining system for P(G, b) follows from a result

of the next section, but the minimality seems more difficult to demonstrate.

4. TDI linear systems and b-matchings. The defining system for P(G, b) given
in Theorem 4 is not in general a TDI linear system. This can be seen by considering
a triangle with b 2 for each node and cj 1 for each edge/" in the objective function

max Y{cx j EG}.

By Theorem 2, there does exist a TDI defining system for P(G, b) which has
integral right-hand side. Such a TDI defining system is given in the following theorem,
which can be proven easily using Edmonds’ blossom algorithm (see Pulleyblank [8]).

THEOREM 6. A TDI defining system for P(G, b) is (3.1), (3.2), and

(4.1) x(y(S)) <-_ [b(S)/2J for every S
_
VG.

Theorem 6 has been proven without making use of the blossom algorithm by Hoffman
and Oppenheim [6] and Schrijver and Seymour [11] (it should be noted that although
[11] deals with the special case of 1-matchings, its proof generalizes easily to b-
matchings).

The system given by Theorem 6 is much larger than necessary. The result will
now be improved to get a smaller TDI defining system for P(G, b).

Pulleyblank has introduced the idea of b-bicritical graphs in his study of dual
integrality in b-matching problems. A graph G is b-bicritical if G is connected, VGI >-_ 3,
b _-> 2 for all in VG, and for every in VG there exists a b-matching of G such that

and
x(6(i))=b-2

x(6(v)) by for all v in VG-{i}.

Some results on the structure of b-critical and b-bicritical graphs are needed to
proceed further.
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For a graph G, positive integral b, and S
_
VG, let

c(S) {i e V S: G[{i}] is a component of G[V S]},
qg (S) {R

_
V-S: IR >-2, b (R is odd, and G[R ] is a

component of G[V S]},

r2(S) {R
_
V S: IRI >-- 2, b (R) is even, and G[R is a

component of G[V- S]}.

The following theorem of Tutte characterizes those graphs which have a perfect
b-matching.

THEOREM 7 (Tutte [12]). A graph, G, has a perfect b-matching if and only if for
every S

_
VG

b (S) >- b(UC(S)) + 1(S)[.
Using Theorem 7, the following two lemmas of Pulleyblank can be proven.
LEMMA 1 (Pulleyblank [7]). A connected graph, G, is b-critical if and only if

b (VG) is odd, VG[ # 1, and for every nonempty S VG

b(S) b(UC(S)) + lc(S)l + 1.

LEMMA 2 (Pulleyblank [8]). A connected graph, G, is b-bicritical if and only if
b(VG) is even, VGI# 1, and for every nonempty S

_
VG

b (S) >= b(UC(S))+ Ic(S)l + 2.

It is useful to combine the above lemmas to get the following lemma, which can
be proved by noting that if G is a b-bicritical graph and $ is a subset of VG, then

b (S) + b(UC(S)) + Ic(S)l
is an even number.

LEMMA 3. A connected graph, G, is one of b-critical or b-bicritical if and only
vGI# 1, and for every nonempty S

_
VG

b(S)b(U%(S))/I’(S)I/ .
Using Lemma 3 and the TDI-ness of the system given by Theorem 6, a theorem

which gives a smaller TDI defining system for P(G, b) can be obtained. The result
can also be obtained by using the results of Pulleyblank [8], but it is simpler to prove
it directly. The proof uses an idea of Paul Seymour for proving the same result in the
special case of 1-matchings.

For a graph G and positive integral b, let

{S
_
VG: G[S] is b-critical or G[S] is b-bicritical}.

THEOREM 8. A TDI defining sytem for P(G, b) is (3.1), (3.2), and

(4.2) x(y(S)) <- [b(S)/2] for every S in .
Proofi It will be shown that (3.1), (3.2), and (4.2) is a TDI linear system. That it

is a defining system for P(G, b) will then follow from the Edmonds-Giles theorem
(Theorem 1) by noting that every b-matching of G satisfies (3.1), (3.2), and (4.2).

Let c be an integral vector and consider the linear program

(4.3) max {E (cjxi: ] eEG): (3.1), (3.2), (4.2)}.
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The dual linear program of (4.3) is

min Z {b,y,: e VG}+Z {[b(S)/2] Ys: S e}
subject to

y((]))+ Y((]))>-ci forevery] inEG,

(4.4) y => 0 for every in VG,

Ys >= 0 for every S in .
By Theorem 6, there exists an integral optimal solution, (y, Y), to the dual linear
program of

(4.5) max {(cxi: ] eEG): (3.1), (3.2), (4.1)}.

Suppose there exists S
_
VG such that Ys >0 and G[S] is not connected. Let

Sl," ", S be the subsets of S such that GISt],..., GISt] are the components of
G[S]. Let

Y =0,

Y’s, Ys, + Ys fori=l,...,k,

Y YR for all other R VG.

Now (y, Y’) is an integral optimal solution to the dual linear program of (4.5).
This procedure allows the assumption to be made that (y, Y) is such that if Ys > O,

then G[S] is connected.
Suppose there exists S VG such that Ys > 0 and S is not in . Since Ys > O,

G[S] is connected. It can be assumed that IS[ is not equal to 1. By Lemma 3, there
exists a nonempty X

___
S such that in G[S] (notation is relative to G[S])

b(X) < b(U(X)) / l(x)l / 1.(4.6)

Let

y yv + Ys for every v in X,

Y Yo for all other v in VG,

Y =0,

Y’R YR + Ys for every R in (X)(X),

Y’R YR for all other R
_
VG.

It is easy to check that (y’, Y’) is a feasible solution to the dual linear program of
(4.5). To show that (y’, Y’) is an optimal solution, it must be shown that

(4.7) [b(S)/2J >=b(X)+ b(Ux(X))/2 + b(Uz(x))/2-l(x)l/2.

Since the right-hand side of (4.7) is integral, it suffices to show that

(4.8)
b($)

b(x) +b(U(X))+b(U(x))_ l(x)_.___..l.
2 2 2 2

Since

b (X) b (S) b UC(X)) b UC (X)) b Uz(X)),
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(4.8) is equivalent to

(4.9) b (Ue(X)) + le (x)l--> b (X).
Now (4.9) follows from (4.6). So (y’, Y’) is an integral optimal solution to the dual
linear program of (4.5).

The above procedure makes it possible to assume that (y, Y) is such that if Ys > O,
then S is in .

Let

Y= (Ys" S ).

Now (y, Y) is an integral optimal solution to (4.4). E
Using the techniques of Pulleyblank [8, see 7], Theorem 8 can be sharpened.
For a graph O and positive integral b, let, rO {S

_
VG" G[S] is b-bicritical and there does not exist

a node u S that is adjacent to v VG-S with bo 1}.

where is as defined in 3. Let ’ be defined as in 3.
THEOREM 9. A TDI defining system ]’or P(G, b) is (3.1),

(4.10) x(8(i))<-bi forevery in ,
and

(4.11) x(y(S)) <-_ [b(S)/2J ]’or every S in ’.

Proof. Again, it suffices to show that (3.1), (4.10), and (4.11) is a TDI linear system.
Let c be an integral vector. It will be shown that there exists an integral optimal

solution, (y, Y), to (4.4) such that if Ys >0 for some $ in @, then $ is in ’ and if
yi > 0 for some in VG, then is in 7/’. This will prove the theorem.

By Theorem 8, there exists an integral solution, (y, Y), to (4.4). Suppose there
is an $ in such that Ys > 0 and $ is not in ’. If G[S] is not b-critical, then letting

Y =0,

Y’stt, Ysooi+ Ys,

Y’R YR for all other R in ,
where v VG-$ is adjacent to a node in $ and bo 1, gives an optimal solution
(y, Y’) to (4.4) (G[S t.J{v}] is b-critical). So it can be assumed that G[S] is b-critical.
Since $ is not in ’, G[S] is a b-critical subgraph with a cutnode v such that bo 1.
Let S1,. , Sk be the subsets of $ -{v} such that G[$1], , G[Sk] are the components
of G[S {v }]. Let

=SiLl{v} for/=l, 2,...,k.

Using the definition of a b-critical graph, it is easy to check that G[S] is a b-critical
graph for 1, 2, , k. Let

Y =0,

Y’s=Ys+Ys fori=l, 2,...,k,

Yk YR for all other R in .
The solution (y, Y’) is an optimal solution to (4.4). This procedure allows the assump-
tion to made that (y, Y) has the property that if Ys > 0, then $ is in ’.
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let
Suppose there exists an in VG such that yi >0 and is not in 7/. If b(N(i))<=b,

y =0,

Yo=Yo+y forvinN(i),

Y Yv for all other v in VG.

The solution (y’, Y) is an optimal solution to (4.4). If b(N(i)) b + 1, let

S N(i) [3{i}.

Since y(N(i)) , G[S] is a b-critical subgraph with no cutnode v such that by 1. Let

Yi =0,

yo yo for all other v in VG,

Y’s Ys + Y,

Yk Ya for all other R in

Again, (y’, Y’) is an optimal solution to (4.4). These two operations allow the assump-
tion to be made that (y, Y) is such that if yi > 0, then is in

As was mentioned earlier, a result of this theorem is that (3.1), (3.4), and (3.5)
is a defining system for P(G, b). The stronger result of Pulleyblank (Theorem 5) will
be needed to prove the minimality of the TDI defining system given in Theorem 9.

THEOREM 10. A minimal TDI defining system for P(G, b) is (3.1), (4.10), and
(4.11).

Proof. By Theorem 9, (3.1), (4.10), and (4.11) is a TDI defining system for P(G, b).
Write the system as (3.1), (4.10),

(4.12) x(y(S)) =< [b(S)/2] for every S in ’,

and

(4.13) x(y(S))=< [b(S)/2] for every S in ’-:.

By Pulleyblank’s theorem (Theorem 5), (3.1), (4.10), and (4.12) is a minimal defining
system for P(G, b). Since P(G, b) is a full dimensional polytope, any defining system
for P(G, b) must include some multiple of each inequality in (3.1), (4.10), and (4.12).
So each inequality in (3.1), (4.10), and (4.12) is necessary for (3.1), (4.10), and (4.11)
to be a defining system for P(G, b).

To prove the theorem, all that remains to be shown is that if any inequality
in (4.13) is removed, the resulting linear system is not TDI.

Let G be a graph and let S
_
VG be such that S is in ’ but not in . Now let

(4.13’) be the set of inequalities (4.13) with

x (y(S)) -< [b(S)/2]

removed.
It must be shown that for some integral c, the dual linear program of

(4.14) max {z (cxi: ] EG): (3.1), (4.10), (4.12), (4.13’)}

has no integral optimal solution. This is equivalent to showing that the dual linear
program of

(4.15) max {Y. (cjxj: ] eEG): (3.1), (4.10), (4.11)}
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has no integral optimal solution, (y, Y), such that Ys O.
Let

1 for every j in /(S),
c. 0 for every other / in EG.

An optimal solution to (4.15) has objective value b(S)/2, since any b-bicritical
graph contains a perfect b-matching. It will be shown that the dual linear program of
(4.15) has no optimal solution, (y, Y), such that Ys O.

Since c is 0, 1-valued, only 0, 1-valued solutions to the dual linear program of
(4.15) need be considered. A 0, 1-valued solution to the dual linear program of (4.15)
corresponds to a subset Q of and a subset T of ’ such that for every edge / in
v(S), either ] has an end in Q or / is contained in y(R) for some R in T. Such a pair
(Q, T) is called a cover of y(S). The weight of a cover (Q, T) of y(S) is

w(O, T)=Y. (b,: O)+E (Ib(R)/2J R T).

It must be shown that there does not exist a cover (Q, T) of y(S) such that S is
not in T and w(Q, T)<-_b(S)/2.

It is straightforward to check that

(4.16)

and

(4.17)

if $’_ $ is such that G[S’] is connected, then there does not exist a
covering (Q, T) of y($’) such that Q and w(Q, T)< [(S’)/2J

there does not exist a covering (Q, T) of /(S) such that w(Q, T) <
b(S)/2 with Q and $ not in T.

Now (4.16) and (4.17) will be used to finish the proof. Let (O, T) be a cover of
such that $ is not in T. I Q , then w(Q, T)>b($)/2. Suppose that Q . It
can be assumed that Q

_
$. Since G[S] is b-bicritical, by Lemma 3

(4.18) b(Q)>=b(U(Q))+II(Q) + 1,

where all notation is with respect to G[S].
Now (4.16) implies that

b(UI(Q)) b(U2(Q)) IX(Q)I
(4.19) w(Q, T)>-b(Q)+

2 - 2 -----"
By (4.18) and (4.19),

(4.20) w(O, T) > b(S)/2. 1

In the special case of 1-matchings, Theorem 9 implies that

(4.21) the minimal defining system for P(G, 1) given by Theorem 5 is TDI.

This result on 1-matchings has been proven by Cunningham and Marsh [1].
Schrijver [10] has shown that every full dimensional, rational polyhedron is

defined by a unique minimal TDI system with integral left-hand sides. This implies
that the system given in Theorem 10 is the unique minimal integral TDI defining
system or P(G, b).

Acknowledgments. I thank the Complexity Combinatorics Fraternity of the Uni-
versity of Waterloo for their helpful discussions concerning this work. I also thank
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Bill Pulleyblank for pointing out the necessity of the condition on b-bicritical graphs
given in Theorem 9.
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ON THE FRACTIONAL SOLUTION TO THE SET COVERING PROBLEM*

DORIT S. HOCHBAUMt

Abstract. We study the gap between the value of the integer solution to the set covering problem and
the value of the fractional solution that solves the linear programming relaxation of this problem.

Key words, set covering, fractional solution, linear programming relaxation, worst case analysis

The set covering problem asks for a collection of sets the union of which covers
a given set of elements at minimum cost. It is formulated as an optimization problem:

min Ca" .x

subject to Ax >= 1, x a 0-1 vector,

where x is a vector such that xj is equal to 1 if the/’th set is selected and 0 otherwise.
The vector C is the vector of costs associated with the sets and A a 0-1 matrix where
A (ai]) and a0 I if set / covers element and 0 otherwise. Without loss of generality
we may assume that C > 0 (Cj <= 0 implies implicitly x 1). By replacing the require-
ment that x is a 0-1 vector by the nonnegativity requirement (x =>0), we obtain a
linear programming problem. The purpose of this note is to study the gap between
the optimal solution value to the linear program Zr (f stands for "fractional" solution)
and the integral solution to the set covering problem Z*.

Chvfital’s analysis of the greedy heuristic for set covering problems [2] uses the
following ideas" he shows that the greedy solution value is equal to y a’l where y is
certain feasible solution to the constraint set y ’A <=H(D). C" and where H(d)=
yte= 1/1 and d is the maximum column sum of the matrix.

Therefore,

H(d) Z= min H(d) CT x yT 1 >=Z*.
Ax
xO.

The above inequalities imply that Z*/Z <=H(d).
Consider now the "LP heuristic" (a detailed worst case analysis of which is given

in [3])" Let x* be the fractional optimal solution of the linear program

min Cr x

subject to Ax >- 1, x >= O.
Then the set of columns 7 {/’Ix ’ => 1/f} is a cover where is the maximum row sum.
That is, the vector with 1 only if/" J and 0 otherwise, satisfies A 1. Now

1 1z:>-_ E Cx> C.> Z*

which implies that Z*/Z <=f. It follows that Z*/Z
In fact, the bound f is tight in the sense that there exist problems for which the

ratio Z*/Z is arbitrarily close to ]’. We are going to show that next.
Consider the following family of problems: Let C 1 (the vector of all entries

equal 1) and the 0-1 matrix A contain n columns and () rows each a characteristic

* Received by the editors December 15, 1981. This research was supported in part by the National
Science Foundation under grant ESC-8204695.

" School of Business Administration, University of California, Berkeley, California 94720.

221



222 DORIT S. HOCHBAUM

vector of a different subset of size f of the n columns. (Another way of interpreting
A is the matrix representing a clique in a hypergraph with all edges of size f). Now,
the optimal solution is equal to n (f 1) (in fact, any solution with n (f 1) variables
set to 1 is optimal). To see that the optimal value is at least n- (f-1) we consider
any solution of size n-f, so there are f columns that are not included. Since each
subset of the columns set is represented by one of the rows there is a row that has f
l’s in precisely those columns. This row is not covered, hence there is no solution of
size n-fi The fact that any optimal solution contains at most n-(f-1) columns
follows easily from the existence of f l’s in each row.

The fractional solution to such problems assigns the value 1If to all variables,
i.e., its value is n/fi This solution is optimal since there is a dual solution with value
n/f; the solution with all dual variables equal to 1/(). The ratio of the optimum
to the fractional solution is

Z* n-(f-1) f(f-1)
Z= n/f =f- n

Therefore for all f and e > 0 there exists an no such that for n > no the bound is at
least f-e. Hence, the bound f is tight.

It is interesting to compare the bound to the one derived from the greedy heuristic
n--1for this family of problems. Each column sum is (-1), so

n-1 n-f
H(d)lnd= E lni- E lni [ln(n-1)-ln(f-1)].(f-1)f.

Therefore H(d) is actually greater or equal to f for any nontrivial problem of this type.
Since this family of problems is unweighted (i.e., C 1), we can compare to the

bound derived in 1]. This bound applies when C 1 and is equal to n/4 + 1/2(+1/4n
if n is odd). Hence, for unweighted problems

Z* { 1( 1 n )}< min H(d), f,
4
+ + if is oddZ

Note, however, that for the family of problems discussed above and e sufficiently
small (0.05) the value of f is smaller than n/4, and in that sense this bound is better
than the one in [1] for these problems. Generally, however, none of these bounds
dominate the others for all problem instances.

Aeknowledgmenl: I wish to thank Tom Magnanti and an anonymous referee for
their useful and insightful comments.
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MATRIX PRODUCTS THAT CAN BE EVALUATED
IN CLOSED FORM*

RAY REDHEFFERt AND ALEXANDER VOIGTt

Abstract. A number of elementary but novel approximations are developed for certain continued
products of 2 x 2 matrices. In many cases the error is so small that, if the matrices have integral elements,
an exact formula is obtained by taking the nearest integer to the approximation.

1. Introduction. Continued products of matrices MoM1M2 M,_I are encoun-
tered in the theory of layered dielectric media, in the problem of cascaded networks
and in the theory of Markov processes, to name three examples. They are also involved
in the problem of explicit evaluation of product integrals. When all the matrices Mk
are the same, or when they have the form S-AkS with Ak diagonal, the product can
be evaluated with ease; but the general case is more difficult and few explicit evaluations
are known.

In a study of certain definite integrals we came upon a two-parameter family of
matrices for which the associated products can be evaluated in closed form and can
be approximated by simple expressions of astonishing accuracy. The method which
leads most naturally to these results is based on a dual interpretation of certain
recurrence formulas and is presented in 2, 4 and 7. Discussion from another point
of view is given in 5 and 8. The latter leads to efficient proofs, but gives no clue
as to where the results come from. In this paper, we make a clear distinction between
derivation and verification.

2. An example. Let us denote by Pn the continued product

Pn=(1 1. 3.)(55 5.6 2n-1 (2n-1)(2n))1 2 22)(33 4 6 6)’"(2n-1 (2n)(2n)

Then, as will be shown, P. is given by the exact formula

( (2n),/e (2n+l),/e )(1) P. (nearest integer)
(2n)! (1 I/e) (2n + 1)t (1 I/e)

where e 2.718... is the base of natural logarithms. The phrase "nearest integer"
means that each of the four entries in the following matrix is to be replaced by the
nearest integer thereto. Naturally, without this modification, the formula cannot be
exact, since e is irrational.

Since P. has integral entries, (1) follows if it can be shown that the error in each
of the four elements is less than 1/2. In fact the error is less than 1/(2n), as will be
seen shortly. For example, when n 5 the approximation is

1334960.9214684570.08)2293839.08 25232229.92

and P. is obtained by taking the nearest integer. If n 5,000, the entries in Pn are
integers involving thousands of digits and yet the error in the approximation is at

* Received by the editors April 6, 1981, and in revised form July 19, 1982.
t University of California, Los Angeles, California 90024. The research of this author was supported

in part by the Mathematisches Institut I, University of Karlsruhe, under auspices of the Deutsche Forschungs-
gemeinschaft.

t Mathematisches Institut I, University of Karlsruhe, West Germany.
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most 0.0001. The formula is one of those rare formulas that are both asymptotic and
exact.

To obtain (1) without a priori knowledge of the value of P., let a. and b. satisfy

tae n >-0,dt

()
tz"+ e dt (2n + 1)!-b,e, >-_0.n

Then partial integration gives the recurrence formulas

(3) a, 2nb,_ + 1, b, (2n + 1)a, 1

valid for n _-> 1 and for n _-> 0, respectively. Now comes an important point. By the
second equation (3)

1 (2n + 1)an -bn (2n 1)a,,-1-b,,_l, n >= 1.

If this expression is used instead of 1 in both equations (3) they reduce to

(a, b,,)= (a,,_, b,,_)
2n 1 (2n)

The evaluation of (a,,, b,) in terms of (ao, bo) leads to (a,, b) (ao, bo)P,, P, being the
matrix product introduced above.

On the other hand the choice a,, (2n)! u,, b, =(2n + 1)! v, in (3) gives

u v_ + 1/(2n)!, v u,, 1/(2n + 1)!.

Eliminating v,_l from the first equation by use of the second we get an expression
for u, u_. which implies

(-1) V (-1)(4)

The choices (ao, bo) (1, 0) and (ao, bo) (0, -1) give respectively the first and, apart
from a change of sign, the second row of the matrix P. The approximate formula
with an accurate estimate of error is obtained when the finite sums in (4) are replaced
by the corresponding infinite series.

The formulas (2) were introduced only to show how we were led to (3). We
mention, however, that (2) gives

(2n) 1 (2n + 1) 1
0<a-< 0<

e 2n + 1’ e 2n + 2

for the special case (ao, bo) (1, 0) leading to the top row of P.
3. geelfi. For k 0 let M(x, y) be defined by

( -y (x +) -y (x +)(x + y + +) )(5) M
kx + y + 2k + 1 (x + 2k + 1) + (y + 1)(x + y + 2k + 1)

Thus M(1,-1) leads to the expression considered in 2. We define further (x)0 1
and

() (x) x(x + 1)(x + )... (x + n 1), n e 1,
2

(7) F(x, y)=-++ +....
x x(x + 1) x(x + 1)(x + 2)
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If x is 0 or a negative integer F(x, y) is undefined, but we interpret products such as
(x)nF(x, y) by continuity whenever possible.

Together with its proof, the following theorem provides motivation for more
refined results given later.

THEOREM 1. With Mk as in (5) let lyl--< 1 and n > (e + 1/2)lxl. Suppose further
that x and y are integers of an imaginary quadratic field. Then

=(nearest](1-xF(x, y) 1-xF(x, Y)((X)2n 0 )MoMI"" Mn-1 \integer/ F(x, y) F(x, y) Ix, 0 (x)2n+l

The series F(x, y) satisfies the difference equation

xF(x, y)- yF(x + 1, y)= 1

and belongs to a well-known class of functions which can be expressed by means of
the confluent hypergeometric function [2]. In terms of the incomplete gamma function
we have

y

-ttx-1F(x, y) y -Xe y e dr, Re x > 0.

It is necessary to choose branches of y-X and of the integral in such a way that the
product behaves like 1/x near the branch-point y 0, in agreement with the analytical
continuation given by (7). This well-known formula [1] follows from the fact that
w(y)= yF(x, y) satisfies a first-order differential equation. It is also known [2] that

xF(x, y)
lim y"e , m 0, 1, 2, .

F(x +1)

If x =p is a positive integer we have

oo yk
yPF(p, y)= (p 1)! ’.

k=p

which is readily expressed in terms of e y. The case x 1, y =-1 leads to the result
of 2 while x 2, y =-1 gives

(22 2"33)( 4.5(2n 2n(2n+l)

=(nearest integer)((2n +1)[(1-2/e) (2n +2)[(1-2/e))(2n + 1)!/e (2n + 2)!/e

Further examples are given below, in connection with an improved formulation due
to ProL David Cantor.

4. Derivation and proof. In this section we derive the basic ormulas underlying
Theorem 1 without assuming a priori knowledge of them. The discussion is presented
briefly, because an independent proof by mathematical induction is given in 5 and
also in 8.

For n -> 0 and Re x >-2n let an and bn satisfy

2n I_ tx+2n-1 -yty e dt e -an (x)2n,
.o

(8)
2n+1 / tx+2n -ty e dt e-bn (x)2n+l.o
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By partial integration

(9) a. (x + 2n 1)b._a y2.-1, b. (x + 2n )a. y2.
for n _-> 1 and n -> 0, respectively. Elimination of the inhomogeneous terms gives

(a., b.) (a.-1, b.-l)M.-1, n >-_ 1,

and hence (a.,b.)=(ao, bo)P., where P. =P.(x,y) is the product MoMa." "M.-I
considered in Theorem 1. On the other hand (9) is readily solved by setting

a, (x)2,u,, b, (X)2n+ 1On.

If we denote by
k

F,.(x, Y)= =oE (x)+
the ruth partial sum corresponding to the infinite series F(x, y), the final result is the
exact formula

F._(x, y) F2.(x, y) 0 (x).+

The singularities for x 0,-1,-2,. are removable since the factor (x),, cancels
the zeros in the denominators of F,,_a.

To complete the proof of Theorem 1 we must estimate the remainder
k

F(x, y)-F,.(x, y)= E Y
=+ (x)+

with m 2n- 1 or 2n as the case may be. Let us suppose x rs 0,-1,-2, and let
us also assume Re x _>--R, where R is fixed. Then by a short calculation

IF(x, y)-F,. (x, elyl’ m =>R 1,

where we have used the fact that Ix + m + k >= Re (x + m + k) >- k 1. Upon incorporat-
ing the factors (x),, (x)2,+x, we get a result which is slightly stronger than

(11) IIP.(x,y)-.(x, y)ll-<lx +2hi ell Ixy]

Here/5, (x, y) is the matrix on the right in the approximate formula of Theorem 1 and
the notation ]IAI]<=B for matrices A (ai), B (bi) means lail-<-bi for all relevant
values of and/’. Inequality (11) holds under the sole hypothesis that Re x >-2n.

Theorem 1 follows if the error is less than 1/2, and by (11) this holds if [Yl =< 1
and x is in the circle of Apollonius defined by Ix + 2n Ze Ix i. The latter circle contains
the circle n (e + 1/2)Ix] and is contained in the circle n (e- 1/2)Ix[. Hence, if the result
is based on (11), the optimal constant c in the hypothesis n > c
and e -1/2. Equation (11) can be sharpened in special eases, e.g., if the series for F(x, y)
is alternating, but these refinements will not be discussed here.

$. 12antor’s |aetorization. It was observed by Prof. David Cantor of UCLA that
M, NzkNk+1, where

(12) Nk(X,y)=( -y(x+k) )x+y+k+l
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Thus, MoM1 M,-I NoNI N2,- and (10) would follow by taking m 2n 1
in the formula

(13) NoN Nm (1-xFm(x’ Y) 1-xF"+(x’ Y))((x)m+x 0 )F,(x, y) Fm+I(x, y) 0 (x),,+2

It is not difficult to show that

(x +y +m + 2)F,,+(x, y) yF,,(x, y)+(x +m + 2)F,,+2(x, y)

and, using this, to establish (13) by mathematical induction. This gives a new proof
of (10) and shows that (10) is the special case of (13) in which there is an even number
of factors on the left. Grouping factors in pairs produces the matrices Mk considered
in Theorem 1. The same calculation shows that the error introduced with F instead
of F,, and F,,/I in (13) satisfies (11) with 2n replaced by m + 1.

As pointed out by Prof. Cantor, there is a one-to-one correspondence between
a matrix product of the form

k =o bk
and a continued fraction. If the latter admits a simple closed-form expression, or
approximation, the same is true of the former. This remark obviously applies to
products of matrices each of which has the form

(01 ak)( ak+) (ak akbk+l )bk bk+ bk ak+ - bkbk+
and is the first generalization suggested by Theorem 1. A second generalization is
discussed in 7.

6. Two additional examples. The factorization introduced in 5 allows us to
replace the matrices Mk by simpler matrices Nk in forming the product. As an
illustration, it is readily checked that

F(, 1)
2 f etdt =a 1.0761590138255 .,
e J0

where a is defined by this equation. The choice x 1/2, y 1 in Cantor’s formulation
of (10), (11) gives

(14)

0 1 0 3 5 2m-1

where u,, 1 3.5... (2m- 1) and v, u+/2. Formulation in terms of Mk with
m 2n involves a more complicated product with no increase in mathematical content.

Although the error does not tend to 0, and hence does not lead to an exact
formula of "nearest integer" type, the error is extremely small compared to the
principal term. For example if m 10 the true value of the product is

302432822 3175544119)704592506 7398222337
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and the error in the nearest-integer approximation (14) is

45
(true)- (approx.)

-90
-4279)"

(This is comparable to 2"/m 102.4.) In general it can be shown that the number of
correct significant digits given by the approximation is about m loglo (m/e). Thus one
can expect more than 150 correct digits when m 100 and nearly 6,000 when
m 2,000.

As a second example, we point out that if y is complex, the formulas reveal a
periodicity with respect to Im y which is far from obvious at first glance. Let (x, y)=
(1, it), with real, and let

01)+it(00 -1n)A, =( n+

The structure of A, gives no clue that the product of Ak should involve a 27r periodicity
with respect to t. Yet by (13) with A, =N,-1

limAiA2...A,(not__ ) (t-sint t-sint)./cost-l cost-l)-. n! sin sn t\ 1 -cos 1 -cos

An approximate equality of the same sort holds for a finite product of n factors
provided Itl is small compared to n ;in fact, Itl <--n/e gives an error o(1) as n .

7. Another generalization. It was observed by the referee that the argument
presented in 4 can be significantly generalized. The generalization sheds light on
the topic of this paper and is presented now. Consider the system

for n >= 1 and n => 0, respectively, where the coefficients are complex numbers with
b,, , and/, nonzero. Just as in 2 and 4 it is found that the equations can be
written in homogeneous form, on the one hand, and can be solved explicitly on the
other. The homogeneous form is

(16) (a,, b,)= (a,-1, b,_)M,_, n >= 1,

where

(17) M,_

On tn
n-1 tn-1

an
_

and the solution is obtained by setting a, b,u,, b, ,v,. If we let

(18) s.= a
k=lkk -I-

k=O Itk
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the final result gives the product P. MoM1 M._I in the explicit form

This leads to a simple approximation when the series

(20) S=
k=0 k

converges. The special case . (x)z., . (x).+, a. _y.-a, . _yZ. in (19)
gives (10). Equations (18) and (19), together with the approximation given by (20),
constitute the second generalization suggested by Theorem 1.. A ireel r. It will be seen next that (19) admits a short direct proof, and
in fact follows from the special case . . 1. This does not quite reduce (19) to a
triviality, however, because the central problem is not the proof of (19) but the
formulation of it in the first place.

Instead of the above substitution a. .u., b. .v. let us set a. p.. and
ft. q... Then, by a short calculation, the matrix M._ in (17) satisfies

where

Since MoMa’" Mn-1 (A0)-lHoHa H._xA., formula (19) is equivalent to

(21)
l (qo+q.-S,, qo-S,?HoHI H,,-l =q-’o \ S,, -q,, S,, ]’

where

(22) S. Y. Pk + Y’. qk.
k=l k=O

That (21) holds is readily proved by mathematical induction, thus giving a new proof
of (19). If i 0i 1 for all ], clearly M. Hi.

9. Discussion. There are so many parameters in the matrix (17) that one might
well expect that an arbitrary 2 x 2 matrix L,_I could be represented in this form. By
a somewhat laborious calculation it is found that this is indeed possible, but that the
conditions for O. and 0. are

(&,.O.)=(&,,-x,O.-)L,,-x.

Thus, determination o &. and . involves the very product LoL L._x that one
would like to find. Something of the sort is to be expected, since there is no formula
for a product ot arbitrary 2 x 2 matrices comparable in simplicity to those of the
foregoing discussion.

The generalization in 7 gives us an opportunity to point out that the high degree
of accuracy in the approximate formulas of 2, 3 and 6 is the exception rather than
the rule. For example, the choice a =0,/3 1/(k + 1), & =0 1 in (19) gives the
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approximate formula

0 -k 2 27r;6/k=l zr zr2/6 ]

which has a superficial resemblance to those with which our discussion began. But
the error is of the order of magnitude of (n !)2In and hence is hopelessly far from
giving a result of the "nearest-integer" type. If n 7 the exact and nearest-integer
approximate results are respectively

(-12482064 -13000464 (-16382357 -16382357
37883664 384020641’ \ 41783957 417839571"

It is readily checked that the correct matrix following (n !)2 in (23) is

(1-zrz/6 1-zr2/6 1( 1 1) 1 ( 1 -1)/6 zr/6 /
+- +

zr n -1 -1 n -1 1

aside from terms of order 1/n 3. The resulting approximation

(-12494357 -13012757]
37895957 384143571

is much better, but is still wide of the mark.
Finally, we mention that the representation

(0 --k2)(ak akbk+l)(k+l)2 (k+l)E+k 2 bk ak+l+bkbk+x
is obviously impossible, so that the product (23) does not admit the factorization
discussed in 5. This indicates that the generalizations of Theorem 1 given in 3
and 7 are truly different.
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SUBBLOCK OCCURRENCES IN THE
q-ARY REPRESENTATION OF n*

PETER KIRSCHENHOFER"

Abstract. Let Bq(w, n) denote the number of subblocks w in the q-ary representation of n N
(overlapping allowed). The paper deals with the mean value m -a. .m-a,=o Bq(w, n) and an application of
this result on the summing function of the generalized "sum of digits" function introduced by H. Prodinger
[SIAM J. Alg. Discr. Meth., 3 (1982), pp. 35-42].

1. Introduction. In a recent paper [4] H. Prodinger has proved the following
result on the number B2(1 s, n) of subblocks of s consecuting ones in the binary
representation of n N (where overlapping is allowed):

1 m-a log2 m -(s 1) E
(1) B.(1s, n)=

2s
+H(log2 m)+--,

/’/’l n=0

where H is continuous, periodic with period I and satisfies H(0)= 0 and the error
term E E(m) is bounded by 0 E 1. The Fourier series of H is derived, too.

In the present paper we shall study the following generalized question:
Let Bq(w, n) be the number of subblocks w in the q-ary representation of n

(overlapping allowed). Is it possible to establish a result like (1) for the average numbers

2 B(w,n) ?
m n=O

By Theorem 1 we answer this question or subblocks w, the first digit of which
differs from zero: the reason to exclude subblocks w that begin with a zero is that
we do not want to allow the subblock w to overhang to the let of the most significant
digit of the representation of n. If we did count occurrences that overhang in this
way, then the result of our Theorem 1 would hold for all strings w that do not consist
entirely of zeros.

In order to prove our desired result, we will first deal with a generalized version
of the problem: let

(2) r ,g ([] -q[l) ’q

be the q-ary representation of the real number r N 0 and Aq(w, r) denote the number
of occurrences of the subblock w that start to the left of the radix point (overhanging
to the right allowed). In Proposition 1 we will show for the average of Aq(w, r) that

logq m
(3) 2m A(w,r)dr= q +H(logqm),

with H continuous, periodic with period 1 and H(0)= 0.
In the second step (Proposition 2) we consider the difference between Aq(w, r)

and the number Bq(w, r) of subblocks w in the q-ary representation of r that are
entirely to the left of the radix point (i.e., we consider the occurrences of w that

* Received by the editors August 19, 1981, and in revised form August 10, 1982.

" Institut fiir Algebra und Diskrete Mathematik, Technische Universitit Wien, Gusshausstrasse 27-29,
A-1040 Wien, Austria.
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232 PETER KIRSCHENHOFER

straddle the radix point) and prove

(4) 1__ (A(w, r)-B,(w, r)) dr Iwl- 1 Ew(m)
m qlwl m

where E(m) is bounded (estimates are given in Proposition 2).
Combining (3) and (4) yields the average of B(w, r), but since we have only

counted occurrences of the subblock w that are entirely to the left of the radix point
by B(w, r), we have

1 1 --Jo B(w, r) dr B(w, n)
m m n=o

and the desired result is established (Theorem 1).
The proofs of Propositions 1 and 2 will be based on a "counting" lemma, which

gives the connection between the numbers Ao(w, r) and B,(w, r) and terms of the type
[(n/q)+] with [0, 1-1/q]. ([4, Thm. 1] is in fact a special case.)
As a consequence of the main theorem we get a result on the summing function

of the following generalized "sum of digits" function (compare [4], where the summing
function is investigated in the case q 2):

kl

We use the following abbreviations"
For any u, w e {0, 1, , q 1}*,v {0, 1, , q 1}, (u. v)q denotes the real number
with q-ary representation u.v; the length of w and the (q- 1)-complement of
w (that means ... with =q-l-w if w w... w).. Te ege le t q(,). Following the plan as mentioned in the
introduction we start by establishing explicit counting" formulas for Aq(w, r) and
Bq(w,r).

LMNA 1. Let be a string o {0, 1,..., q- 1}* with rst digit different rom 0
and let Aq(w, r) dno the number o occurrences o as a subblock in the q-ary
representation (2) o[ the real number r O, where all those occurrences are counted that
start to the left o[ the radix point (straddling allowed). Then

Ao(w’r)= kl ([ r l [+0. )0 + +0. 3.

The number B(w, r) of occurrences of w that are entirely to the left of the radix point
is given by

+ (0. ff). + + (0. if)..
klwl

Proof. The terms

+ (0. if). + + (0. if).

can only take the values 0 or 1 and take the value 1 if and only if

+(0. ff) =(u (q-1)lWlv)
q

with strings u {0, 1,. ., q 1}*, v {0, 1, ., q 1}s.
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This is equivalent to- (u (q 1)lWlv)0 (0. )o (u wv)o,
q

that is to an occurrence of w as a subblock in the q-ary representation of r, as w starts
with a digit different from zero. The cases 1 <-k <-Iw[- 1 obviously correspond to the
occurrences of w that straddle the radix point, while k >_-Iwl yields the occurrences
entirely to the left of the radix point.

In the next step we show that the average of Ao(w, r) is built up by a main term
of logarithmic order and a periodic error term.

PrtoPOSITION 1. Let w and Ao(w, r) be as in Lemma 1. Then the mean value of
Ao(w, r) fulfills

1
Aq (w, r) dr

logo m
m qlWl +Hw (logo m),

where Hw is a continuous, periodic function with period 1 and Hw (0) O.
Proof. Using the formula for Ao(w, r) established in Lemma 1 gives

Ao(w, r) dr E r 1 r
+(0. ff)o + +(0. ff)o dr,

k>_l

which equals

+ (0. )o + + (0. ff,)o dr,
k:=l

with [logo m by locating the leftmost significant digit of m.
Let/3 (0. if)o, s Iwl and

(5) gt,(x)= Io ([u + +7]-[u +--lq) du.

Then g, is continuous, periodic with period 1, g.(0) 0 and by a simple substitution
the sum from above turns to be

r+l m
m(/+l)+ ,q g,s

which can be rewritten as

1
go,s(m qq m(l+l)+k,=0 ql+t-k k--)

since g,(/’)= 0 for integers/’.
Now [logo m and {x } x Ix J, so that the last expression from above equals

1 m 1-{logq m} -1+{logq m}m.logore+ (1-{logom})+m.q "ht,(q

with

(6) ho,(x) , q-k go,s(X qk).
k_O
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Defining

(7) Hw(x)
1{x____}+sql-Xho,s(qX-l)
q

(again with/3 (0. if)o, s Iwl), Hw is continuous, periodic with period 1 and fulfills
Hw(0) 0 and

Ao (w, r) logo m rn H(logo rn ),dr +

so that the proof of the proposition is complete.
A Fourier analysis of the functions H can be done just in the same way as in

[4] with the functions H from relation (1) from above and yields the following:
COROLLARY 1. H(x) kz hk e2ix with

F((0.w)) 1 ( 1 )h0=logr((0" w+q-- +logq

-,s/2kzriq’ ((2kri\iogq’ q-lwl)(1"" (0. w)/- (0. w) +
h k#0,

2kri2kri (1 +log q]
where (z, a) is the (-function ofHurwitz (see, e.g., [5]).

We continue our approach to Theorem 1 by studying the contribution of the
occurrences of w that straddle the radix point.

PROPOSITION 2. Let w, Ao(w, r) and Bo(w, r) be as in Lemma 1. Then

__1 (No(w, r)-Bo(w, r)) dr Iwl- 1 _E(m)
m cl

Iwl
in

where the error term E(m is bounded by

_(l_ql_ll)!0.. v)q<=E(m)<=(l_q_ll) (0. w)q
q-1 q-1

Proof. Starting again with Lemma 1 and setting/3 (0. if)o, s Iwl, we have

Io 1)(A(w, r) B(w, r)) dr
r r
+fl + +fl dr.

k=l

Using go, from (5) in a similar way as in the proof of Proposition 1, the last
expression can be rewritten as

m + E qg, =m. ...-E(m).
q = q

As an immediate consequence of definition (5) we have

(_) ()( 1)1 1

so that we get the following bounds for the error term E(m):

E(m) -
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Observing 1 (0 ff)q q-lwl (0 w)q, the proof of Proposition 2 is complete.

(8)
1

Bq(w, r) dr
logq m -(Iwl- 1)- qlwl +Hw(logqm)+

Ew(m)
m

Since B,(w, r) counts the number of occurrences of w as a subblock in the q-ary
representation that are entirely to the left of the radix point, we have

and therefore

(9)

B,(w, r) Bq(w, [r]) (r >-_ O)

B,(,w, r) dr Y B(w, n).
m m n=o

So we have proved our desired main result:
THEOREM 1. Let w {0, 1,..., q- 1}* be a string with first digit different from

zero. Then the following relation holds for the mean value of the number of occurrences
of w as a subblock in the q-ary representation of n:

1 - log m-(Iwl- 1) Ew(m)
--m ,=o Bq(w,n)= qlWl +Hw(logqm)+m

where Hw is continuous, periodic with period 1 and Hw(O)= 0 and the error term Ew
is bounded by

_(l_ql_lwl) (0. )q<_Ew(m)<_(l_q_lwl) (0. w)._._.___.
q-1 q-1

As mentioned in the introduction Theorem 1 will not remain valid for subblocks
w that begin with a zero if we do not allow the subblock w to overhang to the left
of the most significant digit. Nevertheless the case of strings w starting with 0 can be
treated as follows: we have

q-1

(10) B,(Ov, n)=Bq(v, n)- Y. Bq(]v, n)-8x(v, n),
i=1

where (v, n) is 1 if the q-ary representation of n starts with the string v and 0 if
not. By (10) B(Oiv, n) can be transformed stepwise into a sum of terms as treated in
Theorem 1 and "correcting" sums coming up from the 81’s. Since the complete
formulas derived in this way are somewhat complicated and do not give new insight,
we omit them here.

3. The summing function of the generalized "sum of digits" function. In [4]
H. Prodinger studies the following generalized "sum of digits" function:

(11) S,,(n) n-
k_->l

y" I<_-i<oE --+]a Ot e[O, 1/q],

and evaluates the mean value

1 m--1

E Su,2-(n)
Wl =O

Theorem 1 from above allows to treat the case of Sq,-s with a general q _-> 2"
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(12)

If $ (n) denotes the usual sum of digits, then

S,.,-s(n)=S,(n)- Y i.Bq((q-1)s-li, n)
l_i<q

by Theorem 1 of [4] or Lemma 1 from above.
The mean value of S,(n) has been established by H. Delange [1]:

m--1

(13) --1. . So(n)=q-1
m ,=o 2

.logqm+F(logqm)

with F continuous, periodic with period 1 and F(0) 0.
Identity (12) and Theorem 1 yield with the abbreviation

(14) Kq,s(x)= , ]. Hq__j/qs,(x).
<-i <ct

COROLLARY 2. The generalized "sum of digits" function defined in (11) has the
following mean value for a q-"

1 , Sq, (n)
q-1 s-1

m ,,=o 2
q logm+ q

D
+F(log m K,(log m --,

m

where both F and Kq, are continuous, periodic with period 1, F(0)= Ko,(0)= 0 and

IDl <-_q/2.
The Fourier series ofF has been developed by Delange [1], the Fourier coefficients

of Kq, are established immediately by the defining relation (14) and Corollary 1.
COROLLARY 3. Kq,(x) Yk Ck e2k with

c0 1)
i<q q log q

z
<q klog q’ klog

c kO.
2ki2ki(1 +log q]
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INDEX TWO LINEAR TIME-VARYING SINGULAR
SYSTEMS OF DIFFERENTIAL EQUATIONS*

STEPHEN L. CAMPBELLS"

Abstract. An analytic method of solution is given for systems of differential equations of the form
A(t)x’(t) + B(t)x =f(t), where A(t) may be singular and the system has index at most two.

AMS(MOS) subject classifications. 34A08, 15A09.

1. Introduction. In the last ten years the singular system of differential equations

(1.1) Ax’+Bx =f,

where A, B are n n constant matrices with A and possibly B singular has received
a great deal of study. Applications have been given in economics (the Leontief model)
[3], cheap control problems 1 and singular perturbations, where (1.1) is the reduced
order model [11]. The early results of [9], [10] on (1.1) have also proved useful in
studying nonlinear circuits with implicit models [4], [5], [7] and higher order singular
arcs in control problems [8]. While some questions remain, the theory for (1.1) has
reached a fairly mature level. For a detailed development and reasonably complete
bibliography see [6], [7], [9] which contain discussions of most of the previously
mentioned work.

The situation for the time varying case is quite different. While there do exist
procedures for solving

(1.2) A (t)x’(t) +B (t)x (t) f(t)

in some cases [6], [7], [12] no analogue of the explicit formula given in [10], (or [9],
[6]) has been derived except for special cases. This has complicated the numerical
and analytical analysis of a variety of problems which contain (1.2) as a subsystem.
This paper provides a solution of (1.2) under assumptions that include prior results
and important new special cases. Examples will be given that show the difficulty in
extending these results.

2. Preliminaries. All matrices are taken to be complex matrices. For a square
matrix E, there exists a nonsingular matrix R so that

where C is invertible, N is nilpotent of index k, that is, Nk 0, Nk-1 # 0 and either
C or N may be absent. The index of E, Index (E), is k. If E is invertible, then
Index (E)= 0. The rank of C is called the core-rank of E [9]. The Drazin inverse of
E, denoted ED, is given by

* Received by the editors June 11, 1982, and in revised form August 30, 1982. This research was
sponsored by the Air Force Office of Scientific Research, Air Force Systems Command, under grant
AFOSR-81-0052A.

" Department of Mathematics, North Carolina State University, Raleigh, North Carolina 27650.
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if C is present and by E 0 if E is nilpotent. The Drazin inverse has the properties:

EDEED E, EEo EE, Ek+IE Ek.
Further properties of the Drazin inverse may be found in [9]. The range and nullspace
of E are denoted Y (E), N(E).

The system (1.2) is said to be solvable at if there exists a scalar A (t) so that
A(t)A(t)+B(t) is invertible. If the system (1.2) is solvable for all of interest, it is
said to be a solvable system. For (1.1), solvability is directly related to the uniqueness
of solutions. This is not true for (1.2), [6], [7]. Most attempts to numerically solve
(1.2) or (1.1) have involved backward difference schemes [7]. Solvability is needed
to insure that the resulting linear systems will be consistent and have a unique solution
for all but a finite number of possible time step sizes. Since in most cases (1.2) will
in fact be solved numerically, solvability, where possible, is a natural assumption to
make.

If (1.2) is solvable at t, then the index of (1.2) at is Index ((A (t)A (t) +B (t))-IA (t)).
The index depends only on A(t), B(t) and not A(t) [10], [6], [9]. For (1.2), the
property that the index is identically zero, identically one, or greater than or equal to
two on an interval [0 T] is invariant under "most" coordinate changes of the form
x P(t)y [7].

By a solution of (1.2) on [0 T] we mean a differentiable function of on [0 T].
An initial condition x0 is called consistent at to if there is a solution x(t) so that
X(to)=Xo. Even for (1.1), the consistent initial conditions form a Core-rank [(hA +
B)-A]-dimensional linear manifold.

There are, in general, other kinds of solutions to (1.2) or (1.1) which are impulsive
or distributional. However, the derivation of functional solutions and the consistent
initial conditions is of interest. Knowing the consistent initial conditions tells when
impulses may be present. If a singular perturbation approach is being used, the
functional solution is all that is used from the reduced order problem. In many singular
nonlinear systems, such as those involving relaxation oscillations, the functional
solutions or parts of them represent the "observable" or physically realizable states
[7]. Finally, even if (1.2) can be rewritten as a nonsingular subsystem, the form (1.2)
may be used to preserve system structure. In such "descriptor systems" the functional
solutions are often of most interest.

The system (1.2) often appears in the form

(2.3a) x’(t) A x(t)x(t) +A2(t)y (t) +f(t),
(2.3b) 0 A2x(t)x(t)+ A22(t)y(t) +/2(t)

especially in singular perturbation and nonoptimal control problems [13], [14], [15].
System (2.3) has index one if and only if A22(t) is invertible [7]. This is the case that
has been most studied to date [7], [12]. In this paper we shall solve (1.2) when the
index is two, so that A22 will be singular. Such systems arise in circuits with operational
amplifiers and in singular control problems [7]. Examples will be given to show that
our analysis does not extend to the index 3 case.

3. Main results. Our starting point will be

(3.1) .(t)x’+x ]’(t), O<=t<=T,

where , f are assumed to be ditterentiable. If the original system is in the form (1.2)
and is solvable, the change of variables x =exp (I0, (s)ds)z may be used to rewrite
(1.2) in the form (3.1), where (t)-(,(t)A(t)+B(t))-A(t) and the new ’(t)is
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(h (t)A(t) +B(t))-f(t). Alternatively, one may just multiply (3.1) by (h (t)E(t) +F(t))-and slightly modify the arguments that follow.
There are also two ways to proceed with the derivation, directly or through

"canonical" forms. We shall proceed directly and then mention the canonical form
version.

Our main result is the following.
THEOREM 1. In the stem (3.1) assume thatfand A(t) are continuously differenti-

able on [0 T], Index (A (t)) -< 2 on [0 T] and Rank (2(t)) Core-rank (A (t)) ts

constant on [0 T]. Define the projections P, Q by P =.,, Q I-P. Let N
(I o,,). Assume that

(3.2) I-N’(t) is invertible on [0 T].

Then x(t) is a smooth functional solution of (3.1)/f and only if x [Px]+[Ox], where
[Px ] and [Qx are given by

(3.3a) [Px ]’= (P’-)[Px +P’[Qx +

(3.3b) [Qx [Qf] [I N’]-N[Qf] [I N’]-NP’[Px ].

Thus the dimension of the manifold of consistent initial conditions is the Core-rank of
(0) and the manifold is; P(0)x (0) is arbitrary and Q(O)x(O) is (3.3b) evaluated at O.

Proof. Since Rank (,2(t)) is constant, P, Q and A are as smooth as on[0 T]
Thus N is differentiable and I-N’ is well defined.

Differentiating the expressions N2 0, p2 p, Q2 Q and using P + Q I, PQ
QP 0 the following identities are easily derived:

(I-N’)N=N(N’+I), PP’=P’Q, PP’P=O,

OO’ O’P, P’ -O’, OO’O O.

These facts will be used repeatedly in the following derivation. Note that x
[Px + [Qx ]. Substituting this into (3.1) gives the equivalent system:

(3.4) A[Px ]’ +[Ox]’ + [Px + fox f.

Multiplying (3.4) byo Op and O yields

(3.5a)

(3.5b)

P[Px ]’ +P[Ox ]’ +/o[Px A
N[Px ]’ +N[Ox ]’ + fox Qf

Now

(3.6)

Similarly,

(3.7)

Thus (3.5) is

(3.8a)

(3.8b)

P[Ox ]’ PO’x +POx’ PO’x PQ’([Px ] + fox ])

-PP’Px +PQ’[Qx PQ’[Qx -PP’Qx -P’[Qx ].

O[Px ]’ -Q’[Px P’[Px ].

P[Px ]’ P’[Qx]+A [Px ] Aof
NP’[Px +N[Ox ]’ + Qx Qf.
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Now multiply (3.8b) by N so that N[Ox] NO]’ or, upon differentiating, N’[Ox]+
N[Ox ]’ [NOf]’. Thus

(3.9) NO[x ]’ [NQ]’ N’[Ox ].

Substitute (3.9) into (3.8b) to get [I N’][Qx Qf [NQ1] NP’[Px ]
[I-N’][Q1q-N[Qtq’-NP’[Px]. Since (N) ([I-N’]N)

_
([I-N’]Q), this

equation can be solved for [Qx] to yield (3.8b). Substituting (3.7) and (3.8a) into
[Px ]’= P[Px ]’ + Q[Px ]’ gives (3.3a). l

The system (3.3) completely determines [Px], [Qx] since if (3.3b) is substituted
into (3.3a) a nonsingular system just in [Px results. Its solution can then be used in
(3.3b).

^2If A (t) has constant range and nullspace and N is constant, then P is constant
and (3.3) becomes [Px ]’= [Px +fiof, [Qx [Q]] N[Q[]’ as in [6]. Thus Theorem
1 includes the constant coefficient index two case. If has index one and constant
rank on [0 T], then (3.2) holds (since N-=0) so that the index one case is also
completely included.

Note that Theorem 1 does not require that any ranges or nullspaces are
constant nor does it require that either Rank (A (t)) or Index (A (t)) be constant.

If (3.2) does not hold, there are several possibilities. If (N)_([I-N’]Q),
then (3.1) is consistent for all/ but uniqueness depends on whetherc(I -N’) fq (Q)
{0}. If (N) ([I-N’]Q), then (3.1) may not be consistent for all/’. Alternatively,
it is possible that (3.1) could be transformed to a system with index greater than two
and the solution involves higher than first derivatives of f [7, Example 5.2.1, p. 117].
See also [6, Example 6.4.1, p. 147] and [7, Examples 5.4.1, 5.4.2, pp. 124-125].

The usefulness, either conceptually or in practice, of Theorem 1 remains to be
determined and is under investigation. In any attempt to utilize (3.3) on test problems,
for example, to provide "true" solutions to compare implicit numerical methods with,
several observations need to be made. First, even if A(t) is invertible in (1.2), then a
linear system E(t)z(t)= u(t) will have to be solved for some multiple of the number
of time steps and the more rapidly E changes, the more solutions will be needed.
Thus frequent "inversions" are intrinsic to problems in the form (1.2) or (3.1).

Second, there are several ways to computeo(t) oro(t)h (t) for a known vector
h(t), [9], [16] for a given value of t. One of them, [9, Algorithm 7.55, p. 134] which
would not ordinarily be used, consists of a procedure which terminates in at most n
steps, where is n x n, and involves only matrix products, taking traces and dividing
by a scalar function. In principle it is possible to obtain ()’(t) and hence P’(t) for
small matrices with simple entries by this approach in a program language that does
symbolic manipulation.

Another approach is motivated by the observation that in practice it is usually
easier or possibly safer to obtain (,,)o rather than (o), since explicit computation
of ,o as a function of is difficult and taking the Drazin inverse numerically and
then numerically differentiating is likely to create greater error. The key fact relating
(,)o and (o), is the following unpublished result of Carl Meyer.

PROPOSITION 1 (Meyer). Suppose thatA (t) is an n x n differentiable matrix valued
function on [0 T] with constant core-rank. Then

(310). [A0 ,]o=[o (AO),A0 ].
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Proof. From [9, Thm. 7.7.1, p. 139],

where

H (AD)2 (AD)iA’A (I-AAD)

But from [2, Thm. 2], H (AD)’. [3
There is a trade-off here, of course, in that

is 2n 2n. On the other hand, its computation gives not only (AD) but also Ao.
Proposition 1 has several nonobvious consequences such as the facts that

[ ’] and [Ag (AD)’I
A J

have the same core-rank and that the right-hand side of (3.10) has index one. Even
for the index two case where n 1 in (3.11), the computation of AD, A’ and using
(3.11) is probably more effort than computing A’ and the left-hand side of (3.10) by
a procedure such as Wilkinson’s [16].

It is also possible to derive Theorem 1 from a coordinate change point of view.
We shall omit the details. Under the assumptions of Theorem 1, there exists a
differentiable matrix P(t) on [0 T] such that

c(t) 0 ](3.12) P-X(t)(t)P(t)
0 N(t)

where C is invertible and N2 0 on [0 T]. Let x Py and H p-Xp,, [ p-Xf. Then,
decomposing H, y as in (3.12), (3.1) becomes

(3.13a)

(3.13b)

The analogue of (3.3) is

Cy + (I + CH11)Y + CH12Y2 x,
Ny. +NHx.y + (I +NH22)y2 2.

(3.14a)

(3.14b)

Y -’--(C-I’{’oll)yl-O12y2 d’C- fl
y IN’-r N0,.]-{_f + (Nfl’ +N0a,_y it.

4. An example. A slight modification of an example in [6] can be used to point
out difficulties in the extension of Theorem 1 to the index three case.
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Let

1 R-=
--t 2

A (t) RJR-1
2 0
0 2

-2t -2t2 -2

Then

(4.1) A(t)x’+x =0

has constant core-rank (namely zero), constant index 3 and I N’ I A’ is invertible.
Let x Ry. Then (4.1) becomes

(4.2) 4t2 ))+y=0.
0

System (4.2) has index two on (0 T], index three at zero, core-rank one on (0 T],
core-rank zero at zero. The solution of (4.2) is

(4.3) c an arbitrary constant.

Thus (4.1) has a nonzero one-dimensional manifold of solutions even though A is
nilpotent, which never occurs in the constant coefficient or index two case as shown
by Theorem 1. Also consistent initial conditions at 0 do not uniquely determine
solutions.

Example 1 also shows that a system with index greater than two can sometimes
be changed into an index two system.

$. Conclusion. A fairly general solution of the index two singular linear system
has been derived and discussed. An example has been given to show that similar
results for higher index systems will probably be less general and involve additional
technical assumptions.
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THE CONCEPT OF TWO-CHORD TIESETS AND ITS APPLICATION TO
AN ALGEBRAIC CHARACTERIZATION OF NON-SERIES-PARALLEL

GRAPHS*

SHOJI SHINODA,t WAI-KAI CHEN AND SHU-PARK CHAN

Abstract. The concept of two-chord tiesets is introduced and a necessary and sufficient condition for
a graph to be a non-series-parallel graph is given by use of the rank condition of a two-chord tieset matrix.

1. Introduction. Throughout this paper, G is used to denote a nonseparable
directed graph with edge set E and node set V. The edges contained in a tree of G
are called the branches of and the edges not contained in are called the chords of
where the set of all chords of is called a cotree of t, denoted by . For a tree of

G, an elementary tieset of G containing exactly k of its chords, with an arbitrarily
assigned tieset direction, is called a k-chord tieset with respect to of G, and a tieset
matrix of G which has one row for each k-chord tieset with respect to of G and
one column for each edge of G is called a k-chord tieset matrix with respect to of
G, denoted by Bk)(t). Note that in Bk)(t) we do not include a tieset that is obtained
merely by reversing the direction, the reason being that by reversing a direction it
only changes the sign of a row of Bk)(t). The rank of Bk)(t) is denoted by rank
[B(k)(t)]. Now let us denote the rank and the nullity of G by p and/, respectively. Then

rank [Bk)(t)] <- i.

In particular, if k 1, then the equality in this relation is always satisfied for every
of G with/ _-> 1. However, if k >_-2, then the equality in the relation is not always
satisfied. This brings us to the following question"

"What kind of structure does G have if

rank [B(k)(t)] =/x
is satisfied for at least one tree of G?"

The purpose of this paper is to prove that

rank [BE)(t)] =/
is satisfied for at least one tree of G if and only if G is a non-series-parallel graph.
This result is an algebraic characterization of the non-series-parallel graphs.

2. Algebraic characterization of non-series-parallel graphs. Let B2) (t) be a tieset
matrix of G obtained from B2)(t) by deleting all rows that are not contained in a
maximal set of linearly independent rows of B 2)(t). Br2) (t) is called a reduced two-chord
tieset matrix with respect to of G. From this definition, it follows that

(1) rank [B(2) (t)] rank [B(2)(t)].
The complete undirected graph on four vertices is denoted by K4. A graph

obtained from K4 by assigning arbitrary directions to its edges is called an oriented

* Received by the editors July 17, 1981, and in revised form July 26, 1982.
t Department of Electrical Engineering, Chuo University, Tokyo 112, Japan.
Department of Electrical Engineering and Computer Science, University of Illinois at Chicago,

Chicago, Illinois 60680.
Department of Electrical Engineering and Computer Science, University of Santa Clara, Santa Clara,

California 95053.
The term "circuit" is sometimes used instead of "tieset".
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K4. For any two subsets E and E0 of E such that E f’)E0 , a graph obtained from
G by deleting all edges in Eo and contracting all edges in E is called a minor of G,
denoted by G(E; Eo). In particular, G( Eo) is called a subgraph of G and G(Es; )
is called a contraction of G. G is called a non-series-parallel graph if an oriented K4
is a minor of G.

THEOREM 1. IfG is a non-series-parallel graph, then there is a tree ofG such that

(2) rank [B {2)(t)]
Proof. Since the rank of a two-chord tieset matrix with respect to a tree of G

remains unchanged under the operation of reversing the directions of edges and
two-chord tiesets with respect to t, the directions of edges and two-chord tiesets with
respect to can therefore be assigned arbitrarily in the following proof.

Suppose that G is a non-series-parallel graph. From [1] we can choose a tree
of G in such a way that a minor of G is an oriented K4 shown in Fig. 1, where thin
lines represent chords of and thick lines represent branches of t. Note that throughout
this paper, unless otherwise specified, the directions of some or all of the edges may
be omitted for convenience when graphs are drawn.

c2

FIG. 1. An orientation o]’ K4 in which the directions o] branches are omitted.

In order to prove this theorem, we have only to show that we can construct a
reduced two-chord tieset matrix B{r2) (t) with respect to of G which has the form

columns corresponding to chords

(3) columns corresponding to branches

Btr2) (t) [S T]

such that
(a) the zero-nonzero pattern of S is

(4) S

CI C2 C3 C4 Ci.t

1 1 01[----"
0 1 1’,[ 0
1 0 121

I//////! + 1

(b) every row of S contains exactly two nonzero elements and
(c) the nonzero elements in $ are +1 or -1, where + 1 stands for either +1 or

-1 and ci’s stand for the chords of t.
Now, for a tree of G, let Be(t) be the fundamental tieset defined by a chord c

with respect to t, and let Qb(t) be the fundamental cutset defined by a branch b with
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respect to t. If b Bc(t)-(c}, then tU(c}-{b} is a tree of G which is different from
t. Next, we consider the following algorithm:

Step 1. Set <--0 and C) {c 1, c2, c3}, where c 1, c2, c3 are the chords of shown
in Fig. 1.

Step 2. Set <--i + 1.
Step 3. Set c(i)--{c’[c Qc(tU{c}-{b})-C<i-x), c C(i-1), b B(t)-{c}}.
Step 4. If C<i) , go to Step 2; otherwise stop.
At step 4, if c<i) , then for each chord c’C<i) there exists the fundamental

tieset B,(t U {c }-{b }), which is nothing but a two-chord tieset with respect to t. Such
a two-chord tieset is called a two-chord tieset defined by chords c and c’ with respect
to t, denoted by Bc,(t), where

(5) Bc,(t)=B,(tU{c}-{b}).

Bcc’(t)=Bc’ uIc} {b}

Ob(t)

FIG. 2. Bcc,(t) and Bc,(tO{c}-{b}).

Accordingly, we see that we can construct a reduced two-chord tieset matrix B (2)r (t)
satisfying the conditions (a), (b) and (c) if

(6) E i
_
C<)U C<I)U U C<),

where I + 1 is the value of at the time when the algorithm is terminated. Thus the
next problem is to check whether or not (6) is satisfied. Let ci and cj be a pair of
chords of t, and let B be an elementary tieset of G which contains not only a pair
of chords ci and cj but also a minimal number of other chords of t. Assume
that B is not a two-chord tieset with respect to t. Also, let u and v be the endnodes
of ci and let us and v, be the endnodes of ci. Then, without loss of generality, B {ci, c}
is assumed to be partitioned into two node-disjoint paths P1 and P2 such that P1 and
P2 are paths from u to us and from v to v,, respectively. Also, for convenience, the
nodes from ul to us on P1 are assumed to be ul, u2,’ ", us, the nodes from vl to v
on P2 are assumed to be Vl, v2, ’, v, and P1 and P2 are denoted by ulu2 us and
v lv2...v, respectively. Taking into consideration the minimality of the number of
chords in B, we easily see that the following are true"

(i) If P1 contains a chord of t, then for the endnodes, say u and ux/l, of the
chord there exists no tree-path2 from one of nodes u l, u2," ", u to one of nodes
ux /1, ’, us. Also, if P2 contains a chord of t, then a similar conclusion can be reached.

(ii) If P1 contains a chord of and P2 contains at least one edge, then for the
endnodes, say ux and Ux+l, of the chord and for any node vy(2-< y <-B) there do not

By a tree-path of "tree t" is meant a path consisting of branches of t.
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exist a pair of node-disjoint paths P and P such that P is a tree-path from one of
the nodes ul, u2," ’, ux to one in vy,. ., v and P is a tree-path from one of the
nodes ux/l,’’ ’, us to one in vl, v2,’’ ", vy-1. Also, if P2 contains a chord of and
P1 contains at least one edge, then a similar conclusion can be reached.

Now, let G* be a graph obtained from G by contracting all edges in B fq t. Then
it is evident that t-B is a tree of G* and that B f’) is an elementary tieset of G*,
which contains not only a pair of chords c and Cs but also a minimal number of other
chords of t-B. Also, as is easily seen from the property (ii), any tieset and path in
G can be revived uniquely from their corresponding tieset and path in G*. By taking
account of B fq in G*, we have the following two cases to consider.

Case 1. The chords c and Cs have a common endnode in G*. In this case, a tieset
B f’) in G* contains at least three chords c, cs and Ck as illustrated in (a) of Fig. 3,
where u is a common endnode of ci and c, v is a common endnode of c and Ck,

v is the other endnode of Ck, and there exists a path from node v to node v whose
edges are all in B f’) i- {c, c, Ck}. Since any two nodes can be uniquely connected by

a. unique,tree-path it follows from the property (i) that there exists a pair of tree-paths
P1 and P2 of in G such that/1 f’l ( LI (t-B)) and P21") ( (t-B)) are tree-paths in
G* from u to v and from v. to u , respectively. Hence we see that G has not only

Ul U2 Ua

v2’- -(d)_
iUl _Ua

1’ v’: (h)-

2’-- --’’--
sS

1’ v2’- -(j) O’
Ul, U2’ i _U=

%%D ssS
Vl v2 -(k) v

Ul

/,,’ Cl

Cl

SSCk

v2- (I)

u’ ’-_ : :;; :

(,,-
v2’- (m)

u=’ 2’

i| ", sS
%%

Ua

FiG. 3. Graphs used for the proof of Theorem 2.
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a two-chord tieset Be,ok (t) but also a tieset B’ containing a pair of chords Ck and cj
such that the number of chords in B’ is smaller than the number of chords in B by
1. Note that such a tieset B’ is also a tieset containing not only a pair of chords Ck
and cj but also a minimal number of other chords of t.

Case 2. The chords ci and ci have no common endnode in G*. In this case, a
tieset B fq in G* contains at least four distinct chords ci, ci, Ck and c as illustrated
in (d) of Fig. 3, where u and v are the endnodes of c, u’ and v are the endnodes
ofc, uu....u’ isapathfromu tou’andv’v...v isapathfromv tov
From the property (i), it follows that there exists either a tree-path from u to v as
shown in (h) of Fig. 3 or a tree-path from u to one of nodes v,..., v as shown
in (e) of Fig. 3.

Subcase 2.1. There exists a tree-path from u to one of nodes v,..., v as
shown in (e) of Fig. 3. In this case, it follows from the properties (i) and (ii) that there
exist a pair of tree-paths /1 and /2 of in G such that /J f’l(’it.J(t-B)) and
JSEf’) ( (t-B)) are tree-paths in G* from v to u and from v to v, respectively,
as shown in (e), (f) and (g) of Fig. 3. Hence G has not only a two-chord tieset Be,ok (t)
with respect to but also a tieset B’ containing a pair of chords Ck and c such that
the number of chords in B’ is smaller than the number of chords in B by 1.

Subcase 2.2. There exists a tree-path from u to v as shown in (h) of Fig. 3.
In this case, from the property (i), it follows that there exists either a tree-path from
v to u as shown in (i) of Fig. 3 or a tree-path from v to one of nodes u ..., u’
as shown in (j) of Fig. 3. If there exists a tree-path from v to u as shown in (i) of
Fig. 3, then a similar conclusion as in the Subcase 2.1 is reached. If there exists a
tree-path from v to one of nodes u,. , u’ as shown in (j) of Fig. 3, then it follows
from the properties (i) and (ii) that there exists either a tree-path from u to v as
shown in (k) of Fig. 3 or a tree-path from u to v as shown in (1) of Fig. 3. If there
exists a tree-path from u to v as shown in (k) of Fig. 3, then this case is handled
in the same way as Subcase 2.1. On the other hand, if there exists a tree-path from
u to v as shown in (1) of Fig. 3, it follows from the properties (i) and (ii) that there
exists either a tree-path from v to u as shown in (m) of Fig. 3 or a tree-path from
v to u as shown in (n) of Fig. 3. However, these two situations as shown in (m)
and (n) of Fig. 3 are also handled in the same way as the Subcase 2.1.

Thus, it follows from the mathematical induction that there exists a consecutive
sequence of two-chord tiesets such as B,(t), B,(t),...,B,j(t) for any pair of
chords ci and cj of t. Hence we can construct a reduced two-chord tieset matrix B2 (t)
satisfying the conditions (a), (b) and (c). This completes the proof of the theorem.

The converse of this theorem will be proved in the following way.
THEOREM 2. If there exists a tree of G such that

(7) rank [B(2(t)]

then G is a non-series-parallel graph.
Proof. Suppose that there exists a tree of G such that (7) is satisfied. Then,

without loss of generality, we can assume that a reduced two-chord tieset matrix
B2 (t) has the form

(8)

Bt2) (t)

columns corresponding to chords of

columns corresponding to branches of
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such that

(9) S

-t

.....- ,
0 g (iq)

/

z

where every row of S contains exactly two nonzero elements (+ 1 or -1), +/- 1 represents
either + 1 or -1 and the kth block-diagonal square submatrix (0 is

(10) g<i)

ik columns
--_

1 1 0 0

1 1 0

ik rows,
0

0 0 1 1
_e(ik) 0 0 1_

where e(ik) is +1 if ik is odd and -1 if ik is even [2]. Note that does not include
,(2) because a pair of chords ci and ci with respect to a tree of G defines a unique
two-chord tieset Bc,cj(t) with respect to the tree of G where we do not consider a
two-chord tieset obtained from Bc,(t) merely by reversing its direction.

G is called a series-parallel graph if G is not a non-series-parallel graph. Now,
suppose that G is a series-parallel graph. Let c l, c2,’’’, c, be the chords of a tree
of G, and assume that there exists a sequence of two-chord tiesets Bl2(t),
B2c3(t), , Bc,_I (t), B,(t) with respect to such that the directions of chords cj-1

and cj are chosen to agree with the direction of the two-chord tieset B_j(t), where
] 2, 3,..., k. As will be easily checked, a necessary and sufficient condition for a
two-chord tieset defined by a pair of chords ci and cj with respect to a tree to exist
in G is that there exists a fundamental cutset with respect to which contains the pair
of chords ci and c. Therefore, B(t) can be drawn as shown in (a) of Fig. 4, where
the thin lines represent chords of and the thick dotted lines represent tree-paths of
t. Now, since G is a series-parallel graph, any elementary cutset of G can be
transformed into an incidence set of one of its 2-isomorphic graphs, where G’ is said
to be 2-isomorphic to G if G’ has not only the same set of edges but also the same
set of cutsets as G. (See Lemma 1 which will be given in the appendix.) Thus, we
can regard the relationship between Blc(t) and a pair of chords c and c2 as shown
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2
(t)

FIG. 4. Relationships between Bclc2(t) and a pair of chords cl and c2.

in (b) of Fig. 4. Also, the possibilities for the existence of Bclc2(t) and Bc2c3(t) are
listed in Fig. 5. In any case shown in (a), (b) and (c) of Fig. 5 there exists a two-chord
tieset Bl3(t), but in the case shown in (d) of Fig. 5 there does not exist a two-chord
tieset Bc(t). That is to say, in any case shown in (a), (b) and (c) of Fig. 5 there exists
a fundamental cutset with respect to which contains chords cl, c2 and Ca, but in the
case shown in (d) of Fig. 5 there does not exist a fundamental cutset with respect to
which contains chords cl and ca. If a set of chords c , c,..., c, which defines a

sequence of two-chord tiesets Bi(t), B_(t), , Bi_ci_(t), Bci_ci(t), is contained
in a fundamental cutset with respect to t, then for any two of chords c , c,..., c
there exists the corresponding two-chord tieset and the sequence
(Bi_(t),..., Bi_li(t)) is said to be transitive. For such a transitive sequence, BIci(t)
is called the representative two-chord tieset of the sequence. If the directions of chords
c i- and c are chosen to agree with the direction of the two-chord tieset B,,_,c,,(t),
where i- 2, 3,..., l, then c and c have the same direction in Bii(t) if is even
and the opposite directions in BIci(t) if is odd. For a sequence
(Bc(t), B2(t),. ., B,,_.,(t), B,c,(t)) of two-chord tiesets, let us obtain a
sequence

FIG. 5. Relationships between Bc,2(t) and B23(t).
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of two-chord tiesets by replacing maximal transitive subsequences by their representa-
tive two-chord tiesets, and let B(2)(t) have the rows corresponding to the two-chord
tiesets Bclc2(t),..., Bc,,_I,, (t) and B.(t). Then we see that B(2)(t) has

() &

and

Cl C2 {73

-1 1 0
0 1 1

0 0

Cm-1 Cm

0 0-
0 0

0
1 1
0 1

m rows

(2) s’

C Ck2 Ck3 Ckr-

-1 (-1) 0 0
0 1 (-1)k3-k2+l 0

0 0 1
_ex 0 0

Cm

(__l)m-k,-1+1

1

rows

as its square submatrices. Now by reversing the direction of chords and two-chord
tiesets appropriately, $’x in B t2) can be changed into

(3) S

where

C Ck Ck3 Ckr_l Cm

1 1 0 0 0
1 1 0

0 1

ke 0 0

rows,

(14) e x’ (-1)k x (-1)3-2+1 x.. x (-1)"-’-’+e =(-1)"+r-2ex.
By repeated application of replacing maximal transitive subsequences by their rep-
resentative two-chord tiesets, we finally obtain a sequence (B,cp(t), Bp,, (t), B,,. (t))
of two-chord tiesets. Thus we see that B(2)(t) has

(15)

as its square submatrix, where

C p Cm

S’"x= 1 1
0 1

(16) e (-1)’+- x (-1)+- x x (-1)+3-ex =(--1)m+lEx.
Since G is a series-parallel graph, it follows from (a), (b) and (c) of Fig. 5 that e is
always equal to -1. Thus we get

(17) ex =(-1)
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from which it follows that there holds
det [Sx]= 0

regardless of whether rn is even or odd. This is in contradiction to the hypothesis that
g" for some m (m -> 3) is contained inB2 (t). This completes the proof of this theorem.

Combining Theorems 1 and 2, we get the main theorem of this paper as follows.
THEOREM 3. A necessary and sufficient condition for G to be a non-series-parallel

graph is that there exists a tree of G such that

rank [B2(t)] =/x.

As a consequence, the following corollary is obtained.
COROLLARY 1. A necessary and sufficient condition for G to be a series-parallel

graph is that for every tree of G
rank [B2(t)] <.

3. Conclusions. In this paper, we have given a necessary and sufficient condition
for a graph G to be non-series-parallel by use of the rank condition of a two-chord
tieset matrix. This condition is a new characterization of the non-series-parallel graphs.
Dually, if we use the concept of two-branch cutsets which are defined to be cutsets
containing exactly two branches of a tree of G, we obtain another condition for G to
be a non-series-parallel graph.

Appendix. LEMMA 1. Any elementary cutset of a graph G can be transformed
into an incidence set of one of its 2-isornorphic graphs if and only if G is a series-parallel
graph.

Proof. G is a series-parallel graph if and only if every minor of G is not an
oriented K4. Since an elementary cutset consisting of exactly four edges of any
orientation of K4 cannot be transformed into an incidence set of one of its 2-isomorphic
graphs, "only if" part is evident. Then "if" part will be proved below.

Suppose that G is a series-parallel graph. Then, since G is planar, G has its dual,
denoted by G*, and G* is also a series-parallel graph. Accordingly, any elementary
cutset of G is an elementary tieset of G* and vice versa. Let Q be an elementary
cutset of G. Then Q is an elementary tieset of G*.

Now assume that G* cannot be drawn on a plane without intersection of its edges
so that Q is a mesh. Then there must exist four distinct nodes u, v, w and x on Q in
G* such that a path from u to w and a path from v to x intersect in the outside of
a closed region surrounded by Q. This means that a minor of G* is an oriented K4.
This is a contradiction. Hence G* can be drawn on a plane without intersection of
its edges so that Q is a mesh. Hence Q is an incidence set of a graph 2-isomorphic
to G, which is a dual of G*.

We note that another proof of this lemma is given in [4].

REFERENCES

[1] R. J. DUFFIN, Topology of series-parallel graphs, J. Math. Appl., 10 (1965), pp. 303-318.
[2] S. SHINODA, K. ONAGA AND W. MAYEDA, Graph-theoretic properties of a pseudo-incidence matrix

with an application to network diagnosis, Conference Record, 12th Asilomar Conference on
Circuits, Systems and Computers, November 6-8, 1978, Pacific Grove, CA, pp. 749-753.

[3] W. K. CHEN, Applied Graph Theory, 2nd ed., North-Holland, Amsterdam, 1976.
[4] H. KAKITANI AND O. KAKUSHO, Modularity of tieset matrices and a characterization of series-parallel

graphs, Papers of Technical Group on Circuit and System Theory of IECE of Japan, CST78-21,
1978, pp. 23-30.



SIAM J. ALG. DISC. METH.
Volo 4, No. 2, June 1983

1983 Society for Industrial and Applied Mathematics
0196-5212/83/0402--0012 $01.25/0

THE MAXIMUM COVERAGE LOCATION PROBLEM*

NIMROD MEGIDDO,t EITAN ZEMEL AND S. LOUIS HAKIMI

Abstract. In this paper we define and discuss the following problem which we call the maximum
coverage location problem. A transportation network is given together with the locations of customers and
facilities. Thus, for each customer i, a radius ri is known such that customer can currently be served by
a facility which is located within a distance of ri from the location of customer i. We consider the problem
from the point of view of a new company which is interested in establishing new facilities on the network
so as to maximize the company’s "share of the market." Specifically, assume that the company gains an
amount of wi in case customer decides to switch over to one of the new facilities. Moreover, we assume
that the decision to switch over is based on proximity only, i.e., customer switches over to a new facility
only if the latter is located at a distance less than r from i. The problem is to locate p new facilities so as
to maximize the total gain.

The maximum coverage problem is a relatively complicated one even on tree-networks. This is because
one aspect of the problem is the selection of the subset of customers to be taken over. Nevertheless, we
present an O(n2p) algorithm for this problem on a tree. Our approach can be applied to other similar
problems which are discussed in the paper.

1. Introduction. We shall discuss in this paper problems in which establishing
new facilities in an existing network is aimed at attracting a maximum number of
customers. There is thus some competitive flavor to such problems in that the existing
facilities may belong to one company while a second company is trying to extract the
maximum profit by locating its own facilities on the same network. For further
discussion of this and related problems the reader is referred to [H2].

Consider a graph G--(V, E) with edge-lengths di. We identify each edge (i,/’)
of G with a line-segment of length di so that we can speak of points (not necessarily
vertices) on the edges of G. Each such point x is identified by its distances from the
endpoints of the appropriate edge. For every two points x, y of G let d(x, y) be the
length of the shortest path between them along the edges of G.

We associate a "customer" with each vertex of G. We assume that there exists
a threshold radius r for each customer so that if a new facility is established within
a distance of r from then this customer would start using the new facility (unless,
of course, an even closer facility is established; in any case, a customer uses one of
the closest facilities). We say in such a case that customer is "covered," with a
resulting gain which we denote by w (the "weight" of i). The results of this paper
are valid for any set of positive constants r. However, several simplifications are
possible if the threshold radii are derived from distances to old facilities already
positioned on G. This topic is addressed in Appendix 2.

Assume that p facilities can be located anywhere on G (including points on the
edges other than vertices). We wish to locate these facilities so as to maximize the
total weight of the customers which are covered. We will show that it is easy to identify
a fairly small subset of points Y {y 1, ’, y,, } such that we need consider only points
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of Y as possible location for facilities. Alternatively, the problem may be originally
specified with respect to a finite set of feasible location sites.

Our maximum coverage problem is obviously NP-hard on a general graph since
the problem of minimum dominating set (see [GJ]) can be formulated as that of
minimizing the number of facilities required to gain W n (where n is the number
of vertices). To that end we set ri 1.5, wi 1, dj 1 for all i,/’.

We shall present a polynomial-time algorithm for the maximum coverage problem
on a tree. We note that unlike the problem of minimum dominating set on a tree
(which is easily solvable in linear time), or even that of gaining the total weight (i.e.,
covering all the vertices), the existence of a polynomial-time algorithm for our problem
is nontrivial. The relative difficulty is due to the fact that here we do not require
covering of all vertices but only k of them (in the special case of unit weights and
W k, say). Thus, the large number of different combinations of k out of n complicates
the problem. Further evidence to the difficulty of the problem even on a tree is given
by the fact that, unlike in many other locational problems on trees (see [T], [K]), the
integer linear programming problem associated with ours is not solvable as a regular
linear program (as we demonstrate in Appendix 1).

In 2 we discuss the set of potential points for the construction of new facilities.
The basic routines of the algorithm are described in 3. The algorithm itself is
explained in 4. In 5 we discuss the complexity of the algorithm. Section 6 discusses
further problems, related to the maximum coverage problem, which are solvable by
a modified version of our algorithm. Appendix 1 describes the linear programming
aspects and Appendix 2 discusses simplifications in the case where all threshold radii
are implied from distances to (old) existing facilities.

2. Potential locations for new facilities. As we stated in the introduction, a new
facility may be constructed at any point of the graph. We denote by d (x, y) the distance
(along the shortest route) between any pair of points (x, y). However, we shall identify
a fairly small finite set from which an optimal combination can be selected. Our
algorithm can also be applied to problems in which new facilities can be constructed
at designated points, yl,. ", y,,, only.

Let Ui be the ri-neighborhood of vertex i, i.e., U is the set of all points x such
that the distance between and x is less than r. For every set S of vertices, let
Us ls Ui. We say that Us is maximal if Us and UT for every T S.
Obviously, we may assume without loss of generality that a new facility will always
belong to some maximal Us. Moreover, we may select in advance a single point ys Us
from each maximal Us and consider only these points ys for locations of new facilities.
We shall now prove that the number of maximal Us’s is not too large.

THEOREM. On a general graph with e edges and n vertices the number of maximal
Us’s is O(en) while on a tree this number is O(n).

Proof. First, note that if x is a boundary point of a set Us then there exists a
vertex such that d (i, x) r. Thus, each vertex can contribute at most two boundary
points on each edge of the graph. Moreover, cannot contribute the same boundary
point to more than one maximal Us. It follows that a single edge contains no more
than 2n boundary points and hence the total number of boundary points is at most
2en. This establishes the first claim of the theorem.

Consider now the case where G is a tree T. Note first that there are at most n
maximal Us’s which contain a vertex, since these sets are pairwise disjoint. It thus
suffices to show that the number of maximal Us’s which do not contain any vertex is
O(n). Every such Us has precisely two boundary points xi, xj such that is a vertex
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with d(i, Xi) ri > d(i, xj) and j is a vertex with d(], xj) r > d(], xi). The set Us could
thus be identified with an interval (xi, xi). By removing this interval from T, our tree
decomposes into two subtrees T, T., such that for every point x # xi in T, d (i, x)> h
and for every point x # xi in T, d([, x)> rj (see Fig. 1). Thus, if vertex contributes

FIG.

a boundary point to another such interval, then that interval must be completely
contained in T. Suppose that there is such an interval (x i, x ,), where d(i, x)= ri >
d (i, x ,) and k is a vertex such that d (k, x ,) rk > d (k, x [). It is easy to verify that
there can be no interval to which both/" and k contribute two distinct boundary points.
In general, consider a graph G* on the vertices of T such that vertices u and v are
linked with an edge in G* if and only if there exists an "interval" to which both u
and v contribute distinct boundary points as previously described. Then, it can be
proved by induction that G* has no cycles. This implies that the number of those
intervals is not greater than n 1 and that completes the proof.

We note that the determination of all the boundaries of the maximal Us’s can
be easily carried out in O(r 2) time.

3. The basic routines. The algorithm for the maximum coverage problem on a
tree works in general as follows. Suppose that the potential locations are at the points
y 1,"" ", y,,. To simplify the presentation, let us assume that the potential locations
are precisely the vertices themselves. Since m-< 2n it follows that by adding all the
yj’s as vertices we do not lose in terms of the asymptotic complexity.

Let the tree now be rooted at an arbitrary vertex u. If u is selected for a location
of a new facility then we proceed, recursively, by looking at the subtrees rooted at
the neighbors of u, taking into consideration the fact that there has been a new facility
established at u. This requires, however, the solution of a "resource allocation"
problem, i.e., optimizing the distribution of the p- 1 remaining facilities among the
subtrees rooted at the neighbors of u. If u is not selected as a location of a new
facility, we proceed, recursively, to the subtrees and then we have to consider the
interactions between these subtrees caused by the fact that vertices of one subtree
may be covered by a facility located in another.

In order to overcome all these difficulties we define the following routines:
1. EXT (T, zr, r). Here T is a rooted tree with parameters di, ri, wi as explained

in the introduction, r is an integer and r is a nonnegative number. The routine EXT
finds the maximal total weight of vertices in T that can be gained by locating 7r new
facilities in T, given that there is one additional facility outside of T at a distance r
from the root. Thus, this gain consists of the total weight of vertices i, such that the
distance between and the root is less than h-r, plus the total weight of other vertices
such that the distance between and one of the r new facilities is less than h.
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2. Int (T, or, r). With T and r as in EXT (T, 7r, r) this routine solves the maximum
coverage problem on T with r new facilities but with an additional requirement that
at least one new facility must be located at a distance less than or equal to r from
the root of T.

It is easy to verify that the routine EXT has at most n critical values for the
parameter r, namely, the differences 8i ri- d(i, ur) (where ur is the root of T), for
all vertices i. In other words, it suffices to know the output of EXT for each 8 in
order to know that output for all values of r. Analogously, INT has just the distances
d(i, ur) as the critical values for the parameter r.

3. ALLOC (fl,’’’,fk;Zr). This is a routine that solves the resource allocation
problem with concave returns. Specifically, let fl,. , fk be monotone concave func-
tions of discrete variables, and let r be a nonnegative integer. Then, ALLOC solves
the following:

k

Maximize Y f(p)
i=1

k

subject to p="

p is a nonnegative integer.

Fast algorithms for ALLOC have been proposed by Galil and Megiddo [GM]
and by Frederickson and Johnson [FJ]. The latter requires O(k log or) evaluations of
the functions . On the other hand, if one wishes to know the solutions of all problems
for r 1, 2,..., p (with ]’,... ,]’k fixed), then only kp evaluations are required in
addition to O(p log k) time for running the greedy algorithm.

4. The algorithm. The routines EXT and INT described in 3 require recursive
calls to each other. Our maximum coverage problem could be solved by either of
these routines, if r is chosen sufficiently large.

We use the following notation. The tree T is rooted at the vertex u whose "sons"
are u,..., Uk. For 1,..., k, T is the subtree rooted at ui. Let n denote the
number of vertices in T and let d <... < d denote the distances of vertices of T
irom u.

We first describe the routine INT (T, r, r). There are two cases to examine:
Case (i). A facility is established at u. Let [(p) EXT (T, p, d(u, u)),

1,..., k. It is easy to verify that the/’s are monotone and concave. Obviously, in
this case the total gain is w, +ALLOC (1, , fk r 1).

Case (ii). No facility is established at u. Here, the routine INT considers k
different subcases. In a typical subcase, a subtree T.(1-<_/" _<-k) is selected and for each
O {d,. d } such that O + d (ui, u) < r, the tollowing is considered For every /"rj

(i=l,...,k) let (pi)=EXT(T,,p,,p+d(u,u,)). Also, let f.(pi)=INT(T.,pj, p).
Again, the functions fi are monotone and concave. Note that these functions depend
on the parameter p. Now define

Aj(p) ALLOC (f,..., fk; 7r)+ w,(p),

where 8 (p) 1 if p + d (uj, u) < ru and 8 (p) 0 otherwise. Let A Maxo {A(p)},
/=1,...,k.

The routine INT returns either the maximum of the A’s or the optimal value of
case (i), whichever is the larger.
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The computation of EXT (T, zr, r) is analogous. Again, two cases are distinguished.
Case (i). A facility is established within a distance of r from u. This, by definition,

is identical with the situation solved by INT (T, r, r).
Case (ii). No facility can be established within a distance of r from the root. Note

that in this case, since there is a facility already located at a distance r from the root,
there are no interactions among the subtrees. On the other hand, such a constrained
problem cannot be solved directly by our routines. Instead, we solve the relaxed
problem (i.e., we remove the requirement of not constructing a facility within a distance
of r from the root) but ignore the interactions among the subtrees. Specifically, let
f(p,)=EXT(T,p,,d(u,u)+r), i=l,. .,k. Let A=ALLOC(f,...,fk;Tr)+
w. 8 (r) (where the 8 is as in the description of INT).

We now claim that EXT (T, r, r)- max {A, INT (T, zr, r)}. To see this note that
if one of the 7r optimal locations for the problem solved by EXT (T, r, r) is at a
distance of less than or equal to r from u then EXT (T, r,r)= INT (T, zr, r) and
A _-< INT (T, zr, r). Otherwise, we are in Case (ii) and no interactions exist among the
subtrees. Therefore, EXT (T, r, r) A and INT (T, r, r) <_-A.

5. The complexity of the algorithm. Suppose that 0 do-<_ d <_-.. <_-d. are the
distances of vertices of T from u. Consider the function g(r) INT (T, zr, r), where r
is fixed. Obviously, g is a step-function with jumps only at r d (0 _-< s _-< n). Moreover,
if d (s -> 1) is a distance from a vertex in T., then

INT (T, rr, d) max [INT (T, r, d_x), ALLOC (fx,... ,fk; rr)+w," 8(u)],

where f.(p) INT (T., pi, d-d(u, ui)) and for #, f(p)= EXT (Ti, p, d +d(u, u)).
This implies that when r is given, the evaluation of INT (T, rr, r) for all critical values
of r takes O(n) computations of resource allocation. Similarly, if 6o<=8 <=...<=6,,
are the sorted values of r,- d(x, u), where x is a vertex in T, then the critical values
of r in EXT (T, 7r, r) are in the set {do, , d,., 8o, , 6,.}; i.e., at a critical value
either r=d(x,u) or d(x,u)+r=r, for some vertex x in T. Since EXT(T, r,r)=
max lINT (T, zr, r),A], it follows that the evaluation of EXT (T, r, r) for all critical
values of r (where r is fixed) also requires only O(n) computations of resource
allocation.

If the algorithm is recursively run as stated in 4, then it requires superpolynomial
time. However, this is only because the same subproblems are being solved over and
over again in such an implementation. To avoid that, one just has to be careful not
to compute the same thing more than once. Specifically, if we store the results of all
computations then we run in polynomial-time by the following argument. The number
of different problems that either EXT or INT has to solve is O(n2p). This is because
there are O(n) subtrees to be considered, each with O(n) critical values of r, and 7r

may take on only the values 0, 1,..., p. When we have to compute INT (T, 7r, r),
say, then it takes only one computation of resource allocation if all the necessary
values that are returned recursively are known. This establishes a bound of
O(n3p log n).

A more careful analysis shows that the algorithm can be implemented much
faster. Consider the computation of INT (T, r, r) for example, where T is rooted at
u and u has k sons. If we solve the necessary allocation problem only for one value
of zr, then it takes O(k log zr) time, once the necessary EXT and INT values are
known. However, we can solve the problem relative to all values of zr in
O(k rain (p, log k)+p log k) time. For, once the values fi(1)-/(0), 1,. ., k are
sorted, it takes O(p log k) time to find the p largest marginal gains of the form
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fi(m + 1)-/i(m) (i 1,..., k, m =0,..., p-1); the initial sort should be eliminated
if kp < k log k, in which case those p largest values can be found in kp steps. Now,
the solution of EXT(T, rr, r) and INT(T, r,r) for all values of 7r and r takes
O(n(k min (p, log k)+p log k)), once the necessary values are known. The total effort
is therefore O(n ,, (deg (u) min (p, log deg (u))+p log deg (u))), where the summa-
tion is over all the vertices u and deg (u) is the degree of u. This is however O(n2p).

6. Related problems. A natural generalization of the problem treated in 1 is
as follows. Suppose that each vertex has an additional parameter, ci, which represents
the cost of establishing a new facility at vertex i. We now replace the number p by
some budget B and seek to find the maximum coverage subject to this budget. This
problem, however, is NP-hard even on chain networks since the knapsack problem
can be easily formulated as such a coverage problem. On the other hand, our algorithm
can be modified to solve this problem on a tree in pseudo-polynomial time (see [GJ]),
i.e., in polynomial time in terms of n and B. Also, the problem of covering a maximum
number of vertices given a fixed budget can be solved in polynomial time on a tree
by considering the equivalent problem of covering at least q vertices given a budget
B. The latter is easily seen to be amendable to an algorithm similar to the one proposed
in 4.

Another related problem is that of covering all the vertices at minimum cost.
More formally, we wish to select points at which facilities will be established such
that every vertex has a facility located within a distance ri from i, and such that the
total construction cost is minimized. Tamir IT] solves this problem in O(n 3) time.
Kolen [K] solves a related problem, where the threshold radii are associated with the
facilities (rather than the demand points) in O(nm) time, where m is the number of
potential locations of facilities. Our approach easily provides O(nm) algorithms for
both these problems as follows. Define INT (T, r) to be the minimum total cost of
facilities established in 7’ so as to cover all the vertices of 7", subject to a constraint
that at least one of them has to be located within a distance of r from the root. Let
EXT (T, r) denote the minimum total cost of covering all the vertices of 7" that are
not covered by a facility located outside of 7" at a distance r from the root. For every
u, these functions evaluated at the subtree rooted at u, have O(m) critical values
of r. These are simply the distances from u to any potential location of a facility. If
do-<-dl =<" -< dt are the distances from u to such locations in T from which u itself
would be covered and if ds (s => 1) is a distance from a vertex in T. to u, then

k

INT (T, as)=min [INT (T, ds-1), INT (T., ds-d(u, ui))+ E EXT (T, d +d(u, ui))].
i=1

For the routine EXT, let A y.gk__ EXT (T,r+d(u, u)) if r <r,, and A + other-
wise. Then, EXT (T, r)=min [A, INT (T, r)]. It follows from the structure of these
formulae that it takes O(mk) to solve the problems at u for all values of r. The total
effort is therefore O(m Yv deg (v)) O(nm).

Finally, consider the problem of maximizing the net gain; i.e., the total revenue
(resulting from covering nodes) minus the total construction cost. This problem too
is NP-hard on a general network since the minimum dominating set (see [GJ]) can
be reduced to this problem by taking wi 2, ci 1, f 1,.. , n and B k. However,
on a tree the solution is similar to that of the min-cost coverage of all vertices, i.e.,
the parameter p and the ALLOC routine can be eliminated. That leads to the same
O(nm) time bound.
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Naturally, the same methods can be used to solve other types of problems defined
on tree networks such as those which seek to locate facilities as far apart as possible
from the various vertices. For instance, consider the problem of minimum coverage
of obnoxious facilities. Here we are seeking to minimize the total weight of vertices
who are "damaged" because an "obnoxious" facility [CG], [CT] is located too close,
given that we have to locate p such facilities and the interfacility distances are also
bounded from below. This can be solved in a way which is very similar to the one
developed in the present paper.

Appendix 1. Linear programming considerations. Tamir IT] and Kolen [K] have
recently shown that a fairly large class of location problems on trees can be solved
by linear programming. Specifically, let aij 1 if d (i,/’) < ri and aij 0 otherwise. Let
xi 1 be interpreted as establishing a facility at f and xi 0 otherwise. Thus, the
program

Minimize cx
]=1

s.t. Ax >=1

x e {0, 1}.

(A (aij)) solves the problem of covering all vertices with minimum cost. It is known
[G], [K], IT] that for a tree network the matrix A is balanced and hence the polytope
{x: Ax >- 1, x >-_ 0} has only integral extreme points. On the other hand, our coverage
problem can be formulated as maximizing the number of vertices that would be
covered by at most p facilities. Thus, if yi 0 is interpreted as "vertex is covered"
and yi 1 otherwise, then our problem is in fact

Minimize Yi
i=1

subject to Ax + y >= 1

s.t.

X], Yi {0, 1}.

Now, even though the underlying matrix in this problem, namely,

is still balanced, a linear programming solution may lead to a nonintegral solution,
as we show in the following example. Consider the tree in Fig. 2. All weights wi 1
and ri’s and d’s are shown in the figure. There are four potential points denoted by
arrows (i.e., for every other point y there is one of the four points that covers at least
those vertices covered by y).

Consider the problem of maximizing the number of vertices covered by two new
facilities. With two "integral" facilities, namely, the center and another point of the
four, we can cover at most nine vertices. However, by selecting one "half" of a facility
to be located in each one of these four vertices, we manage to cover nine and a "half"
vertices.
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Appendix 2. Threshold radii arising from distances to existing facilities. Suppose
that the radii ri are in fact the current distances from each vertex to the nearest
existing facility (which belongs to the first company) and the customer located at
would use a new facility if one were established by the second company at a distance
less than ri from i.

We claim that the problem can be decomposed in this case as follows. Consider
the connected components of the tree induced by the locations of the existing facilities.
Specifically, two points belong to the same component if there is no existing facility
on the path which connects them. Let these components be denoted by T1, ’, Tk.
Obviously, a customer located in T/would use a new facility only if it is located inside

T.. Thus, it suffices to consider maximum coverage problems on the components and
then solve a resource allocation problem as follows. Suppose that [i (Pi) is the maximum
gain possible by locating pi new facilities in T. Then, the solution to our problem is
by maximizing Yf(p) subject to Y.p =p(p >_-0 and integral). We note that in each
component an existing facility is always located at a leaf. Furthermore, we can assume
without loss of generality that every leaf contains a facility. For, assume on the contrary,
that a customer is located at a leaf in which no existing facility is located. Such a
customer will switch to a new facility inside the component if and only if its unique
neighbor does. Thus, we can eliminate the leaf from the tree and add its weight to
that of its neighbor. Continuing with this process, we eventually get components in
which the existing facilities coincide with the leaves.

The case of a chain tree is extremely simple. Here we split the chain into subchains
whose boundary points are the locations of the existing facilities. Each subchain should
be assigned either 0, 1, or 2 new facilities. Thus, the resource allocation problem that
has to be solved in this case is very simple and the problem can be solved by the
greedy algorithm in linear time.
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DETERMINACY IN LINEAR SYSTEMS AND NETWORKS*

J. SCOTT PROVANt

Abstract. We study interdependent and determinate behavior between variables subject to a system
of linear equalities. For each pair of variables in such a system, four definitions of "correlation" are
introduced which relate the behavior of the variables to a chosen set of "basic" variables for the system.
These definitions correspond directly to such terms as statistical correlation, rates of substitution in
economics, sensitivity in linear programming, and sign-solvability in linear algebra. For each definition of
correlation, there is a stronger property of determinacy between two variables, established by the consistency
in sign of the correlation between the two variables over every set of basic variables. We show that the
property of determinacy is independent of which definition of correlation is used. We also examine
correlation and determinacy in systems related to networks, and derive good characterizations of deter-
minacy in terms of properties of the underlying networks.

Key words, correlation, determinacy, network, sensitivity analysis

1. Introduction. The purpose of this paper is to investigate the concept of
"correlation" between variables which are subject to linear constraints. Specifically,
given the system of variables x 1, , x,, subject to the linear constraints

(1.1) Ax =b,

where A is a m x n matrix and b is an m-vector, what can we say about the activity
of variable xi in relation to that of variable xj, and can we derive any sense of
interdependent or determined behavior between the activity of these variables? The
concept of correlation will certainly vary depending upon the context in which such
a term is to be defined, and in such diverse fields as linear algebra, operations research,
statistics or economics, much attention has been given to formalizing concept of
correlated behavior in mathematical models. Many authors, [10], [15], [17], [18] and
[20], for example, have looked at determined relationships between the variables and
right-hand sides of linear systems along the lines of "qualitative analysis" suggested
by Samuelson [22]. The only attempt to describe internal correlation between variables
in these systems, however, appears to be by Greenberg in [11]. His definition of
"qualitative determinacy" is based on activity occurring in the basic tableaus associated
with the linear system. We present in this paper several definitions of correlation and
determinacy in the spirit ofmand including that ofmGreenberg, which appear in
various contexts in all of the fields mentioned above. These definitions turn out to be
related to such a surprising extent that techniques used to study one type of correlation
can be applied to all of them. In particular, we examine correlation and determinacy
in linear systems related to networks where graph theoretic techniques can be used
effectively in uncovering correlation in these systems.

We first need to establish some notation. Define P(A, b) as the system given by
(1.1). Denote by aj, As and A the elements, rows and columns of A for 1, , m
and ] 1, , n, and denote by AT the transpose of A. A basis for P(A, b) consists
of a subset B (AB1,..., AB,,) of m columns of A which forms a nonsingular matrix.
The set xB (XB1, ", XBr) is called the set of basic variables. The set XN of remaining
variables is called the set of nonbasic variables, and N will denote the corresponding

* Received by the editors February 25, 1982, and in revised form August 2, 1982. This research was
supported by an NRC/NAS Postdoctoral Associateship.

t National Bureau of Standards, Washington, DC 20234, and University of North Carolina at Chapel
Hill, North Carolina 27514.
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matrix of columns. We will often take B and N to represent index sets as well as sets
of columns. The basic solution (x, x) corresponding to B in P(A, b) consists of setting

x =B-lb, x =0.

Finally, the basic tableau corresponding to B is defined to be the matrix. =B-IA
so that an equivalent system to P(A, b) (in terms ot the solution set of X) is

or
x =g=B-b

xB +B-Nxr B-Xb.

This amounts to solving for xB in terms of xr, and indicates the dependence of xn or
x through the matrix B-N.

We are interested in detecting consistency or correlation of sign patterns between
variables in P(A, b) over the set of basic tableaus of the system P(A, b). There are
four types of correlation of interest to us, which are defined as follows. From a basis
B and respective tableau A, form the n n extended tableau A by (1) appending to A
the n-m rows corresponding to the negative ith unit vectors for N and (2)
reordering the rows to correspond to the columns. Let x and xi be two variables in
P(A, b), and assume throughout the paper that and / are distinct. Define the row
correlation pn(i, ) between x and xi to be the dot product A.Ai between the ith and
]th rows of A, and define the column correlation yn(i, ) between x and x. to be the
negative dot product -A .A between the ith and ]th columns of A. It follows
immediately that when x is basic, Bq, and when xi is nonbasic, then pn(i, )=
yB (i,/) -tqi. We call x and xi strongly row (column) correlated or sign row (column)
correlated, if each term of the dot product p(i, ) (respectively ,(i,/)) has the same
sign or is zero. Finally, x and xi are said to be weakly row (column) determinate, or
simply row (column) determinate, if p(i, ) (respectively yn(i,/)) has the same sign
or is zero over all bases of P(A, b), and strongly row (column) determinate if they are
weakly row (column) determinate and strongly row (column) correlated over all bases.
The system P(A, b) is totally row (column) determinate, in either the weak or strong
sense, if every pair of variables is row (column) determinate.

Section 2 of this paper interprets the four definitions of correlation and of
determinacy in the context of geometry, operations research, linear algebra, statistics
and economics. We show the dual nature of row and column correlation and show
that in fact all four forms of determinacy are equivalent. In 3 we restrict ourselves
to systems related to transportation, transshipment and network flow problems and
give simple characterizations of determinacy in terms of underlying graph structures.
In 4 we look at generalized network systems and apply the results of 3 to derive
strong necessary conditions for determinacy in these systems. This in turn solves, up
to sign equivalent matrices, a problem introduced by Greenberg in [11].

2. General results. This section relates the notion of correlation and determinacy
to geometric, pivotal, sign-solvable, statistical and economic properties associated
with linear systems. We begin with a series of geometric justifications for the notion
of correlation. The first set of results concerns strong correlation and its relation to
"lines" of a linear system. For a basis B of the linear system P(A, b) and any nonbasic
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variable Xk, define the line associated with B and k to be

L(B, k)={x" x satisfies P(A, b) and x =0 for N-{k}}.

The line L(B, k) thus describes the linear system when activity is restricted to the
variables Xnl,"’, xn., Xk. In fact, if b is in general position with respect to A (that
is, b is linearly independent of any set of m- 1 columns of A), then every one-
dimensional set of the type

X(S)={x’x satisfies P(A,b) and x=O for lS},

where S is a subset of indices, is a line of P(A, b). Further, for any two variables xi
and xj with xj not constant on L(B, k), we have a unique change in xi with respect to

xi along L(B, k), which we denote AX/AXiIL(n.k). Its value can be computed using the
following result:

PROPOSITIOr 2.1. For any basis B of P(A, b), any nonbasic variable Xk and any
two variables xi and xi, we have

AX L(B,k)

1, =/" =k,
--ark, i=Br, j=k,
&k/ask, B.
undefined otherwise,

tsk O,

where A is the basic tableau corresponding to B.
Proof. Solving for xn in terms of xN, we have

xn B b ll’xN,
where/ B-aN denotes the matrix of columns of A associated with xu. In particular,
if xt 0 for s N-{k}, then xn can be expressed as a function of xk by

XB B-ab --kxk
so that mxi/mxj, when defined, results from solving this system. The proposition follows.

As a corollary we obtain a characterization of strong row correlation by describing
the relative change of two variables on lines of the linear system.

COROLLARY 2.2. TWO variables x and xi in the system P(A, b) are strongly row
correlated with respect to a basis B if and only if Axi/AxjlL has the same sign, is zero
or is undefined over every line L of P(A, b) associated with B. The variables x and x
are strongly row determinate if and only if Axi/Axi[r. has the same sign, is zero, or is

undefined over every line L ofP(A, b ).
Proof. Follows directly from Theorem 2.1 and the definition of A.
Remark 2.3. There is obvious information contained in basic tableaus of a linear

system that concerns the pivoting structure of that system (see, for instance [4, Chap.
7]). In particular, if P(A, b) is nondegenerate, that is, distinct bases correspond to
distinct basic solutions, then the lines of P(A, b) describe all activity associated with
pivoting in P(A, b) and vice versa. Thus the properties of strong correlation and strong
determinacy allow us to make powerful general statements concerning sensitivity
analysis in P(A, b). In addition, Greenberg [11], [12] and later Greenberg, Lundgren
and Maybee [13] have established the importance of this type of correlation as a tool
in computer-aided analysis of linear programming models. In the case where nonnega-
tivity constraints are added to P(A, b), the new system becomes the feasible region
of a linear program. The lines of P(A, b) associated with bases whose basic solutions
are nonnegative--i.e., basic feasible solutions--correspond to standard simplex



DETERMINACY IN LINEAR SYSTEMS AND NETWORKS 265

algorithm pivotsmand therefore a description of activity along these lines describes
the activity along the edges of the polyhedron associated with the constrained system.
Determinacy in linear systems with nonnegativity constraints is studied in [21].

Remark 2.4. The concepts developed in this paper begin to address some general
questions related to "sign-solvability" of linear systems. This topic has elicited con-
siderable research, for example in [10], [15], [17], [18], [19], [20] and [22]. The
problem addressed here is: Given a solution x to the system P(A, 0) (this can be
thought of as the system of "feasible directions" for P(A, b)), when are the signs of
certain components of x sufficient to determine the signs of the remaining components?
In the context of the definitions and results thus far, we can say that xi and xi are
strongly row determinate in P(A, b) if and only if the sign of x determines uniquely
the sign of xi in every solution that is on some line of P(A, 0) and for which xi and

x are nonzero. Further, P(A, b) is totally row determinate in the strong sense if and
only if the signs of all nonzero components of any solution that is on some line of
P(A, 0) are determined uniquely up to negation of the solution vector.

Column correlation takes a dual role to row correlation. If we embed the system
P(A, b) into the linear program

min cx,

Ax =b,

x>__O

for some n-vector c, then the dual program becomes

max yb,

yA +z =c,

z>_O

and the variable z is called the marginal or reduced cost associated with x, 1,. , n
(see [15, p. 95]). Define P*(A, c) to be the linear system

yA +z =c.

In other words, P*(A, c)= P(A*, c), where A*= (A T, I). Now corresponding to any
basis B for P(A, b) there is a dual basis B* for P*(A, c) consisting of the variables
(y, zN), where zN is the set of reduced cost variables associated with x. The equivalent
system to P*(A, c), corresponding to the dual basis B* as indicated by (1.2), is therefore

(1.3) y + zBB-1 cBB-, y znB-N + zN + CN cnB-N,

where c and z are those sets of components of c and z corresponding to xB, and
c is that set of components of c corresponding to x. From (1.3) we can, for any
two reduced cost variables z and z, define the row correlation p*.(i,/’) between z
and z with respect to B* in P*(A, c). The relationship of this correlation to that in
P(A, b) is found in the following theorem.

THEOREM 2.5. Let B be a basis ]’or P(A, b), with corresponding dual basis B* for
P*(A, b ), and let zg and z be two reduced cost variables in P*(A, b ). Then

p *n.(i, f)= -3’ (i,

where xi and xi are the variables in P(A, b) corresponding to z and z.
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Proof. From (1.3), the tableau in P*(A, c) corresponding to B* is

/,=(/0 (B-l)T 0 )_(B-,N)T I_,,,

where /. is the/’ x/" identity matrix. The extended tableau corresponding to * is
therefore

* 0 _(B-1N)T B- 0 0

o - o

where fi is the extended tableau of P(A, b) corresponding to the original basis B. It
follows that

and this completes the proof.
The economic significance of studying column correlation in order to determine

correlation between reduced cost variables of a linear system now becomes apparent.
Theorem 2.5 simply reiterates the economic fact that goods which "substitute" for
one another (i.e., are negatively correlated) tend to have positively correlated reduced
costs. We can now characterize strong column correlation between two variables in
terms of their reduced costs.

COROLLARY 2.6. Two variables x and xi in P(A, b) are strongly column correlated
with respect to a basis B if and only if the associated reduced cost variables z and zi
are strongly row correlated in P*(A, c) with respect to the dual basis B*. The variables
xi and xi are column determinate in P(A, b) if and only if the row correlation of zi and
zi has the same sign, is zero or is undefined over every dual basis ofP*(A, c ).

We can use Corollary 2.6, together with Corollary 1.6, to give a geometric
interpretation for column determinacy. For any dual basis B* and any k B we can
define the dual line associated with B* and Zk to be

L*(B*, k)= {(y, z)" (y, z) satisfies P*(A, c) and Zl--’0 for B -{k}}.

(Note that dual lines do not constitute all lines of P*(A, c).) Dual to Corollary 1.6
we have

COROLLARY 2.7. Two variables xi and xj in the system P(A, b) are strongly column
correlated with respect to a basis B if and only if Az/Azj[L. has the same sign, is zero,
or is undefined over every dual line L* of P(A, b) associated with the dual basis B*.
The variables xi and x are strongly column determinate if and only if Azi/Az[. has
the same sign, is zero, or is undefined over every dual line L* ofP*(A, c).

The next pair of results links the correlation measures p and to statistical
and economic concepts. We begin with a lemma concerning statistical correlation
between variables related by a system of linear equations. For the proof and a reference
to the statistical terms, see [23, 2.4].

LEMMA 2.8. Let M be an m x n matrix, d an m-vector, and let X and Y be n-
and m-vectors of variables related by the equation

Y MX d.
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If X comprises independent, identically distributed random variables with common
variance rz, then the covariance matrix of Y is r2MMr.

Using Lemma 2.8, we can characterize weak row correlation in terms of statistical
correlation.

THEOREM 2.9. Let B be a basis for the system P(A, b ), and consider the variables
xB to be dependent on the variables xN as indicated by (1.2). If the variables in xN are
independent and identically distributed with common variance cr then for any two
variables xi and xi, the covariance between xi and xi is precisely r2pB(i, f).

Proof. By settingX xu, Y x,M (_n-lu) and d (n-lb),0 we have Y MX + d.
Applying Lemma 2.8 we have that the covariance matrix for Y x is

where In is the identity matrix on the rows and columns of B. Thus the off-diagonal
elements of MM7" are identical to those of AA, and this completes the proof.

Therefore, we can say that variables xi and x. are weakly row determinate if and
only if the covariance between xg and x has the same sign, or is zero, regardless of
which basis is chosen to define the independent and dependent variables for the
stochastic structure in Theorem 2.9.

The above result can be applied in a dual sense to justify the definition of weak
column correlation. There is a more direct justification, however, which is important
for both economic and geometric reasons. It is basically due to Greenberg [11], but
we extend the definition slightly in order to apply it in the context of this paper. For
basis B of P(A, b) and any two variables Xk and Xl, define the flat associated with B,
k and to be

F(B, k, l) ={x" x satisfies P(A, b) and xp =0 for p N-{k, /}}.

The flat F(B, k,/), then, describes the activity of the linear system when activity is
restricted to the variables xm,"’, xB,, Xk, Xt. Again, if b is in general position with
respect to A, then all two-dimensional sets of the type X(S) are flats in P(A, b).
Flats can have dimension 0, 1 or 2 depending on whether both, one, or neither of
Xk and xt are basic. Now for any variables x and x., any direction v in F(B, k, l)
with v 0 and any magnitude A, a displacement of x * (x’n, x) to the point x’ x * +
Av F(B, k, l) will cause a relation change Ax/Axl of x with respect to x. and a
relative change Ad/Axl of the distance of x’ to x* with respect to x. which are
dependent only on v. The result is

THEOREM 2.10 (Greenberg). Let F(B, i, ]) be a flat in P(A, b) such that xi is
nonbasic with respect to B. Then that direction v * in F(B, i, f) which minimizes ad/ZXxl
has

Ax

when A is the tableau associated with B.
Proof. See [11] for the case when is also nonbasic. If Bq is basic, then

F(B,i,f)=L(B,f), and the unique direction v has vn =hAt, vi=h and v =0 for
s N- {i,/’}, where h is any nonzero scalar. Further, A is the ith unit vector, and so



268 j. SCOTT PROVAN

from Proposition 2.1

2 2

ill211 YB (i, j)
1 +----1 +

--Axi/Axj[u=u,
The theorem follows.

The economic significance of Theorem 2.10 is derived from the fact that under
reasonable assumptions about personal utility in an economic model, the displacement
from a point of economic equilibrium due to a change in any system factors tends to
be in the direction of least distance. Thus when change is restricted to a fiat F(B, k, l)
we establish a sense of economic correlation between variables xi and xi by noting
that the marginal rate ofsubstitution of Xi to xi on F(B, k, 1) is defined to be /B,k,l(i, j)
Axi/Axi[. for v * as defined in Theorem 2.10 and that this value is uniquely determined
whenever xi is not constant on F(B, k, l) (see [11] for details). As a corollary we have

Corollary 2.11. Two variables xi and xi in P(A, b) are column determinate if and
only if the marginal rate ofsubstitution ofxi to x has the same sign, is zero or is undefined
over all flats ofP(A, b ).

Proof. () Follows from Theorem 2.10 and the definition of column correlation.
(::>) Suppose /B.k, (i,/’) is positive for the flat F(B, k, l). Let A be the tableau

corresponding to B. We take four cases.
Case 1 (i, N). We have F(B, k, l) F(B, i, l), and so from Theorem 2.10, we

have
2

"B,k,I (i, j)
1 + ]lA (i, j)

so that yn (i, j) > 0.
Case 2 (i Bq B, j N, fiqk 0). By pivoting on fiqk we form new basis B’

with and j nonbasic, so that F(B, k, I) F(B’, i, j). This reduces to Case 1.
Case 3 (i Bq B, j N, k 0). We have xi not dependent on Xk in F(B, k, ]),

so that Ax/Axi[ =- for any v with vi S0 and thus /.,i(i,j)=-qi y(i, j)>0.
Case 4 (] Br B). Since xi cannot be constant on F(B, k, l), then either r or

& is nonzero. By pivoting on the appropriate element, we form new basis B’ with

xi nonbasic, and this reduces to one of the above three cases.
Thus if /B,k,l(i, j) is positive, then there must be some basis B’ with y, (i, j) positive.

Similarly B,k,l(i, j) < 0 implies y,(i, j) < 0 for some basis B’. Therefore, if the marginal
rate of substitution of xi with respect to xi has the opposite sign for two fiats of P(A, b),
then xi and xi are not column determinates, and this completes the proof.

It turns out, surprisingly, that the property of determinacy in a linear system is
independent of which of the four types of correlation is considered.

THEOREM 2.12. Let xi and xi be variables of the linear system P(A, b). Then
(1) xi and xi are strongly row correlated with respect to every basis if and only if

they are strongly column correlated with respect to every basis;
(2) the following are equivalent"

(a) xi and xi are weakly row determinate,
(b) xi and xi are weakly column determinate,
(c) xi and xi are strongly row determinate,
(d) x and xi are strongly column determinate,
(e) fii has the same sign, or is zero, for every basic tableau A with Bq basic.

Proof. (1) Suppose that x and xi are not strongly row correlated with respect to
basis B. Then xi and xi must both be basic, Bq, ] B and the corresponding tableau
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A must look like

/ k

1 0 aqk aql

0 1 ark arl

where aqk aql, ark and arl are nonzero with exactly three having the same sign.
But now the matrix

C (aqk 4ql
\ark arlJ

has nonzero determinate, and so by pivoting consecutively on the (q, k)th and (r,/)th
entries of , we get new basis B and corresponding tableau* which looks like

j k

&/detC aq/detC 1 0

ark/detC aqk/detC 0 1

which has a *, a* -*pj, aq and a*j nonzero and exactly three with the same sign. Thus
x and xi are not strongly column correlated with respect to B. The only if part of (1)
is symmetric.

(2) From the definitions we have that any of (2a) through (2d) implies (2e). We
proceed to prove (2e) implies (2a) through (2d).

(2e) =), (2a). If x and x are not weakly row determinate, then there must be bases
B and B’ for which tg(i, j) > 0 and tg,(i,/’) < 0. For the basis B, at least one of x and

x is basic. If x. is basic,/" Bq and xi is nonbasic, then it must be that 4 < 0. Thus
by pivoting on aoi we get new tableau A* with x basic, B, xj nonbasic and
* 1/a < 0. If both x and xi are basic, Bq,/" Br, then there must be at least

one column k with 4k" a,k > 0. By pivoting on &k 0 we get new tableau *
with x basic, B and 4"=-a,,,,/a, <0. In either case pn(i,[)>0 implies that
there exists a basic tableau A with Bo basic and 4 < 0. An identical argument
shows that if tgn,(i, j)<0 then there exists a basic tableau fi* with =Bq basic and,
4 > 0, and thus (2e) does not hold.

(2e) => (2b). Follows by a dual argument to the one above.
(2e) ::> (2c). Suppose x and xi are not strongly row determinate. In view of the

argument above, the only case left to consider is when x and xj are not strongly
correlated for some basis B. Then as in the proof of (1), x and xi must both be basic,

=B and /’ =B,, and there must be columns k and such that column k has

ak ’a,k >0 and column has at .4r <0. Now exactly as in the argument above
we may pivot respectively on &k and 4,t to produce distinct basic tableaus A and A’,
with Bq B, basic, such that 4i > 0 and 4’, < 0. Thus (2e) does not hold.



270 j. SCOTT PROVAN

(2e) ::> (2d). Follows again by as dual argument to the one above. This completes
the proof of the theorem.

The final result is of interest in the study of "hidden structure" in linear systems
(see [1] and [5], as well as the references in 3). A matrix A’ is projectively equivalent
[3] to matrix A if there exist rn x rn nonsingular matrix B and n x n nonsingular
matrix D such that A’ BAD. For P(A, b), the transformation to P(A’, Bb) involves
essentially a nonzero scaling of the variables in P(A, b) and otherwise no change in
the set of solutions to the system. It follows immediately

PROPOSITION 2.13. Determinacy of variables in a linear system is invariant under
projective equivalence of the underlying matrices.

We shall say more about this in the next section.

3. Network systems. Define a transshipment matrix to be a (0, +1) matrix with
exactly one +1, exactly one -1, or exactly one +1 and one -1 in each column. A
transshipment system is any system P(A, b) for which A is a transshipment matrix.
Transshipment systems occur in numerous network related problems, most notably
transportation and network flow problems. Associated with any transshipment matrix
A is a directed network G(A)= (V, E) whose node set V corresponds to the rows of
A together with an additional source node r and whose arc set E corresponds to
columns of A, or equivalently, the variables of P(A, b), where, for k 1,..., n, the
arc associated with Xk is

ek (r, V)
I

if aik =--1 and aik +1,

if ajk 1, alk 0 for /’,

if aik =--1 alk 0 for # i.

The first result is based on the fact that A is a totally unimodular matrix, that is, all
square submatrices of A have determinant 0, / 1 or -1. It is stated in terms of totally
unimodular matrices.

PROPOSITION 3.1. Let A be totally unimodular. Then for any basis B of P(A, b),
every pair of variables is strongly correlated.

Proof. It is a well-known fact that all basic tableaus for a totally unimodular
matrix are totally unimodular. Now suppose rB(i, ]) does not have all of its terms the
same sign. Then it must be the case that and/" are both nonbasic and that A must
look like

where apt, tp, tq and tq are +1 and exactly three have the same sign. But this
means that the 2 x 2 submatrix

has determinant +2, contradicting the fact thatA is totally unimodular. The proposition
follows.
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We next turn to the description of the network structures related to correlation
in network systems. A path in G G(A) is an alternating sequence C v0, ei, vi, ,
Vk-a, ek, Vk Of distinct nodes and arcs for which e (v-a, vi) or (v, vi-a), 1, , k.
A circuit is a path whose endpoints are the same. Arcs e and ei are said to have the
same sense in a circuit C if they are directed the same way in C and to have the
opposite sense otherwise. A spanning tree in G is a set of arcs which covers all nodes
of G and which contain no circuits. An equivalent definition of spanning tree is a set
of arcs for which every two nodes are joined by a unique path.

The proot of the first result can be found in [4, Chap. 17].
PROPOSITION 3.2. If P(A, b) is a transshipment system, then a set B of columns

of A forms a basis for P(A, b) if and only if the corresponding arcs in G(A) form a
spanning tree.

Remark 3.3. From Proposition 3.2 it follows that a transshipment matrix A has
rank m if and only if G(A) is path connected, that is, every two nodes of G(A) are
connected by a path. We henceforth assume this to be the case.

With the aid of Proposition 3.2 we can describe, for any basis B of a transshipment
system, the corresponding basic tableau A and hence the value of p(i, ]). Let B be
a basis for P(A,b) with T the corresponding tree in G-G(A), and let Xk be a
nonbasic variable with corresponding arc ek V TB. It follows that TB {ek} contains
exactly one circuit C(TB, ek). If we start with basic solution (x*, x*) corresponding
to B and increase Xk by some amount e, with all other nonbasic variables remaining
zero, then the effect on the basic variables is to increase "flow" around the edges of
C(TB, ek). More precisely, we increase by e those variables whose edges have the
same sense as ek with respect to C(TB, ek) and decrease by e those variables whose
edges have the opposite sense as ek with respect to C(TB, ek), while all other basic
variables remain constant (see also [4, Chap. 17]). Thus, for any basic variable x with

Bq we have

Axi ( .1 if xi and Xk have the same sense in C(TB,

I if x and Xk have the opposite sense in C(TB, ek),lik AXk B.k otherwise.

We have immediately
LEMMA 3.4. Let B be a basis ]’or P(A, b), and let xi and xi be two variables in

P(A, b). Then
(1) tgB(i,/’) >0 if ei and ei have the same sense for at least one (and hence by

Proposition 3.1 for all) circuits C(TB, ek) that contain both e and ei,
(2) laB(i, ) < 0 if xi and xi have the opposite sense for at least one (and hence all)

circuits C(TB, ek) that contain both xi and xi.
(3) pB (i,/’) 0 otherwise.
The next result, due to Duftin [6], plays a critical role in describing determinacy

in network models. It concerns the relationship between three properties in networks.
First, a pair e and e. are said to be confluent if there do not exist circuits Ca and e
and ei in the same sense and C2 meets e and ei in the opposite sense. Second, a
series-parallel network is a network which can be obtained from a single arc by
performing any sequence of the following three operations

(1) replace an arc (v, v) with a pair of identical arcs (v, v), (vi, v);
(2) replace an arc (vi, vi) with a pair of arcs (v, Vk), (Vk, Vi), where Vk is a new node;
(3) for an existing node v add the arc (vi, Vk), where Vk is a new node; and then

arbitrarily redirecting arcs.
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A Wheatstone bridge A series-parallel network

FIG. 1

Finally, a Wheatstone bridge is a set of six paths which join every pair of four
"corner" nodes and which are otherwise node disjoint. Figure 1 shows a Wheatstone
bridge and a series-parallel network. Duftin’s result is now

THEOREM 3.5. (Duffin). For network G, the following are equivalent:
(1) every pair of edges is confluent,
(2) G is a series parallel network,
(3) G contains no subset of edges which form a Wheatstone bridge.

In fact, the proof of Theorem 1 in [6] can be modified to show that edges which are
not confluent lie on disjoint paths of some Wheatstone bridge. The connection between
Theorem 3.5 and determinacy in networks lies in the following lemma.

LEMMA 3.6. Two variables xi and xj of a transshipment system P(A, b) are
determinate if and only if ei and ej are confluent in G(A).

Proof. By Lemma 3.4, xi and xi are determinate if and only if there do not exist
bases B and B’ and respectively nonbasic indices k and k’ for which ei and ei have
the same sense in C(Tm ek) and the opposite sense in C(Ts,, ek’). But these circuits
correspond to C1 and C2 of the definition of confluence and this establishes the
necessary part of the lemma. Conversely, given any circuits C1 and C2 for which e
and ei have the same sense in C and the opposite sense in C2, we can remove some
edge ek from C1 and ek, from C2. Now C--{ek} and C2--{ek} can be extended to
spanning trees T and T’ in G(A) which do not contain ek and ek’, respectively. For
the corresponding bases B and B’, ps(i,/’)>0 and ps,(i,/’)<0. This establishes the
sufficient part of the lemma.

The following characterizations of determinacy and total determinacy in transship-
ment matrices follow immediately from Theorem 3.3 and Lemma 3.6.

THEOREM 3.7. Two variables x and xi in a transshipment system P(A, b) are
determinate if and only ife and ei are not contained in disjointpaths ofsome Wheatstone
bridge in G(A).

COROLLARY 3.8. The transshipment system P(A, b) is totally determinate if and
only if G(A) is a series-parallel network.



DETERMINACY IN LINEAR SYSTEMS AND NETWORKS 273

We can use the results of Theorem 3.7 and Corollary 3.8 to state a simple
characterization of determinacy in a class of transshipment systems related to the
classical transportation problem ([4, Chap. 14]) and to the physical flows model
described in 4. A transshipment matrix A is called an extended transportation matrix
if the rows of A can be partitioned into subsets $1 and $2 so that

(1) If column A has a single nonzero entry, then this entry occurs in a row of
$1 if it is + 1 and in a row of $2 if it is -1;

(2) If column A has two nonzero entries, then the -1 entry of A occurs in a
row of $1 and the +1 entry of A occurs in a row of $2;

(3) for each row of A there is column of A whose only nonzero entry is in
row i.
P(A, b) is called a transportation system if A is an extended transportation matrix.
The variables whose columns contain only +1 are called supply variables, those whose
columns contain only -1 are called demand variables and those whose columns contain
both a +1 and a -1 are called transportation variables. Statement (3) implies that
there is an arc in G(A) from the root r to every node of $1 and an arc from every
node of $2 to r. The structure of P(A, b) can therefore be described, up to duplicate
columns of A, completely by the bipartite network G’(A) whose nodes correspond
to rows of A and whose arcs are those of G(A) which are not adjacent to the source
node r of G(A). It follows that all arcs of G’(A) are elements of $1 q2. Since multiple
copies of edges in G’(A) denote identical and hence obviously determinate correspond-
ing variables, we will assume that G’(A) has no multiple edges.

Define a lasso C U F in a network G to consist of a circuit C together with a
path F whose initial endpoint u is on C and which is otherwise node disjoint from
C. Two arcs e and ej, or an arc e and node vj are said to be on opposite ends of the
lasso C U F if e is in C and not adjacent to u, and if e is the final arc, or v is the
final node, of F. Figure 2 shows such a lasso. For transportation systems we have the
following characterization.

FIG. 2. A lasso.
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THEOREM 3.9. Two variables xi and xj in a transportation system P(A, b) are
determinate if and only if they do not correspond to two arcs or an arc and a node which
are on opposite ends of a lasso in G’(A).

Proof. () Suppose the xi is a transportation variable with corresponding arc
ei- (w, z) and xj is either a transportation variable with corresponding arc ei or a
supply/demand variable with corresponding node vi. Suppose further that e and ei,
or ei and vi, are on opposite ends of a lasso C IAF in G’(A) made up of circuit C
containing e and path F which meets C at node u, with ej or vi being at the opposite
end of F. Let vi also denote the node of ei at the end of F. Now add to C 3 F the
additional edges e(vi), e(w) and e(z) of G(A), where

e(x)={(r,x), xeS1,
(x, r), x e S

(see Fig. 3). This forms a Wheatstone bridge in G (A), with corner nodes u, w, z and
r and paths Ft_J{e(vj)}, e, e(w), e(z) and the two paths in C-{e} from u to v and w
respectively. Thus x and x are not determinate.

FIG. 3

(<::) Suppose that x and xi are not determinate. Then they must be on disjoint
paths of some Wheatstone bridge in G(A). In particular one variable, say x, must be
a transportation variable. Let F1,’’ ", 1"6 be the six paths, and u, v, w, z the corner
points, arranged as in Fig. 4. First, suppose that r is one of the corner points and by
symmetry we may suppose r w. Then the circuit F1 t.J F3 t.J F6, plus the path comprised
of the portion of F2 from ej (or from the endpoint vi 0t ei in G’(A)) to z forms a lasso
in G’(A) with ei and ej or vi at opposite ends. Second, suppose that r is not one of
the four endpoints. Then five of the paths Fx,..., I’6 lie entirely in G’(A), and so
there will always be a circuit in G’(A) containing one of e and e, say e, along with
a path joining the edge ei, or node vi if ej (r, vi) or (v, r), to one of the corner points
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I"
1

v 3
z

FIG. 4

w or z. This also forms a lasso in G’(A) with ei and ei or vj at opposite ends and the
proof is complete.

COROLLARY 3.10. A transportation system P(A, b) is totally determinate if and
only if G’(A) contains no circuits.

Proof. If P(A, b) contains a circuit then it automatically contains a lasso. Since
the circuit must have at least three nodes (we have assumed no duplicate edges), then
there must be an edge ei and a node vi which is not on that edge. Thus the ei and vi
are on opposite ends of a lasso, implying that the corresponding variables are not
determinate. Conversely, the existence of any lasso in G’(A) implies the existence of
a circuit in G’(A). This proves the corollary.

Remark 3.11. We mention here briefly the computational complexity of establish-
ing determinacy in networks. By using Lemma 3.6, along with the algorithm of Shiloach
in [24] for finding disjoint paths between two pairs of nodes in a graph, we can produce
an O(mn) algorithm for determining whether or not two variables in a transshipment
system are determinate. Using Corollary 3.8, along with the algorithm of Valdes,
Tarjan and Lawler [25] for recognizing series-parallel graphs, we can produce an
O(n) algorithm for determining whether a transshipment system is totally determinate.
We do not give the algorithms here. For general linear systems, it is not known
whether a polynomial algorithm exists for solving either of these two problems.

We end this section by discussing a final class of systems to which any of the
results of this section can be applied. A hidden network system [1 is a system P(A, b)
for which A is projectively equivalent to a transshipment matrix. There has been
considerable recent study of hidden network systems, for instance [2], [8], [14], [16]
and Bixby in [1] notes that there are countless examples of problems which can be
transformed into network systems in this way. We remark here that by Proposition
2.12 determinacy in any hidden network system can be characterized by looking at
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the corresponding transshipment systems and applying the appropriate results from
this section. A further generalization of transshipment systems is investigated in 4,
and the appropriate hidden network systems can be evaluated accordingly.

4. Generalized network systems. We now generalize transshipment and trans-
portation systems and apply Theorems 3.7 and 3.9 and their corollaries to derive
some powerful necessary conditions for determinacy in these systems. A generalized
network matrix is a matrix A for which the (0, + 1) matrix A* defined by a sign a
for 1, , m,/" 1, , n, is a transshipment matrix. The matrix A is a physical
flows matrix [11] if A* is an extended transportation matrix. We associate with A
the graph G(A)= G(A*). The system P(A, b) is referred to as a generalized network
system or physical flows system accordingly.

Generalized network systems have been studied extensively (see, for example,
[4, Ch. 21], [7] and [9]) and constitute an important extension of transshipment systems
encountered frequently in practical problems. The basis structure in generalized
network systems is very similar to that of transshipment systems. In particular, we
have

LEMMA 4.1. Let P(A, b) be a generalized network system, and let B be a set of
columns of A for which the corresponding edges in G(A) form a spanning tree. Then
B is a basis for P(A, b).

Proof. It is well known (for instance, in the proof of Theorem 4 in [4, 17-1])
that if the matrixB corresponds to a spanning tree in G(A), thenB can be diagonalized,
and since the diagonal elements are nonzero, then B is nonsingular.

We next state a lemma which gives a partial description of the basic tableau A
corresponding to a spanning tree basis. For any spanning tree T in G G(A) and
any arc ek, we note that there exists a unique cycle C in T U {ek} and a unique path
F from some point if C to r, that is, a unique lasso in T U {ek} adjacent to r.

LEMMA 4.2. Let B be a basis of the generalized network system which corresponds
to a spanning tree in G(A), and let Xk be a nonbasic variable. Let C F be the unique
lasso in T {e} adjacent to r, with C and F defined:

C" rio, ek, l)i, Dis, ejs, u, e j’t ) i’t, e h_l

F: u vi+, ei+, vi+2, vi+o, eh+o, r.

e i’,, v ’ D/o;

Then the kth column of the basic tableau corresponding to B has

ahk [_l)aqkaii dilh_l

aihdi2]2 dih

ditk (_l)lailkaijl dilh_l

l=l,...,s,

l=l,...,t.

Proof. By Proposition 2.1, we can find the values of the elements ofAk by increasing
Xk by one unit and observing the corresponding change Axi/AXk in the basic variables,
that is, by solving the system

(4.1) BXB +Ak =0.

Now by setting xi 0 for ej not on the lasso C t_JF and then solving successively
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equations il , is, ,. , ,, is+l, iq in (4.1) we obtain values

ailk
Xi

ai2h
X] Xhai2 ]2

a6 kai2h
a6 hai2 jl

Xh _(aish71 Xh
aij, J

(_l)sa6kai2h
a6jlai2h aih

ailk

aiJl

a ik a iziix j
a ii/i a iljz

(_l)tailkaii ai;h_lx j’
a iii a i_i a

Xjs+
ai+ jsXjs 4- a is+ lJ,tX j,t

-1,
ais+lJs+l

ais+2Js+l
Xjs+2 --’}l,

ais+EJs+2

(_l,ai,+2h+l ai,+,h+,_l
Xjs+l

ai+2h+2

Since ahk Xh and ai x Jl the lemma follows
The crucial thing to note about Lemma 4.2 is that the sign of aki for any edge

eBk on the circuit C of the lasso is dependent only on the signs of the elements of A.
(This is not necessarily true for ei on the path F of the lasso.) Therefore, using Theorem
3.1 and Lemma 4.2, we get that the sign of pB(i, ]), for B a basis corresponding to a
tree in G(A) and ei and ej on some cycle C(B, k), is the same as that of taB(i, ) in the
system P(A*, b). We have immediately

THEOREM 4.3. Two variables x and xi are determinate in the generalized network
system P(A, b) only if they are determinate in the corresponding transshipment system
P(A *, b ). P(A, b) is totally determinate only ifP(A *, b) is totally determinate.

COROLLARY 4.3. If tWO variables x and xi are determinate in the generalized
network system P(A, b), then e and ej cannot lie on disjoint paths of a Wheatstone
bridge in G(A). IfP(A, b) is totally determinate, then G(A) is series parallel.

Finally, for physical flows systems
COROLLARY 4.4. If tWO variables x and xi are determinate in the physical flows

system P(A, b ), then xi and xi cannot correspond to two edges or an edge and a vertex
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which lie on opposite ends of a lasso in G’(A). ff P(A, b) is totally determinate, then
G’(A) is acyclic.

Since the necessary conditions of Corollaries 4.3 and 4.4 are sufficient if the
corresponding matrices are in fact transshipment matrices, then we can say that these
corollaries are the strongest statements about determinacy in a generalized network
system or physical flows system P(A, b) based on qualitative (that is solely sign
dependent) properties of A. The results in Corollary 4.4, moreover, constitute a
significant extension of the physical flows theorem in [11].
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EQUIVALENCE CLASSES OF HERMITIAN MATRICES
AND THEIR SCHUR PARAMETRIZATION*

PHILIPPE DELSARTE,5- Y. GENIN" AND Y. KAMPt

Abstract. A natural equivalence relation on Hermitian matrices is introduced to analyze the concepts
of Toeplitz distance and displacement rank. Two Hermitian block-matrices are said to be equivalent when
they are congruent under a block-triangular Toeplitz transformation. The matrices having the smallest
Toeplitz distance within a given equivalence class are identified. This minimum distance equals the
displacement rank minus twice the block size.

Some E-unitary transfer functions S(z) and some Schur-like functions (z) are constructed from the
Lyapunov relation defining the displacement rank. These functions are used to characterize the equivalence
classes and especially their minimum-distance representatives. A canonical factorizafion of S(z) corresponds
to a Schur-like decomposition of (z), involving a sequence of generalized Schur parameters Ek. The sets
of functions S(z), (z) and of Schur sequences (Ek) characterizing an equivalence class are described in
detail. Some results are obtained concerning the Schur parameters of the inverse of a given matrix.

1. Introduction. The concept of the displacement rank of a Hermitian matrix
was introduced by Kailath, Kung and Morf [8] to measure how the complexity of the
inversion problem depends on the distance of the given matrix to the Toeplitz structure.
A closely related concept is the Toeplitz distance, used for the same purpose by
Friedlander, Morf, Kailath and Ljung [5] in their generalized Levinson algorithm.

Two matrices are called equivalent when they are congruent under a triangular
Toeplitz transformation. Although equivalent matrices clearly have the same displace-
ment rank, they do not generally have the same Toeplitz distance. Hence the question
arises of identifying those representatives of a given equivalence class that have the
smallest Toeplitz distance. This question was settled by the authors [2] in the simple
case where the displacement rank equals two; it was shown that such "minimal
representatives" are nothing but the Toeplitz matrices. The general problem was
briefly evoked in [3], in connection with the generalized Levinson algorithm, and is
studied in full detail in the present paper. The minimum value of the Toeplitz distance
within a given equivalence class is shown to depend only on the displacement rank.
In addition, the minimal representatives are explicitly identified.

Each equivalence class can be characterized by two types of functions, denoted
by S(z) and (z), both deduced from the Lyapunov relation defining the displacement
rank. Functions S(z) of the first type occur as transfer functions derived from certain
embeddings of the Lyapunov relation [3], [6]. They are E-unitary on the unit circle
in the general case and E-lossless in the positive definite case. As for functions (z)
of the second type, which are defined directly from the Lyapunov relation, they can
be viewed as formal generalizations of the classical Schur functions [1], [13]. These
generalized Schur functions were first introduced by Lev-Ari and Kailath [10]. (See
also [3], [7], [9], [11].) It turns out that a canonical factorization of S(z), actually
equivalent to the recurrence relation of the generalized Levinson algorithm, follows
directly from an extension of the Schur algorithm; see [3], [4], [7], [9], [103, [11]. As
a result, the equivalence classes of Hermitian matrices are represented by some
sequences of generalized Schur parameters. The present paper contains a detailed
description of the whole family of functions S(z) and (z) associated with a given
equivalence class. (The reader is referred to a survey by Kailath [7] concerning this
subject.) Some remarkable members of the families {S(z)} and {(z)} are identified
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in correspondence with the minimal representatives of the equivalence classes. The
problem of defining "canonical" Schur parameters of minimal matrices is mentioned
in the general case and is solved in the positive definite case.

Another interesting question arises in the theory: is there any relation between
the functions S (z), (z) and the Schur parameters associated with a given matrix and
with its inverse? A very special case was treated in [2], where the canonical Schur
sequences of a positive definite Toeplitz matrix and of its inverse were shown to be
reciprocal of each other. A generalization of this result is obtained here for arbitrary
positive definite matrices.

It should be mentioned that the present paper deals always with the block-
displacement rank and the block-Toeplitz distance of Hermitian matrices. Finally, it
is worth noting that a similar theory can be developed for non-Hermitian complex
matrices and, more generally, for square matrices over an arbitrary field.

2. Embeddings and transfer functions. For given integers p and n, with p >= 1
and n->0, let F denote the left p-shift matrix of order c (n + 1)p, i.e., the matrix
F [Fi,: 0 -< i, / -<_ n withp p blocks Fi, 0 for ] # 1 and Fi,i- Ip for 1, , n.
Throughout this paper we consider a Hermitian matrix P [Pid" 0 -< i, f <- r ], of order
c, with p p blocks Pi,/= P,i. (Here and in the sequel the tilde stands for the conjugate
transpose.) Let us define integers/ / and/- in terms of P by the following expression:

(1) /+/-(P) max {p, r+/-(P-FPI)},

where r/(X) and r-(X) stand for the number of positive and negative eigenvalues of
the Hermitian matrix X. The sum/3 =/3

/

+/3- will be referred to as the displacement
rank of P and the terms/34 and/3- as the positive and negative constituents of/3.
Note that these definitions coincide with the classical ones [3], [8] in the "normal
case" r+(P FPI) >= p, which implies +(P)=r+(P-FP1) and thus /3(P)=
rk (P-FPF).

Two Hermitian matrices P and P are said to be equivalent if there exists a
nonsingular matrix L of order c commuting with F such that P LPL. It appears that
the commutativity condition FL LF exactly means that L is a lower block-Toeplitz
matrix, i.e., L [Li i" 0 -< i, ] -_< n with Li Li-i for _->/" and Li 0 for <]. By,,,
definition, _-FPF=L(P-FPI)I,, so that (1) immediately yields +/-(/5)=/3+/-(p) in
view of Sylvester’s law of inertia. As a conclusion, the constituents of the p-displacement
rank are constant for all matrices in the same equivalence class.

Let us now examine the equivalence relation just defined from the viewpoint of
the Lyapunov equation and its embedding [3], [6]. The starting point is an identity
of the form

(2) P FPff" GZO,

where E =diag (+1) is a signature matrix of order/3 (=p-displacement rank of P),
containing/3

+/-

diagonal elements + 1, while G is a suitable a /3 matrix. In the sequel,
(2) is called a Lyapunov relation for P. In view of Fn/l 0 it appears that P is uniquely
determined from E and G in the form

(3) P= FG.r:.
k=O

In case P is nonsingular, the Lyapunov relation (2) is known to be embeddable
into a (P+ E)-unitary relation [6]. This means that there exists a/3 c matrix H and
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a/3 /3 matrix J yielding a (P+. E)-unitary matrix

We recall that X is said to be (P.+ Z)-unitary when it satisfies X(P+.E) P+. Z. Such
a matrix (4) will be referred to as a (P+. E)-unitary embedding of the pair (F, G). From
(4) we construct the/3 x/3 rational matrix

(5) S(z)=J+H(zI-F)-IG.
Thus S(z) is the transfer function admitting X as state space realization. (Note that
S(z) is a polynomial of formal degree n + 1 in the variable z-1.) Using the fact that
X is (P+. Z)-unitary, with F nilpotent and P nonsingular, one can easily show that
the pairs (F, G) and (F, H) are controllable and observable, respectively, so that X
is a minimal realization of S(z). Hence S(z) has McMillan degree a. On the other
hand, it is easily verified that S(e i) is E-unitary for all real 0. In addition, S(z) is
Z-lossless in case P is positive definite [3], [6].

To progress further into the question of equivalence one is led to make a weakly
restrictive assumption of nondegeneracy concerning P, namely

(6) max {r+(P -FP), r-(P-FP)} >= p.

(It suffices for example that Po.o be positive or negative definite.)_ L_e,t no_w =_ LPf_,_
be a matrix equivalent to P and consider a Lyapunov relation P-FPF GEG for P.
Comparing with (2) one obtains

(7) GEG (LG)E(GL).

Our assumption (6) means that r+(GE)=r+(,) or r-(GEt)=r-(Z). In such a
situation it turns out that (7) implies the existence of a E-unitary matrix U satisfying

(8) G =LGU.

Let us give an elementary proof of this result (see [12]), in the case r+(G,Et)=
r/(E). The starting point is a factorization G,Et RoA/o, where Ro is an a p matrix
of full column rank p rk (GE() and A is a signature matrix of order p such that
r (A) r (E). Thus one can write A I +. (-Io-) and E I +. (-I_), without loss of
generality. From R0 construct a nonsingular matrix R -[Ro, R 1] of order a. Defining
the a fl matrices A R-XG and B R-L- one obtains AE BE/ A +.0 by
use of (7). Hence, in view of the structure of A and E, there exist E-unitary matrices

Ua and Ub such that the first/x rows of both AUa and BUb constitute the matrix
Jig, 0]. Next, let us interchange the last/3-/x columns of AU and BUb; thus, from
the (/z,/-) partitioning AUa=[Ao, A] and BUb =[B0, B1], define the matrices
A’= [Ao, BI] and B’= [Bo, A 1]. The property AE.z( BE/ clearly becomes A’’=
B’/’, which implies the existence of a unitary matrix of order/ satisfying ,4’f B’.
By construction, the first block-row of this identity reduces to Jig, 0]f [I,, 0], which
clearly forces f I, .+ V for a suitable unitary matrix V of order/3 -/z. The conclusion
is AU(I,+. V)--BUb’, this proves the result (8) for U U(I,+. V)U-.

Assume again P to be nonsingular. It follows from (8) that the set of all transfer
functions (5) relative to P remains unchanged when P is replaced by any equivalent
matrix P =LPIS. Indeed, if X is a (P+. E)-unitary embedding of (F, G), then
(L+.I)X(L- +.I) is a (P+. E)-unitary embedding of (F, (U-). Hence, applying (5)
to X and X yields S(z) S(z) as claimed.
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Next, we examine the relationship between any two transfer functions S(z) and
$ (z) relative to the same matrix P. Let X and X denote the embeddings from which
$(z) and g(z) originate. By construction, is (p-a +. X)-unitary, so that one can write

(9) [/*]F_,[H J]=[P0- E0]-[]P-a[F G].

Applying (8) yields G GU for a certain E-unitary matrix U. Hence, substituting X
for X in (9), one obtains, by direct comparison,

As the matrices [H, J] and [H, J] have full row-rank, (10) implies the existence of a
Z-unitary matrix V such that [, J-U-a] V[H, J]. Thus the realization has the
form X (Is +. V)X(I +. U), so that the transfer functions S(z) and S(z) are simply
related by

() S(z)= VS(z)U.
We now turn to a converse approach. Let S(z) be a/3 x/ rational matrix, of

McMillan degree a, admitting the left p-shift matrix F of order c as minimal state
transition matrix. Assume S(e) to be X-unitary for all real O, for a given signature
matrix 2:. A minimal realization X of S(z) is known to yield a unique Hermitian
matrix P of order a such that X is (P+. X)-unitary [3]. (In general, P is not guaranteed
to be nonsingular. However, if S(z) is X-lossless, then P turns out to be positive
definite [6].) On the other hand, any minimal realization X of S(z), with F F, has
the form J =(L+.Ie)X(L-a +.Ie) for some lower block-Toeplitz matrix L; hence
corresponds to the matrix/5 LPI. As a result, S (z yields a whole class of equivalent
matrices. Note that, for U and V varying over the group of X-unitary matrices, all
functions S(z) defined by (11) yield the same equivalence class.

For future use we define a rational p q matrix function cO(z), with q =/3-p, in
the following manner. From the block-rows of the cz /3 matrix G occurring in the
Lyapunov relation (2) construct the p / matrix polynomial

(12) G (z) [g, zg,.. , z"g
Consider then the partition G(z)=[Go(z), Ga(z)], where Go(z) has p columns and
Ga(z) has q columns (with q B-P). Assuming Go(0) to be nonsingular, define the
p x q matrix

(13) (z) Go(z)-aG (z)

Let now L [Li-i" 0 -< i, ] <- n be a nonsingular lower block-Toeplitz matrix (with
Lk =0 for k <0). The polynomial G(z) obtained by substituting (8) for the matrix G
in (12) is given by

(14) r(z)--L(z)G(z)U (mod Z n+l),
with L(z)= t,=oL,z It is easily verified by use of (14) that, in case o(0) is nonsin-
gular, the matrix function (z) Oo(z)-O(z) is related to O(z) by

(15) gp(z)m[Uoo+Op(z)Uao]-a[Uoa+Op(z)Uaa] (mod z"+a),
where U [Uij" 0-< i, ]-< 1] is the (p, q)-partitioned form of U. Thus the functions

(z) corresponding to a given equivalence class of matrices P are deduced from each
other by E-unitary homographic transformation (15).
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It is interesting to see how (z) can be determined from S(z), in the case where
P is nonsingular. To that end we construct the/3 p matrix polynomial

(16) H(z) H[z "I, , Zip, It, IT
from the block-columns of the/3 a matrixH occurring in a (P.+ X)-unitary embedding
(4) of the pair (F, G). Applying (5) immediately yields

(17) zn+IS(z)=--H(z)G(z) (mod z"+).

Assume H(0) to have full column-rank and denote by K any p /3 matrix such that
the product KH(O) is nonsingular. Consider then the column-partition z"+lKS(z)=
[W0(z), Wl(z)], thus defining a p p matrix polynomial Wo(z) and a p q matrix

n+lpolynomial Wl(Z). From (17) one deduces W(z)=-KH(z)Gi(z) (mod z ), so that
(13) yields

(18) dp(z)=- Wo(Z)-IWI(z) (mod

3. Minimal representatives of an equivalence class. We first recall the definition
of the Toeplitz distance [3], [5], which is closely related to the displacement rank. Let
Pinf [Pid" 1 <- i, ] <- n and Psup [ei,i" 0 -< i,/" <= n 1] denote the Hermitian matrices
of order np obtained by dropping the first and last p rows and columns of P. The
Toeplitz distance y(P) is defined to be the rank of the matrix Pinf--Psup. The positive
and negative constituents of the Toeplitz distance of P are the integers y+(P) and
y-(P) defined by

(19) y+/-(P)-- r+(Pinf-Psup).
It turns out that the constituents of the displacement rank and Toeplitz distance obey
the inequalities

(20) /3 +/-(P)-p _< y+/-(p) =</3 +/-(p).

To establish (20) let us start from the identity

Pinf- Psup

with [Po,1, , Po.]. Put O P-FPffz and O1 einf-esup. By definition, r+(O)
is the dimension of the largest linear space X of complex a-vectors x such that the
real number Qx is positive for all nonzero x in X. Consider then the linear space
X1 consisting of the (a p)-vectors x such that (0, x () belongs to X. One clearly
has dim (Xl) >_-dim (X)-p. Hence r+(Q1)>=r+(Q)-p, which yields 3,+(P)>-_B+(P)-p
in view of definitions (1) and (19). The result y-(P) => B-(P) -p follows from the same
argument. The right-hand side inequalities (20) are immediate.

Our next objective is to show that, given a Hermitian matrix P of order a with
a nonsingular first block P0.o, there exists a matrix P equivalent to P such that the
Toeplitz distance of P achieves the lower bound (20), i.e.,

(22) y+/-(P) =/3+/-(/5) p.

To that end, we shall transform an a /3 matrix G occurring in the Lyapunov relation
(2) into a matrix G of the form (8) in such a way that the corresponding matrix P LPL
satisfies (22). Consider a factorization P0.o KA0K with A0 a signature matrix and K
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a nonsingular matrix of order p. Since/3 _-> p one can write, without loss of generality,

(23) ,E Ao +. (-A1) with A A0 (-F),

where F is a signature matrix of order/3 -2p.
We now prove that there exists a ,E-unitary matrix U and a nonsingular lower

block-Toeplitz matrix L such that the product LGU has the form

(24) LGU=
-T D

where T is an (a-p)p matrix and D an (a-p) (/3-2p) matrix. Let Go be the
p x/3 matrix consisting, of the first p rows. of G. Defining the p /3 matrix R [K, 0]
one has R Y_,R KAoK =Po,o Go.EGo, via (2). This implies .the existence of a
unitary matrix U satisfying R- GoU. It is then easily verified that there exists a
unique lower block-Toeplitz matrix L [Li-j" 0<= i, j <-n] such that LGU has the
structure (24). Indeed, writing

(as) Gu

K 0 0

A1 Bx C1

c.An B.

where Ak and Bk are p x p matrices while Ck is a p x (/3 -2p) matrix, one successively
determines the blocks Lo, L1," ",Ln from the conditions LoK =Ao, LIK+
Lo(A +B) 0, LEK +L(AI +BI)+Lo(A.+B2)=0, etc. Hence the desired result is
proved.

For the choice of L just ex_p.lained, .define the matrix/5 LP, equivalent to the
given P. Using (2) yields P-FPF G,EG with G LGU. Hence, in view of (23) and
(24), one has

(26) P FPF
DF1}

Thus /Sinf-/Ssup=DF/, which implies 3,+/-(P)=r+/-(DFl)<=r+(F)=r(,E)-p=
[3+/-(P)-p. As a consequence, (20) forces the desired equality (22).

A Hermitian matrix P with a normalized nonsingular block P0,o Ao diag (+ 1)
is said to be minimal if its Toeplitz distance achieves the lower bound (20), i.e., if
y+/-(P) [3+/-(P)-p. We have just proved that any Hermitian matrix P with a nonsingular
block Po.o is equivalent to a minimal matrix.

We now consider the problem of describing the whole set of minimal representa-
tives of a given equivalence class obeying the nondegeneracy condition (6). Given a
minimal matrix P let F be a signature matrix of order y =/3 2p, containing y =/3 p
diagonal elements equal to + 1, such that one has

(27) einf- Psup DFJ0,
for some (a-p) (/3- 2p) matrix D. Within permutation, the signature matrix ,E
associated with P is then given by (23), where we can choose Ao Po.o. As it appears
from (21) and (27), a solution G to (2) is provided by the right member of (24), i.e.,
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with T [Po.a,"" ", Po.n]. Let us briefly examine the function (I)(z) in the present
situation. Applying (13) to the special case (28) yields

(29) q)(z) [Ao + T(z)]-l[- T(z), D(z)],

with T(z) (zip,..., z"Io)T and D(z) (zip,..., z"Ip)D. As T(0) 0 and D(0) 0,
the function q)(z) is analytic and vanishes in z 0. Note that G can be reconstructed
from (z). Indeed, (29) implies

(30) G(z) Ao[Ip + Oa(z)]-a[I, q)a(z), q)b(Z)],

where q)= [q), (I)b] is the (p, y)-partition of the columns of . Furthermore, given a
p q matrix function q(z) analytic and vanishing in z 0, the polynomial G(z) defined
from truncating the Maclaurin expansion of the right member of (30) produces a
matrix G of the form (28).

Let us similarly define ( with the structure (28) for a given minimal matrix/5 LPI
equivalent to P. In this case, the first block-row of (8) reads [Ao, 0]=Lo[ho, 0]U.
Hence the block U0a must vanish. As U is Z-unitary, this implies U10 0, so that U
has the form

(31) U--- Uo-Jf-. U1,

where U (= U,) is a Ai-unitary matrix. As a result, the homographic transformation
(15) reduces to

(32) alP(z)=--- U-5 dP(z)Ua (mod z +).
On the other hand, the lower block-Toeplitz matrix L is uniquely determined from
G and U. In fact, straightforward computation based on (14) and (28) yields

(33) L(z)-aAo=--AoUo+ T(z)(Uo-Ua.)+D(z)U.b,

where UI. consists of the first p rows and columns of U1 while Ua.b consists of the
last , rows and first p columns of U1.

Conversely, given a minimal matrix P one obtains an equivalent minimal matrix
P LPL by constructing L from (33) in terms of any E-unitary matrix U of the form
(31). Indeed, (33) expresses the fact that if G has the structure (28) then so has
r LGU, which implies that/5 is minimal. Equivalently, (z) can be constructed from
U by substituting (32) for (I)(z) in (30). As a conclusion, the minimal representatives

of a given equivalence class are parametrized by the direct sums of Ao-unitary matrices
and Aa-unitary matrices. The parametrization appears best in the expression (32).

4. Factorization and Schur parameters. In this section we make the classical
assumption [3], [5] that the submatrix P =[Pi,i" O<=i,f <=k] consisting of the first
(k + 1)p rows and columns of P is nonsingular for k 0, 1, , n. It is then known
that the transfer function (5) associated with P can be factorized in the form

(34) S(z)= WR(z)R_I(Z) Ra(z)Ro(z),

where R(z) is a matrix polynomial of formal degree 1 in z - and of McMillan degree
p, having the property that Rk (e o) is E-unitary for all 0, while W is a constant E-unitary
matrix (which is introduced here to simplify further notations). Moreover, the matrices
Rk (z) are uniquely determined within constant E-unitary left and right factors. Without
going into details, let us mention that, for a minimal matrix P, the factorization (34)
is closely related to the recurrence relations underlying the generalized Levinson
algorithm [3], [5]. In fact, it turns out that the function Sk(z)=Rk(Z)’’" Ro(z) is
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associated with Pg in the same manner as S(z) with P. The identity Sg (z) Rg (z)Sg-1(z)
is then equivalent to the three-term recurrence relations just mentioned.

Let us assume henceforth that the Schur complement of Pk-I with respect to Pg
is congruent to A0 for k 1,.. , n. (In case A0 Ip this exactly means that P is positive
definite.) As explained below, the factorization (34) can then be deduced from a
generalization of the Schur algorithm [1], [13] applied to the matrix function (z)
given by (13). The essence of the algorithm in question is the recurrence relation

(35) ()k +1 (Z) Z -1AO lip (I)g (Z)Alg]-l[(I)g (Z) AOk]lk A1

for k=0,1,...,n, with the initialization o(Z)=(z). The pq
Eo, E,..., En occurring in (35) are recursively defined by

matrices

(36) Ek AoCPg (0), k 0, 1, ’, n,

so as to make (I)k/l(Z) analytic at the origin. As for Dog and Dig they are nonsingular
matrices of order p and q determined from Eg via the relations

(37) /oAoDo (Ao--EAd)-, lgADk (A--kAoEk)-.
In fact, it turns out that Ao--EkAlJk and AI-J.kAoEk are congruent to Ao and ZI,
respectively, so that (37) actually admits solutions Dog and Dxg. Of course, Dig is only
determined within a left hi-unitary factor. In the sequel it is understood that Dig is
chosen in a well-defined (but arbitrary) manner, so that the matrices Eg are uniquely
determined from (z); they are called the Schur parameters of (z) resulting from
the generalized Schur algorithm (35)-(37).

The paragraph above contains a description but no validation of the algorithm.
In fact, except for the classical case A0- Ip, h Iq, it remains an open question to
characterize intrinsically the class of functions (z) to which the algorithm applies.
In the context of our study, the validity of the generalized Levinson algorithm is
guaranteed from the origin of (z) on the basis of the following argument. A typical
factor Rg(Z) in (34) can be written in terms of a p q matrix Ek, with Ao--EkAl_.k
congruent to Ao (hence AI-J,kzoEk congruent to A1), in the form

(38) Rg(z)=[z-Dok 0 ][Ao Ek]0 Dlk Jk ZI
where Dog and Dk are determined from Eg as in (37). A proof of this property can
be found in [3]. (Note that the expression of Rk(1) defined by (38), together with (37),
is nothing but the general expression of a E-unitary matrix with a nonsingular upper-left
p p submatrix.) It turns out that the matrices Eg occurring in (38) can be computed
from (z) via the generalized Schur algorithm (35)-(37). This important result is
based on the relationship (18) between (z) and S(z); the proof is essentially the
same as in [3] and [4].

To see more precisely how the Schur parameters Eg characterize an equivalence
class of matrices P let us examine how they vary when (z) and S(z) are replaced
by (z) and S(z). (This question makes sense because our assumptions concerning P
are actually valid for all matrices P equivalent to P.) In view of (11) and (34), the
transfer function (z) VS(z)U can be factorized as (z) ff’/, (z). ./0(z) in
terms of the constant factor W VW(Io +. f) and of the first degree factors

(39) lo(Z)=(fo+fx)-IRo(z)U, Ik(Z)=(to+f)-R (z)(Io + l),
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for k 1,..., n, where 12i is any Ai-unitary matrix. Hence (38) yields the following
relation on the Schur parameters:

(40)
o Ao(hoUoo +EoUlo)-l(hoUol +EoUI),
k=oEg fork=l,.’’,n

with the choice/ik lDikl for 0, 1 and k 1,..., n. In terms of the Schur
algorithm, this corresponds to the transformation k(Z) k (Z) given by (15) for k 0
and by

(41) Pg(z)=-f-IcPg(z)121 (modz "+-k) fork =l,...,n.

Let us now look at the case of minimal representatives, for which the functions
q(z) and q(z) have the form (29). In this situation, one has E0 Eo 0 and one can
choose Do Ai for =0, 1, which yields U 12o+. f. Hence (41) holds true for k =0;
see (32).

It should be noted that the results (39)-(41) make sense only if the choice for
the solutions Dk to the relations (37) is adapted in a well-defined manner when passing
from the parameters Ek to the parameters Ek. This naturally raises the question of
defining Dok and Dig as functions of Eg in such a way that, for any Ag-unitary matrix
Ue (i 0, 1), the substitution Ek --> ffYoEkU induces the substitution Dig "-> USIDik]’7
for 0, 1. In this situation, the Eg’s are referred to as the canonical Schur parameters
of the minimal matrix P. For arbitrary signature matrices A0 and A1 the condition
above can generally not be fulfilled. (In that respect, it does not seem that the question
of identifying some "remarkable solutions" Dig to the equations (37) has yet received
much attention in the literature.) However, in the important case of positive definite
matrices P, corresponding exactly to Ao Ip, a suitable definition of Dok and Dk is
easily discovered, namely

(42) Dog (Ip -EgAlJk)-1/2 Dlk= A(Iq -YkEgA1)-1/2

with A-1/2 denoting the inverse of the unique positive square root of the positive
matrix A. (Here A is said to be positive whenever all its eigenvalues are positive real
numbers.) Note that the definition of Dk differs slightly from that given elsewhere
[3], [4]. It is worth mentioning that Dg can be computed from Eg and Dog via the
rational expression

(43) Dig A1 + AkDog(Ip +Dog)-IDogEkA.

Let us point out that, for the choice (42), the (Ip+. (-A))-unitary matrix Rg(1) has the
property of being (I +. A)-Hermitian. Finally, let us recall that P can be reconstructed
from the sequence of its canonical Schur parameters Ek; this is explained in [3].

5. Sehur lmrameters o the inverse matrix. Let Q be a nonsingular Hermitian
matrix of order a (n + 1)p. Our first point is to show how an embedding of type (4)
relative to Q- can be deduced from an embedding of the same type relative to a
permuted version of Q itself. From the symmetric permutation matrix

(44) II
Ip
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of order a, define the matrix P 1-IOII, with blocks Pi,i On-i,n-i. Given a (P+. E)-
unitary matrix X of the form (4), set then X*= (l-I+. I)’(II+. I). In view of the
obvious identity F IIFII, one has

Since ’(P- +. Z)X P- +. E can be written as X*(Q- +. Y_.).* Q- +. Y_., it appears
that Q- has the same p-displacement rank as P and that the substitution G 1-I/-,
H (H, J- produces an embedding relative to Q-a from an embedding relative
to P. Next, let S (z) and S*(z) denote the transfer functions (5) admitting the realizations
X (associated with P HQH) and X* (associated with P* Q-X), respectively. From
(45) one deduces

(46) S*(z) ] + 0II(z/ F)-Xl-I/
We now examine how the Schur parameters relative to Q-1 can be deduced from

those relative to P. Here we consider only the case where Q is positive definite. Thus
let Eo 0, Ex, , En and Eo* 0, E*, , E* denote the canonical Schur parameters
of any two minimal matrices equivalent to P and to P* Q-l, respectively. We shall
establish the following identity:

(47) E UoE,+a-Ua,

where Uo is a unitary matrix and U1 a A1-unitary matrix (depending on the specific
minimal representatives occurring in the definition). The starting point of the argument
is the factorization (34), with the normalization W Its. Using Ro(z)= z-XIp +. Iq and
applying (46) one obtains

(48) S*(z) (z-’I,+. Io)I(2) I,(2).
On the other hand, as R(1) is (Ip+. A,)-Hermitian, the matrix R(1) results from
replacing the triple (Ek, Dok, Dx) by the triple (EA1, Dok, AIDIAx) in the expression
(38) of Rk(1). Hence (48) can be written as

(49) S*(z)=R*,(z) R* (z)(z-t+. t,),

where R’(z) is the matrix (38) built on the parameter E =En+l_kA1. This proves
the desired result (47).

6. The non-Hermitian case. The whole theory can be adapted to the case of any
square matrix P, over an arbitrary field. In this general situation, the equivalence class
containing P consists of all matrices of the form P LPL’ with L lower block-Toeplitz
and L’ upper block-Toeplitz, both nonsingular. Roughly speaking, to apply the results
above it suffices to give a purely formal meaning to the tilde symbol. (Of course, the
notions of positive and negative constituents of the displacement rank and Toeplitz
distance become meaningless, so that the signature matrices disappear from the
theory.) We shall not go into details about this subject, except for mentioning that
the matter is simpler than in the case of Hermitian matrices.
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THRESHOLD-BOUNDED INTERVAL ORDERS
AND A THEORY OF PICYCLES*

PETER C. FISHBURNt

Abstract. Given -< m -< n with m and n relatively prime if m => 2, let [m, n] be the class of finite
partially ordered sets (A, P) whose points a, b,... can be mapped into closed intervals with lengths in
[m, n] such that, for all a, b cA, aPb if and only if a’s interval lies completely to the right of b’s interval.
A theory of picycles based on a mixture of algebraic and combinatorial ideas leads to the conclusion that
each [m, n is axiomatizable by a universal sentence of first-order logic. Necessary and sufficient conditions
for membership in [m, n] are specified.

The present results lie in sharp contrast to an earlier conclusion that the class , of finite interval
orders which can be represented using no more than n interval lengths is not axiomatizable by a universal
sentence when n => 2.

1. Introduction. Let be the class of nonempty finite interval orders, henceforth
referred to simply as orders. Order (A, P) consists of a nonempty finite set A and an
asymmetric binary relation P on A such that

Va, b, x, y A" (aPx and bPy (aPy or bPx ).

The aim of this paper is to show that certain interesting subclasses of are axiomatiz-
able by a finite number of universal sentences of first-order logic. The subclasses
considered here pertain to threshold models for transitive binary relations, like P,
whose symmetric complements need not be transitive. The symmetric complement I
of P is defined thus: alb if neither aPb nor bPa.

It is well known [1], I-5] that for each order (A, P) there exist real valued functions

f and to on A with to strictly positive such that

Va, b A" aPb :f(a) >f(b) + to (b).

Hence alb if and only if f(a) + to (a) >= f(b) and f(b) + to (b) >= f(a). We refer to such an
(f, to) as a representation of (A, P), and to to as the threshold function or length function
of the representation. The term "length" will also be used for chains and linkages. A
chain of length K is a sequence of K contiguous P pairs, say xlPx2P’" PxtcPXK+l,
and a linkage of length K is a sequence of K contiguous I pairs, say
y Iy2I IyKIyK/

For each positive integer n let , be the class of orders that have representations
whose length functions have no more than n values, i.e., Ito (A <- n. For positive
integers m -< n that are relatively prime when m -> 2, let Ira, n be the class of orders
that have representations whose length functions are bounded between m and n, i.e.,
to(A)_[m,n]. The class of finite semiorders [4], [9] is 1, or equivalently [1, 1].
Although [1, 1], no k for k ->2 is identical to any [m, n].

It is known [3] that no , for n ->2 is axiomatizable by a universal sentence in
first-order logic. However, we shall prove here that each [m, n is axiomatizable by
a universal sentence of first-order logic. In other words, there is a finite list of forbidden
orders such that order (A, P) is in [m, n if and only if no restriction of (A, P) is
isomorphic to one of the forbidden orders. But no such finite list exists for , when
n>=2.

The next section presents the main theorem, which gives conditions on P and I
that are necessary and sufficient for membership in [m, n]. An easy corollary notes
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" Bell Telephone Laboratories, Inc., Murray Hill, New Jersey 07974.
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that [m, n] is axiomatizable by a universal sentence. The third section introduces
the notion of picycles (PI cycles) and proves a lemma based on linear solvability
theory that is used later to complete the proof of the main theorem. The fourth section
develops additional theory about picycles that is needed in the main proof.

2. Main theorem. The composition RS of binary relations R and S on a set A
is defined by

RS {(x, y) A A" :lz A such that xRz and zSy}.

We also write xRSy for (x, y)RS. The k-fold composition of R with itself is
Rk: RI=R and Rk+I=RkR . Similarly, P’IPv is an (a +/3 +7)-fold composition,
with x (P’IP’) y if and only if there are a, b A such that xP’a, aIb and bP’y. A
realization of PIPTM consists of a chain of length a adjoined to a linkage of length
fl, which in turn is adjoined at its other end to a chain of length 7.

Transitivity for P means that p2_ p, and the defining properties of orders imply
that PIP

_
P and IPI

_
(P U I). The conditions we use for membership in [m, n are

similar composition-inclusion conditions. Examples for [1, 3] and [2, 3] illustrate
the approach.

The class of orders whose length functions can be bounded between 1 and 3 is
[1,3]. Suppose (A, P) [1, 3] and let (f,p) be a representation of (A,P) with
p (A)

_
1, 3 ]. Then IP4

_
P, for if xIaPbPcPdPy then

f(x)+o(x)>-_f(a),

f(a)>f(b)+o(b),

f(b)>f(c)+o(c),

f(c)>f(d)+p(d),

f(d)>f(y)+p(y).

Addition gives f(x) >f(y) + o (y) + [0 (b) + O (c) + O (d) O (x)], and since the bracketed
O sum is nonnegative we get f(x)>f(y) +0(y), or xPy. In fact, Ip4_ P is sufficient
as well as necessary for an order to be in [1, 3].

Similar arguments show that IP c_ p and P4I c_. p are necessary for membership
in [2, 3]. However, they are not sufficient, since the order shown in Fig. 1 has no
4-chain but is also not in [2, 3]: if x through xs have lengths in [2, 3], then x9’s
length must exceed 3 to intersect both X and xs. The order in the figure violates
p312P2I P, which is necessary for [2, 3]. The main theorem shows that we do not
have to go beyond double chain-linkage compositions to obtain sufficient conditions
for membership in [2, 3].

x4 x 3 x2; -tl

x5 x6_3

’--, x8 x7 I

F[ x9

xIPx2 Px3 Px4 Ix5 Ix6 Px7 Px8 Ix9 Ix

c:x1(p3 i p2 I)x9 Ix

FIG. 1
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The general condition for t-fold chain-linkage compositions that we shall use for
[m, n] is

At,,,. For all (, ,. ., ,, B,) >- (2, 2,.. , 2, 1) such that Yt ai n + and
Y’.li=m+t-1

Thus AI"‘, says that pn+a["‘ c_p and I"‘Pn+a P; A2"‘n says that PIPVI and
IPVIOP are included in P whenever (a,B, %6)->(2,2, 2, 1) and a +/=n +2 and
/3 + 6 m + 1; and so forth. Our main theorem is

THEOREM 1. Order (A, P) is in [m, n if and only if it satisfies At,,, for
1,...,m.

The proof that Al"‘,-Am"‘n are sufficient for (A, P)e[m, n] appears in the
next three sections. To demonstrate necessity for At"‘,, suppose (f, p) is a representa-
tion of (A,P) with p(A)_[m, n], and let xap’ayItIxzP’Zy2It2’’" xtP’’ytIt’x,+ be a
specific realization of PaI... P’I’ with (a,..., fit) satisfying the hypotheses of
At"‘,. When the (f, p) inequalities for the successive pairs in the composition are
summed (f(a >f(b + p (b for aPb, f(a + p (a >= f(b for aIb and obvious identical
factors on the two sides are cancelled, we get

f(Xl)+ Isum of (/--1)terms+p(.)]
>f(Xt+l)+[sum of (ai-1) terms+p(.)],

or

f(xl)>f(x,+x)+[Y of n +p(’)]-[Y’. of (m -1) +p( )]

=>f(x,+l) + nm- (m 1)n

=f(x,+l)+n

>-f(x,+)+o(x,+),

so that x aPx,+a. The necessity of At"‘,’s other conclusion is established in a similar way.
Theorem 1 says that order (A,P) is in [1, n] if and only if (IP"+aUP"+I)_P.

In fact, our later sufficiency proof shows that only one of the two conclusions of Alan
is needed"

COROLLARY 1. (A, P)6[1, n] if and only if lPn+a _P.
For semiorders we have the known result that order (A, P) is in [1, 1] if and only if

Ip _P.
The main theorem shows exactly what is required for membership in [2, 3],

namely,

(p412UI2p4)_p,
(p312P2I LJ IP2IZP L3 PzlzPI LJ Ip3IP2)

_
P.

Because we need only consider the At"‘, through m, and because the hypotheses
of At"‘, require ag=n+t and Y/3i =m +t-1 with (aa,..., ct,/3t)=>(2, ,2, 1),
each [m, n] is characterized by a finite number of composition inclusions as shown
in the statement of At"‘,. If an order is not in [m, n then it must violate one of the
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composition inclusions. If it violates a composition inclusion with K (ag + 3g), then
some specific restriction of the order that has K + 1 or fewer points must violate that
condition. (A restriction of (A, P) is an (A’, P’) with c A’

_
A and P’ P (A’ A’).)

Since there are at most a finite number of nonisomorphic orders with K + 1 or fewer
points that violate a K-fold composition inclusion, it follows that there is a finite set
of orders such that order (A, P) is in [m, n] if and only if it has no restriction that
is isomorphic to one of the orders in the finite "forbidden" set. Since each composition
inclusion is a universal sentence (no existential quantifiers in prenex normal form), it
follows from standard definitions [9], [10] for axiomatizations in first-order logic that
Theorem 1 implies

COROLLARY 2. Each [m, n is axiomatizable by a universal sentence of first-
order logic.

As noted earlier, a similar conclusion does not hold for , when n >-2. In
particular, there are orders of arbitrarily large finite cardinality that are not in , but
have every proper restriction in

3. Forbidden picycles. A constructive sufficiency proof for Theorem 1 would
develop a representation with p(A)_ [m, n for any order (A, P) that satisfies AI,
through Am,n. This has been done for semiorders (m n 1) by Scott and Suppes
[9] and others [6], [7], but appears unwieldy for general Ira, hi. I shall therefore
establish sufficiency for Theorem 1 using an indirect approach that is suggested by
Scott’s semiorder proof [8].

This approach has two main steps. The first, taken in this section, applies solvability
theory for a system of linear inequalities to the inequality system of an (f, p) representa-
tion to obtain a necessary and sufficient condition on P and I for membership in
[m, n]. The second step, taken in the next two sections, shows that the condition
on P and I holds for an order when the order satisfies AI,-Am,.

Several definitions will be needed. A cycle for (A, P) is any list

C=XlRlx2R2" xKRexl (K>=l)

with xk A and Rk {P, I} for k 1,. , K. The cycle is pure if all Kx are different.
Cycles XRlx2R2" xKRx, x2R2. xRxlRX,. and xRKxIR
x_lR_lX: are viewed as equivalent.

A cycle c8 with Rg I for all k is an icycle. Thus, an icycle consists of one linkage
that begins and ends at the same point. A cycle is a picycle if R P for at least one
k. It must have at least one I also since otherwise transitivity of P would give XlPX1.

A picycle can always be arranged so that R P and Rc L When thus arranged,
it consists of a chain, followed by a linkage, followed by a chain,. , and ending with
a linkage. A picycle that is composed of chains of lengths a,..., at, followed
alternately with linkages of lengths 31," ", 3t, will be abbreviated as

xp’,yI3, xtP’,ytl3,xl
or even more cryptically as =PI3...P’I3’. The index of such a is
(a, fl at, fit), its length is y,.t (ai +fli) and its P-excess ee and 1-excess e are
defined by

ep (oti 1) E Oli t,

e, E (3g- 1) E 3i- t.

We now connect these ideas with [m, n ]. For a reason that is made clear in the
following lemma, a picycle P1I1 P’I’ for which mep >- net will be said to be
(m, n )-forbidden.
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LEMMn 1. An order (A, P) is in [m, n if and only if it has no (m, n )-forbidden
picycle.

It is known that there is a 19-point order for Ira, n [5, 9] that is not in [5, 9]
and which necessarily has a (5, 9)-forbidden picycle but has no pure picycle that is
(5, 9)-forbidden. Hence Lemma 1 is not generally true when "pure picycle" is sub-
stituted for "picycle".

The remainder of this section proves Lemma 1. Since it is straightforward to
show that (A, P) cannot be in [m, n ] when it has a picycle with mee >= net, we turn
immediately to the proof that an order not in [m, n must have an (m, n)-forbidden
picycle.

To set the stage, suppose for the moment that (A, P) is in [m, n with [AI N
and A {aa, az," ’, an}. Then, given any - > 0, there are f and p such that

and

Define

f(ai) >f(ai) + p(ai)

f(ai + p (ai >-f(ai

whenever aPai,

whenever ai[a and ],

mr<=p(ai)<=nr fori=l,...,N.

to (f(al), ", f(au), 0(a0,""", o(aN), ’);

a(i, ) is a (2N + 1)-vector with 1 in position i, -l’s in positions/’ and N +/’, and
O’s elsewhere, given aiPai;

a(i, ) is a (2N + 1)-vector with l’s in positions and N + i, -1 in position j, and
O’s elsewhere, given aIai.

Also let ki denote k in position . It then follows that (A, P) is in [m, n ] if and
only if there exists an to that satisfies

to’(0,’’’,0, 12N+1) 2>0,

to" a(i,]) >0

(*) to a(i, [) >-O

to" (0,"’", 0, 1N+i, 0,""", 0,--m) _--> 0

to (0,’’’, 0,--lv+. 0,’’’, 0, n)_-->0

whenever aiPai,

whenever ailai
(i= 1,... ,N),

(i 1,...,N).

(i i),

Suppose this system has K inequalities, indexed sequentially from 1 to K with a k the
(2N / 1)-vector that to multiplies in inequality k, and let M be the number of ordered
pairs in P. Then the system can be written as

k
to.a >0 fork=l,...,M+l,

to.a ->0 fork=M+2,...,K.

Assume henceforth that (A, P)’[m, n ], so that (.) has no to solution. A standard
result in linear solvability theory, e.g., [2, p. 46], says that there are nonnegative
integers rl, , r: with rk > 0 for some k <=M + 1 such that

K

(1) Y rkaki 0
k=l

for 1, , 2N+l,

kwhere a k (a k,..., a 2N+l ). Assume (1) henceforth with rk > 0 for some k =<M + 1.
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Let r r + rE +’ + rK. Replicates of the basic inequalities for those k that have
rk >- 2 along with single instances of the inequalities that correspond to rk 1 yield the
following correspondent of (1):

C equalities

cE inequalities

c3 inequalities

C4 inequalities

c5 inequalities

7">0,

+f(ai)-f(a)-p(ai) >0

+f(ai)-[(a) + p(ai) >- 0

+p(ai)-mr >--0,

--p (ai) + n’r = O,

(aiPai),

(aiIai),

with cl rl, CE r2 +’ + rM+I, Cl +CE > 0, and Y Cg r. According to (1), for each <_-N,
B 1. The number of inequalities in the c list with +f(ag) equals the number with

-f(ai).
B2. The number of inequalities with +p(ag) equals the number with -p(ai).
B3. cl-mc4+nc5 =0 [for 2N + 1 in (1)].
Summation of the r inequalities leaves 0 > 0 since c + cE > 0, thus reflecting the

lack of an to solution for (.).
We now work with the P and I pairs for the cE and c3 inequalities, using balance

conditions B1-B3 as needed. Suppose first that cE 0. Then all p terms for CE and c3
are +p(ag), and, by B2, these must be balanced by -p(ag) terms from cs. If cs>c3,
the cs-c3 excess terms from cs must be balanced by terms from Ca. Hence, by B2,
C4--C5--C3. By B3, cl=mc4-ncs=m(cs-c3)-ncs=-(n-m)cs-mc3<-O, which
contradicts c + cE > 0. Therefore c2 > 0.

Given c2 >0, we arrange the c2 xiPyi pairs and the c3 zilwi pairs in two rows:

C2 P pairs c3 I pairs

row 1:

row 2:

Xl X2 Xc

YlY2’’’ Yc2

Z1 Z2 Zc3

W1 W2 Wc3

+f

-f

Condition B 1 implies that row 2 is a reordering of row 1. We now form picycles from
this array, treating each column as distinct.

We begin the first picycle with x 1Pyl. This is followed by a y alwg if y is one of
the zg’s, and by y Py. if y g {z ,. , zc3}. In constructing this or any later picycle, we
shall always follow a P pair by an I pair whenever possible, and always follow an I
pair by a P pair whenever possible, except when the current pair completes a
picyclemas described shortly. Once a pair (column) is used, it is deleted. The construc-
tion of the first picycle continues until we encounter x as the second member of a
newly added pair and there are no unused X l’S in the first row. For example, if x
appears three times in each row, then it will initiate and terminate the first picycle
and appear twice in the interior of the picycle. As a final step, we rearrange the picycle
so that it begins with a P and ends with an L

With all columns that are used in the first picycle deleted from the array, we
construct a second picycle in a similar manner if any P pairs remain. This continues
until the P pairs are exhausted. At this point, any remaining ! pairs can be formed
into icycles since the remainder of row 2 is a reordering of the remainder of row 1.

The construction of picycles follows a P pair by an I pair, and conversely,
whenever possible. We shall say that a transition occurs each time P is followed by
L Each transition has the form aPblc, with -p(b) associated with aPb, and +o(b)
associated with blc. Hence the O terms for the transitions balance out as part of B2.
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We claim that the yi in nontransitional P columns are disjoint from the z. in
nontransitional I columns. Suppose to the contrary that

xiPyPc is part of a picycle,

alyilwj is part of a picycle or icycle.

This contradicts the method of construction, for if xPyi arises in the construction
process before alyi has been used, then xiPyi would be followed by yIwj (or some
yilwk), and if alyi arises before xiPy has been used, then alyi would be followed by
yiPc (or some yiPyk ).

Let T be the number of transitions in the constructed picycles. By the preceding
paragraph, the (c2- T) yg in nontransitional P columns have -p (yi) terms whose yi are
disjoint from the (c3-T) zj in nontransitional I columns, which are associated with
+p(zi) terms. Therefore, by B2, c4 must include c2-T terms (+p) to balance the
-p (yi) ones, c5 must include ca- T terms (-p) to balance the +p(zi) ones. In addition,
c4 and c5 can each have S other terms that cancel between the two. We then have

c4 c2- T + S, c5 c3- T + S.

Since B3 says that cl mc4-ncs>-_O, it follows that re(c2- T)>=n(c3 T)+(n -re)S,
hence

m (c2- T) --_> n (c3 T).

Let Ep(Et) be the sum of the excesses ep(et) in the constructed picycles. Then,
since each chain in a picycle is associated with one transition, Ep c2-T. Similarly,
since each linkage in a picycle is associated with one transition, and since icycles could
arise, c3 T _-> Et. Therefore

mEe >= nEt,
and hence mep >-_net for some picycle. Thus, an order not in [m, n] must have an
(m, n)-forbidden picycle.

4. Reducible pieyeles. This section develops a theory of reducibility for forbidden
picycles which is then used in the next section along with Lemma 1 to complete the
sufficiency proof of Theorem 1. For convenience, the mn designation, as in (m, n)-
forbidden and At,,n, is often omitted.

We shall say that a forbidden picycle (=pal1131 PI is reducible if some
contiguous segment of the picycle involving two or more P and/or I pairs can be
replaced by one P or I pair formed with the first and last elements in the segment
so that the picycle ’ obtained from by the replacement is also forbidden. For’
example, when Ira, n [2, 3], the forbidden picycle

( X1Px2Px3Px4PxsPx6Ix7Ix8Ix
2(3) > 3(2) net. The seg-is reducible since (’ =xlex3Pxaex5Px6[xTIX8[Xl has mep

ment xIPx2Px3 is replaced by xaPx3 to get %" from (.

Here, and later, we shall let h(() denote the length ofpicycle (. If c is a reducible
forbidden picycle and %" is a reduction of obtained by replacing a segment of
with a single P or I pair as described in the preceding paragraph, then h ((d’)< h (().

Our basic lemma for reducibility is
LEMMA 2. Suppose p11131 PTIT is a forbidden picycle. Let ag ag-7- and
-T when T + 1 <-_ <- 2 T. 8 is reducible if ag 1 or I for some {1, , T}.

If a >- 2 and >-_ 2 for all i, and if At holds for a specified t <- T, then is reducible to
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c, with h(’)=h(C)-[m +n +2(t- 1)] if there is an {1, .., T} such that either
(a) Ol "" t_ Ol +t_ Yl -[- t, Oi+ t_....- Ol + t_ n -- 2 f >- 2, [3i " t. / +,--1

m +t, and +. ’’+[3i+t_2<--m +t--2 ift >2; or
(b) +...++_x>=m+t, [3i++...+[3i+t_<--mWt--2 if t>=2, ai++’’’+

ce+t >--_n + t, and ce+ +.. l-Oli+t_ n +t-2 if >--2.
Proof. Given the hypotheses of Lemma 2, suppose first that/x 1. If T 1, then

a 1 is impossible since not (xPylx), and c => 2 is impossible since PIP P and
p2_p would give xPx. Hence T => 2. But then, since PIP

_
P, c can be reduced to

c,=p+-i..., which is forbidden since it has e’p ep and e e. It follows that
c is reducible if any/3 1.

Assume henceforth that /i -2 for all i. Suppose next that some O --1. Then
mep >= net requires T _-> 2, so assume for definiteness that c2 1. Since IPI

_
(I (_J P),

the IPI part of IPI can be replaced by I or P to yield c,. Since it is easily checked
that either replacement gives me’p >= ne’t, is reducible.

Assume henceforth that O 2 for all i. Suppose At holds for some =< T and
that the c and fl satisfy the inequalities of statement (a) for some _-< T. For notational
convenience let 1. If 1, then (a) says that a >= n + 1 and/ => m + 1, so that the
P+II" part of PI can be replaced by P according to A1. This changes ep to
e p ep n and et to e et m, so me p >= ne and is reducible with h (’) h ()
-Ira + n ]. If => 2 then (a) says that

al>=n+t ai>-_2 and /,-l->m+t-1 ’, /i>l,
2

so the segment

p,+t-x,iZ,p. pa[m+t-l-E,

of length m + n + 2t- 1 can be replaced by P according to At to yield picycle ’ with
h(’) h()-[m +n +2(t- 1)]. Since an I pair immediately follows the replaced
segment,

en-en- n ---t- i- 1 + (ai- 1) =en--n,
2 2

e , et re+t-l- fli + (fli-1) e, m.

Hence mee ne ’, so c is reducible to c,
The proof with the inequalities in (b) is similar.
The next three lemmas assume that c p,il. pi is a forbidden picycle,

that ai >= 2 and fli >- 2 for all i, that m >= 2 and that A1 through Am hold. These lemmas,
whose proofs conclude this section, form the basis of our sufficiency proof of Theorem
1 along with Lemma 1.

LEMMA 3. is reducible ifa >= n + 1 for some i.
LEMMA 4. is reducible if Bi >= m + 1 for some i.

-,i+k +kLEMMA 5 Suppose 0 <- k <= m 3 k + 2 <= T, and .-.]=i Oil El + k and i= [3j <=
m + k for 1, , T, where aj a-T and -Tfor f > T. Then either"

(a) for each is{I,..., T},
i+k+l i+k+l

Y a<_-n+k+l and /3j-<m+k+l; or
i=i ]=i

(b) mee net >= n, in which case c is reducible by shortening a chain or
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(c) is reducible to cC via Lemma 2(a) or 2(b) for some t
{k +2,..., min {T, m}}, with h(C’)=h(C)-[m +n +2(t- 1)].

ProofofLemma 3. Assume without loss of generality that al >_- n + 1, and suppose
that c4 is not reducible. Since a =>n + 1, Lemma 2(a) requires/31 <= m. If a2 >_-n + 1,
then/3z =< m; if a2 <-n, then a + a2 _-> n + 2, and Lemma 2(a) for 2 requires either
/31 +/32 _-< m + 1 or/31 _-> m + 1: since not (/31 => m + 1), either

a2 n + 1 and 2--<-- m or

a2<--n, al+a2>--n +2,

If a3-->n + 1 then/3--<m; if a3--<r/ and a2+a3=--n +2 then/2+f13--<m + 1 or /2 ->
m + 1 (which is impossible since/z-<-m by the preceding sentence); if a2 + a3 n -+- 1
then a + a2 "" a 3 n q-- 3, and then Lemma 2(a) for 3 or A3 requires/ +2 ""3m + 2 or/1 +/z->- m + 2 (which is precluded by the fact that a2 "-b a3 Y/ -1- 1 implies
a2 n, hence al "ha2 =>n + 2, hence/31 +2 -<_m + 1). Therefore either

a3>--n + 1, fl3<--m; or

a3--<n, a2+a3-->n +2, fl2Wfl3--<m +1; or

a2+a3--<n +1, al+a2+a3-->n +3,

The natural continuation of this procedure to any <_-min {m, T} gives either

at=>n+l, /3t=<m’, or

at<=n, ,ai>--n+2, fli<--m+l; or
t-1 t-1

2
i <-m +t-1.

Suppose m _-< T. Then the final line in the preceding display cannot hold at m
since it requires YI /3i <2m- 1 whereas Y." /3i > 2m. In addition, if m < T, then
continuance to {m + 1,. , T} gives either

at >= n + l, [t = m
at<--n, ai >= n + 2,

t--1

t--m+3

or

or

ai<-n+m-3, ai>-n+m-1, /3i 2m -2.
t-m+2 t-m+2

The line in this display that has Et-k ai n + k and ’t-k-1 ai n + k + 2 requires either

-<_m+k+l or 2 _->m+k+l
t-k-1 t-k-1

according to A(k + 2) in Lemma 2(a) to prevent from being reducible. However,
t- ai n + k implieski n + k 1, or

(t-i)

ain+(k-1),
(t-1)-(k-1)
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and it follows from the predecessor display for t- 1 that

(t-l) t-1

Y /3i <- m + k, i.e., Y /3i _-< m + k.
(t- 1)-(k-I)- t-k-1

Hence Yt,k_1/3 -->_ m + k + 1 is precluded in the line indicated for the display, which
therefore is correct as it stands.

It follows from A1-Am and irreducibility that for each 1 <_- <_- T there is 0 <- k -<_
min {t- 1, m -2} such that

ai>=n+k+l and i<l/-[-k.
t-k t-k

Beginning at T, proceed backwards through as follows. Select k >_- 1 for which

T

,ai>-n+(T-kl)+l
kl

If k > 1, select 1 _-< k2 --< k 1 for which

k1-1
F ai _->n +(kx- 1-k)+ 1,

and
T

,fli <=m +(T-kl).
kl

kl-1
Y. 3i _-<m +(kl- 1-k2),
k2

and continue in the obvious way back to the beginning of c. In each backwards step,

m (P-excess) n (I-excess) >-m (n) n (m 1) n,

so mep- nei >-n for c. However, such a c is reducible’ replace a p2 segment by P
to get c, with me ’e ne ’ >= n m >-_ O. Therefore our supposition that c is not reducible
is false. 71

Proof of Lemma 4. Assume for definiteness that/31->_ m + 1, and suppose is
not reducible. For <= min {m, T}, a procedure like that of the preceding proof, but
with Lemma 2(b) instead of 2(a), gives either

fl,>=m + l, at+l <-n; or

-<_m, _+_->m +2,

’. <- m +t-2,
2

at q"at+l ---/’/ "b 1; or

t+l

i>--m+t, oi<--_n+t-1.
2

At m, the first inequality in the final line implies 2 m 2. If m < T, a
similar display with m lines for A1-Am applies to each e {m + 1,..., T}. It follows
that each t{1,..., T} has 0-<k <-min {t-l, m-l} such that

t+l

fli>-m+k+l and ai<=n+k.
t-k t-k+1

Beginning at T, proceed backwards: select kl --> 1 for which

T T+I

_,fl>=m+(T-kl)+l and , a<=n+(T-kl),
kl kl+l

where aT+X -’aX, then select 1 <=k2<=kx 1 in a similar manner if kl > 1, and so forth.
In each step, n(I-excess)-m(P-excess)>-n(m)-m(n 1)= m, so net > mee for . But
then is not forbidden. Hence forbidden is reducible when some/->_ m + 1. 1
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Proo{ of Lemma 5. Given the hypotheses of the lemma, we suppose that none
of (a), (b) and (c) hold, and proceed to a contradiction.

Suppose first that the aj do not satisfy (a), and without loss of generality take

k+2

Y’, ai_->n +k +2.
i=1

Since 2x’k/ ai =n< + k and Yk/al /i <_-m + k by hypothesis, the presumed failure of (c)
resulting from application of A(k +2) in Lemma 2(a) requires k+Z i _-<m +k + 1.
Continuing as in the proof of Lemma 3, for each t{k+2,...,T,T+l,...,
T+ k + 1} we get either

’, -<_n +k,
t-k t-k-1

ai<=n+k+l,
t-k-1

i <-_n+k+x,
t-k

ai>-n+k+2, fli-<m+k+l; or
t-k-1

Y ai>=n +k +3, /3-<m+k+2; or
t-k-2 t-k -2

a>-n+k+x+2, fl<-_m+k+x+l,
t-k-x -1 t-k-x-1

where x min {(t 2) k, (m 3) k, (T 2) k }. As we proceed through larger values
of t, the other possible inequality on the/ sum that arises from the presumed failure
of reduction by Lemma 2(a) is precluded by the inequalities on the ai sums of that
case along with those obtained at t- 1.

It follows for each t{k+2,...,T+k+l} that there is a k+l<-y-<
min {t- 1, m -2, T- 1} such that

,a=>n+y+l and fl <=m + y.
t-y t-y

We therefore have m(P-excess)-n(I-excess)<-n in the part of ’ covered by these
two inequalities. Although the backwards procedure used in the proof of Lemma 3
(begin at T + k + 1, get y for this ending point; take the next as T + k + 1-y- 1,
get y for this t;...) may not come out evenly by ending precisely at k +2, we can
continue around the picycle an arbitrarily large number of times and conclude that
the average difference between mep and net per revolution is at least n. Consequently,

must have tnep net >- n.
However, this would satisfy conclusion (b), so to maintain the supposition that

none of (a), (b) and (c) holds, we need to suppose that the/3, do not satisfy (a). But
then, given/3i +. +/3+k+1 >- m + k + 2 for some i, a similar proof (see also the proof
of Lemma 4) leads to the conclusion that net > mep, which contradicts forbiddenness.
As in the preceding paragraph, it may be necessary to cycle backwards around c a
large number of times to conclude that net > rnee. We omit the details.

5. Proof completion. We complete the sufficiency proof of Theorem 1 by showing
that an order which satisfies AI,,, through Am,,, has no (m, n)-forbidden picycle. By
Lemma 1, such an order is in [m, n ]. As in the preceding section, the mn designation
is often omitted.

Henceforth, assume that A1-Am hold for order (A, P). We shall suppose that
(A, P) has a forbidden picycle, and proceed to a contradiction.
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According to our supposition, (A, P) must have a minimum-length forbidden
picycle, designated as c with index (al, 1,’", aT, fiT). Since c is not reducible,
Lemma 2 tells us that ai -> 2 and/i-> 2 for all i.

If m 1 then has ep >=net, and a contradiction to irreducibility follows im-
mediately from the IPn/lP part of A1 since ai-l>=n for some i. This proves
Corollary 1.

Assume henceforth that m _->2. Then n >m, and therefore ai->_3 for some i.
Without loss in generality we shall assume that a >= 3. Consider T versus m.

Suppose first that T >= m. Then Lemmas 3 and 4, and induction with Lemma 5
if m _-> 3, give

i+m--2 i+m--2

%.<_-n+m-2 and Y’. fl_-<m +m -2
j=i j=i

for 1, ., T, where as usual aj aj_T and/3. [j-T when j > T. The inequality on
the fl. implies that fl 2 for all i. Then, in view of Lemma 2(b) for Am, irreducibility
of c requires either i+"-1 i+,-2

a. _-< n + m 1 or a >_- n + m 1 for each i. Since
the latter inequality is false,

i+m --1

Y. a<-n+m-1 (i=I,...,T).
]=i

Therefore a -[-" " aT T(n + m 1)/m. But then

mep <- m[T(n + m 1)/m T] T(n 1) < Tn net,

which contradicts forbiddenness. Hence T-> rn yields a contradiction to our supposi-
tion that (A, P) has a forbidden picycle.

Assume henceforth that T < m. By Lemmas 3 and 4 if T 1, and by Lemmas 3
and 4 and induction with Lemma 5 if T->_ 2, we get

T T

(2) a---n+T-1 and /3-<_m+T-1.
i=1 i=1

Let A mep-net. Since is irreducible, m > A>_--0. Let 0 be the picycle obtained
from by shortening the initial chain in from length al to a 1- 1. qo has index
(al- 1, 1," ", aT, T), and is not forbidden since m (P-excess of o)- n (I-excess of
Co)= A-m <0.

We now form forbidden picycles (s) with excesses e and es) for s 1, 2,...,
by repetitions of , mixed with repetitions of Co when h >0. In what follows,
denotes followed by a copy of itself; it has index
(a 1, ill, ", aT, T, a 1, 1, ", aT, T). Likewise, Co denotes followed by Co. It

T
has index (ax," ",/T, al-- 1,/31," ",/T) and length 21 (ai +/i)- 1. Expressions
Co,,Co, are defined similarly.

Let (1= , and for each s 1 take

(s)c if m > me, -ne) + A,

()o if me ne + A >- m,

so that rn > me,-ne >-0 for all s. The index of will be written as
(s) (s)?), ?),

(s) (s)and subscripts on a and/3 will be taken modulo sT when they exceed sT. It should
be noted that each c( is forbidden, and no () is reducible by shortening a chain.
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Hence the type of reducibility specified in Lemma 5(b) never applies to cs).
We shall consider s 2, 3, then generalize to larger s. Our aim is to show that

the "shortest torbidden picycle" supposition for c along with 1-< T < rn forces the
contradiction that m is infinite.

Consider s 2" c2) is cc or c0. In either case, (2) implies that

i+T-1 i+T-1
(s)(3) , aE)<-_n+T-1 and , fl =m+T 1

j=i j=i

for 1,. ., 2T. We eliminate the case of T rn 1 before considering other cases.
<2) 2 for all i. In addition,Suppose T m- 1. Then, by (2),/3 2 for all i, so fli

ci _-< n + m -2, and therefore

i+T-1
(2) <a -n+rn-2 fori=l,... 2T.

If ii+To2) =<n + m- 1 for 1, ,2T then, as in the paragraph preceding (2), we
get a contradiction to forbiddenness:

me <=m[2T(n +m -1)/m -2T]= 2T(n -1)<2Tn ne2.
-i+T 2) >Therefore ,, a --n + m for some i. Then, according to Lemma 2 with m,

is reducible to ’ with

h(CC’)=h(CC(2))-[m +n +2(m 1)]< h(C),

where the inequality follows from the fact that

h (( (2)) h (c) _<_ h () -<_ (n + m 2) + 2(m 1).

But then " is a forbidden picycle that is shorter than , in contradiction to our
minimality supposition for . Therefore T m 1 is impossible.

Assume henceforth that T_-<m-2. Given (3), we apply Lemma 5 to ((2)with 2T
in place of T for this application. Since T- 1 -<_ m 3 and (T- 1) + 2 -< 2 T, and by
virtue of (3), the hypotheses ot Lemma 5 for r(2) hold for k T-1. Since m
me)-ne2) by construction, conclusion (b) is false. Therefore either (a) or (c) holds
for k T-1. That is, either

i+T i+T

(4) Y’. aj<_-n+T and /3j<_-m+T fori=l,...,2T,
]=i j=i

or c(2) is reducible to ’ with h(Cd’)=h(rC(2))-[m +n +2(t- 1)] for some =>k +2
T + 1. Suppose the latter possibility holds. Then

h(C’)<-_h(Cd(2))-[m +n +2T].

By (2), h (c) __< (n + T 1) + (m + T 1) m + n + 2T- 2. Since h (c(2)) h (c) is either
h(r) or h()-1, it follows that h(CC2))-h(CC)<=m +n +2T-2, i.e., that

h (’(2)) [m + n + 2T] -< h (c) 2.

Therefore h (c,) _< h (c) 2. But this contradicts minimality for
Therefore (4) holds. By repeating the use of Lemma 5 applied to c(2) for increasing

values of k >= T- 1, we conclude that, with K min {m -3, 2T- 2},
i+K+I i+K+I

(2)Y’, a n+K+l and Y’, /3!2)<m+K+l
i=i i=i
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for 1,.. , 2T. Suppose here that K m -3, so that

i+m--2 i+m--2
(2) <Y a =n+m 2 and 2 /3!2)<m+m, 2

j=i j=i

(2)for i-<_2T. Then/3 2 for all and, as in the paragraph following (3), we obtain a
i+m--1 !2)contradiction: either )-"i c, <= n + m- 1 for all i, which gives a contradiction to
i+m-1 (2)forbiddenness, or rose L a =n +m for some i, in which case Lemma 2 with

t=m shows that c()is reducible to ’ with h(C’)<h(). Therefore K =2T-2<
m- 3, so that 2T _-< m- 2 with

2T 2T
(2) < (2) <(5) ai =n+2T-1 and Y/3i =m+2T-1

Assume henceforth that 2T _-< m- 2 along with (5), and consider (3). According
/T- (3) includes each/3 (i 1,.. T) exactly twiceto the definition of c(3), each 2 /3

so that these sums are equal: (5) gives

i+2T-1
(3) <(6) 2 fl. =m +2T-1 for i= 1 3T.

In a similar manner, if c(3) is anything other than c0c, then the first inequality in
(5) implies that

i+2T-1
(3) <(7) Y a. =n+2T-1 fori=l 3T.

When this is true, an analysis similar to that of the preceding two paragraphs, applied
now to (9 (3) with 3T in place of T for Lemma 5, leads to the conclusion that 3T <_- m 2
with

3T 3T
(3) <(3)(8) a =n+3T-1 and fl =m+3T-1

(2)The only way for (7) to fail is to have cg(3) c0c and Yrci n +2T-1. We
consider this further in the next paragraph.

Suppose (ff (3) ((0(/
2T (2)with 1 c n + 2T-1. Then instead of (7) we have

+2T-

12ia j(3) { n+2Tn
+ 2T- 1 ifi<-_T+l ori2T+2,

if T+2<-i<-_2T+I.

-, i+2T-2 (3)(3) >2 for all i, it is true that ,-,iSince a a =n+2T-2 for i=l,... 3T.
(3) > 2, the hypotheses of Lemma 5 for (3)Therefore, taking account of (6) with/3

hold at k 2T-2. Since (b) of Lemma 5 is false by construction for (3), it follows
for k 2T-2 that either (a) holds, i.e. either (6) and (7) hold, or else (c) holds with
(3) reducible to ’ via Lemma 2 for some t{k +2,..., min {m, 3T}} with h(’)
h (cc3))- [m + n + 2(t- 1)]. Suppose (c) holds. Then it could hold for t k + 2 2T only
if 2i+2T-1 (3) >/3i --m +2T for some [to apply A(2T) in Lemma 2], and this is false
by (6). Therefore (c) requires >- 2T + 1, in which case

h(C ’) _-< h ((3))- [m + n +4T] 3h ()- 1 -[m + n +4T],

so that h(’)-h()<-2h(’) 1-[m +n +4T]. In fact, (/if(2) ((0 and the presumed
ci =n+2T-1 give 2h()=Y2r(a (2) /312)+ )+l<-n+m+4T-1, so 2h(C)
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1-Ira +n +4T]<--2. Therefore h(’) <h(), contrary to minimality for , and we
conclude that (6) and (7) hold as stated.

Having arrived at (8) with 3T-< m- 2, we proceed by induction. Our induction
hypothesis is NT =< m 2 and

NT NT
(N) <(N) <(9) Y Ol ---tl +NT-1 and E i =m +NT- 1

for N >= 3. We desire to show that (N + 1)T <- m 2 and that (9) holds with N + 1 in
place of N. Given (9), the construction of c(2) with repetitions of the original/i gives

+NT-

(o) Z
.i=i

(N+I) =m +NT- 1 for 1,. ., (N+I)T.

We also wish to have

+NT-
(N+I)(11) _, aj =n+NT-1 fori=l (N+I)T.

j=i

This follows from (9) unless c(N+l)has an internal Co and ends with , as in
c(N+l c... cCo.., c, and the first inequality in (9) is an equality. Then the sum
in (11) will equal n +NT when lies in a Co block after the initial a- 1 in that block.
Moreover, h(C(N+l))=h((N))+h(C)<-n +m +2NT-2, the latter by (9).

Suppose (11) is violated as described. Then the hypotheses of Lemma 5 for c(+)

hold at k =NT-2, and we conclude from the lemma that either (10) and (11) hold
or else c(N+1) is reducible to c, via Lemma 2 with h(C’) h (c(+1))- [m + n + 2(t- 1)]

i+yr- (N+) :>for some > k + 2 NT. However, this can hold at NT only if ,-,i fl
m +NT for some [-to apply A(NT) in Lemma 2], and this is false by (10). Therefore
a reduction from (N/I) to ’ requires >-NT + 1, in which case

h(’)<-h(C(N+l))-[m +n +2NT]
h(cN))+h(C)-[m +n +2NT]

=< h(C)-2,
contrary to minimality for c. Therefore (10) and (11) hold.

Given (10) and (11), we apply Lemma 5 to c(u+1), beginning at k =NT- 1. Since
conclusion (b) never holds and since conclusion (c) at any step contradicts the minimal-
ity of c, we require (a) in all cases. If rain{m-3, (N+I)T-2}=m-3 then a
contradiction obtains as in the paragraph preceding (5). Hence (N + 1)T-2 <-m-4,
or (N + 1)T <-m -2, along with

(N+I)T (N+I)T
(N+I) < 1)T 1(N+I) < 1)T 1 and fliE Oi =n +(N + =m +(N +

which is conclusion (a) for k =.(N + 1)T-2. This verifies the desired induction con-
clusions.

It then follows that m >-NT for all integers N, which is obviously absurd since
T-> 1. Therefore (A, P) has no minimum-length forbidden picycle and hence no
forbidden picycle.
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ON THE HARMONIOUS COLORING OF GRAPHS*
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Abstract. In this report we define a new coloring of graphs, namely harmonious coloring of graphs,
which arises as an extension of harmonious and graceful numbering of graphs. We show that the harmonious
coloring problem for general graphs is NP-complete.

Key words. NP-complete, graceful number, harmonious number, harmonious coloring, perfect hash
function

1. Introduction. Various coloring problems such as the map coloring, vertex
coloring and edge coloring problems have been studied in the literature [6].
The map coloring problem is to color the regions of a planar map with a minimum
number of colors, such that no two adjacent regions are colored with the same color.
The vertex coloring problem is to color the vertices of a graph with a minimum number
of colors, such that no two adjacent vertices are colored the same color. The edge
coloring problem is to color the edges of a graph with a minimum number of colors,
such that no two adjacent edges are colored the same color. The complexities of these
coloring problems have been studied in the past [1], [3].

In this paper, we define a new coloring problemmthe harmonious coloring problem
of a graph. Assign colors to the vertices of a graph. The color of an edge is defined
to be the unordered pair of the colors of its end vertices. Then the harmonious coloring
problem is to find the minimum number of colors needed to color the vertices of a
graph such that all edge colors are distinct. For example, the graph in Fig. 1 is
harmoniously colored with four colors.

blue

black

FIG.

Unlike vertex coloring, two colors are not sufficient to harmoniously color a tree.
It is easy to see that if a graph with n vertices, e edges, can be harmoniously colored
with r colors then

r(r+l)>_e"
2

For example, the tree in Fig. 2 can be harmoniously colored with five colors, but the
addition of any other edge requires an additional color.

FIG. 2
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For a path P,, it is easy to obtain a minimum harmonious coloring. If we do not
allow the edge colors of the form (i, i), harmonious coloring of the path tree could
be obtained from the Eulerian path in a complete graph K2/1. For example, the path
tree Pll could be harmoniously colored with five colors as shown in Fig. 3.

2 3 4 ,5 6 7 8 9 I0 II

red blue green black white red black blue white green red

FIG. 3

In general, the harmonious coloring problem may be viewed as an Eulerian path
decomposition in graphs.

The harmonious coloring problem is closely related to the harmonious numbering
and graceful numbering problems [4], [5]. In the harmonious numbering problem,
distinct numbers are assigned to the vertices of a graph and the edge number is
computed as the sum of the numbers assigned to its end vertices taken modulo the
number of edges of the graph. In graceful numbering, distinct numbers are assigned to
the vertices of a graph, and the edge number is computed as the absolute difference
of the numbers assigned to the end vertices of the graph. In both problems, the goal
is to have all the edge numbers distinct. In general, one may assign distinct numbers
to vertices and compute the edge number as a function of the numbers assigned to its
end vertices. In harmonious coloring, our function is the unordered pair of its end
vertex colors. In order to make the problem interesting, we allow assignment of the
same color (number) to several vertices of the graph, but require distinct edge colors
and a minimum number of vertex colors.

Another problem closely related to the harmonious coloring problem is that of
constructing minimal perfect hash functions [2]. Form a graph whose vertices are the
first and last letters of the words with an edge between two vertices if there is a word
whose first and last letters are the end vertices. Then the minimal perfect hash function
problem is closely related to that of harmonious coloring of graphs. For definitions
related to graph theoretic terms see Harary [6] and definitions related to NP-complete-
ness see Aho, Hopcroft and Ullman [1] or Garey and Johnson [3].

In this report, we show that the harmonious coloring problem for graphs is
NP-complete by reducing the 3-SAT problem to the harmonious coloring problem.

2. Problem statement and main result. The harmonious coloring problem for
graphs may be formally stated as follows:

Instance. Graph G (V, E), positive integer k
Question. Is G k-harmoniously colorable, i.e., does there exist a function f: V

{1,2,...,k}, such that for every pair of edges {u,v}, {x,y}E, {x,y}#{u,v},
{f(u ), f(v)} {f(x), /’(y)}.

We prove that this problem is NP-complete, by reducing an already known
NP-complete problem, namely the 3-SAT problem, to the harmonious coloring
problem.

THEOREM. The harmonious coloring problem for graphs is NP-complete.
Proof. It is fairly easy to see that the harmonious coloring problem is in NP, since

a nondeterministic algorithm need only guess a mapping f, and check in polynomial
time whether it is a harmonious coloring.

We transform 3-SAT to harmonious coloring. Let U {ul, u2,’’’, u,} be the set
of variables and c {cl, c2,’’ ’, c,} be the set of clauses of an instance c of 3-SAT.
We construct a graph G (V,E) and a positive integer k-<lV] such that G is
k-harmoniously colorable if and only if c is satisfiable.
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The vertices of G are V V1 LI V2 L.J. LI V8 where

VI={1," .,n +2},

V2 {1’, , n +2’},

y3={",...,n + 2"},

V4 {1’", ,n + 2’"},

V5={(c, i,])]i 1,..., m,] 1,..., 7},

V6--{(f, i, r)li 1,’’’, m, r 1,..., 5},

V7 {(g, i, r)li 1,..., m, r 1, , 5},

V8 {(q, i)[i 1,..., m}.

The vertices in V1 and V2 correspond to the variables ui and ai respectively plus two
additional vertices. Vertices in V3 and V4 have a similar correspondence as those in
Vx and V2. V5 has seven vertices for each clause corresponding to the seven possible
assignments to the three variables of the clause that make it true. The symbol c simply
is a reminder that the vertices correspond to clauses. Vertices in V6 and V7 are forcing
vertices. Each vertex in V8 corresponds to a clause. The edges in graph G are as follows’

1. There is a complete graph on Vx.
2. There is a complete graph on V2.
3. There is a complete graph on V5 L.J V6.
4. The vertices n + 1, n + 2 are connected to all vertices in V, Vs, and V6.
5. The vertices n + 1’, n + 2’ are connected to all vertices in V1, Vs, and V6.
6. There are also edges {(i, j)li e Vl, / e V2, j}.
Let Gx be the subgraph with vertices V1, V2, V and V6 and the edges described

in 1, 2, 3, 4, 5, 6. For all edges to have distinct colors each vertex in V1, V2, V, V6
must have a distinct color. Additional edges are added to G1 as described in the next
two steps.

7. Let the clause ci contain literals u,,, Ub, U such that a < b < c. Intuitively the
vertices (c, i, 1),..., (c, i, 7) may be thought of as CT, Cr, Crr, Cr,
crr,, c rr-,, and c rrre Then vertex a is connected to all those vertices (c, i, r)
that have false assignment for u (i.e. c**; the symbol denotes the "don’t care"
condition). Vertex a’ is connected to all those vertices (c, i, r) that have true assignment
for u (i.e. c **). Similarly, vertex b is connected to all those vertices (c, i, r) that
have false assignment for u (i.e. c,.). Vertex b’ is connected to all those vertices
(c, i, r) that have true assignment for u (i.e. C,T.). Vertex c is connected to all those
vertices (c, i, r) that have false assignment for u (i.e. c**,). Vertex c is connected
to all those vertices (c, i, r) that have true assignment for u (i.e. C**T). (It may be
verified that vertex a is connected to (c, i, 1), (c, i, 2), (c, i, 3) and vertex a’ is connected
to (c, i, 4), (c, i, 5), (c, i, 6) and (c, i, 7). Vertex b is connected to (c, i, 1), (c, i, 4), (c, i, 5)
and b’ is connected to (c, i, 2), (c, i, 3), (c, i, 6) and (c, i, 7). Vertex c is connected to
(c, i, 2), (c, i, 4), (c, i, 6) and c’ is connected to (c, i, 1), (c, i, 3), (c, i, 5) and (c, i, 7).)

If ua or t2a does not appear in clause ci then vertices d and d’ are connected
to all vertices (c, ], r) for r 1 to 7. For example, if the second clause contains

2 2(Ul+/2+U3), then (c, 2, 1),... ,(c, 2, 7)may be thought of as CF, F2T3, CF, TF3,’’’,
2

C TI T2T3"
2 2 21 is connected to c F1F2r3, C F1 r23, C rr3.
2 21’ is connected to c TIF2F3, C T1F2T3, C 2--F1T2F3, C 2T1T2T3.
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2 2 22 is connected to c F1F2r3, C rlF23, C
2 2 22’ is connected to c,r, cVx r2T3, C1 r2F3, C rl r2T3

3 is connected to C2F1T2Fa, C
2 2
T1F2F3 C T1T2F3"

2 2 2 C2Tx3’ is connected to c FF2T3, C FIT2T3, C T1F2T3 T2T3"
The rest of the literals are connected to all of (c, 2, 1),. , (c, 2, 7).
With the edges described in step 7 each vertex/" is not connected to c forT:

all those clauses i, in which literal u. appears. Also each vertex in V is not connected
to exactly three vertices of G1. For example, if the ith clause contains literals u, u,,
then (c, i, 2) (i.e. c F,T,F) is not connected to s, t, p.

8. The vertices in V6(f, i, r), r 1 to 5 are connected to all vertices p and p’ such
that neither u, nor tp appears in the th clause. With the edges described in 8, each
vertex in V6 is not connected to exactly six vertices. For example, if the th clause
contains literals u, u, u, then (f, i, 1), , (f, i, 5) are not connected to s, s’, p, p’, t, t’.

This completes the description for graph G (one connected component of G).
The other connected component of G is G2, which has vertex set V3, V, V7, and
V8 and the edges as described below.

9. Vertex i" is in Va is connected to i’" in V4 for all 1, to n.
10. Vertex i" is connected to (q,/’) if u appears in clause ci.
11. Vertex i"’ is connected to (q,/’) if 2i appears in clause ci.
12. If ui or appears in clause G, then vertices i" and i"’ are connected to vertex

(g,/’, r) for r 1, to 5.
The idea behind these connections is that we should be able to harmoniously

color the graph G2, with the same colors used to harmoniously color G1, if and only
if the given expression is satisfiable. If all the literals take a false value in a clause ci,
then we cannot color (q,/’) with any of the earlier colors; therefore we will not be
able to harmoniously color the graph G.

As an example, let us construct a graph (see Fig. 4) corresponding to the following
3-SAT problem,

U ---{u 1, u2, u3}, Cl (U "- U2 "[- U3),

c

V V

FIG. 4
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For a given 3-SAT problem with n literals and m clauses, the constructed graph
has 4n + 8 + 18m vertices--a polynomial in the size of the 3-SAT problem. In the
example above we have 56 vertices in the constructed graph.

Next, we will show that G is colorable with 2n +4 + 12m colors (number of
vertices in G1) if and only if the given 3-SAT problem is satisfiable. Assume the given
3-SAT problem is satisfiable, and fix a satisfying assignment. Color the vertices of V1
and V2 with 2n + 4 distinct colors.

Color the vertices in V5 as follows: color (c, i, 1), (c, i, 2), (c, i, 7) with CFFT
c v-rF, c r"rr, c TFF, C TV’r, C rTr, and c 7w’r respectively. Color the vertices in V6 with 5m
distinct colors.

So far, we have used all 2n + 4 + 12m colors and we have not violated any of the
coloring constraints. Color the vertices in V7 with same colors used in coloring of V6.
Color vertices in V3 with the satisfying assignments of the corresponding variables.
(These will also be the colors assigned to the vertices in V1 or V2.) Color the vertices
in V4 with the negation of the corresponding variables. (Again these will be the colors

whereassigned to the vertices in V1 or V2.) Color the vertices in V8 with c xa.xb.xc

xa, xb, xc are the assignment of literals in the th clause. It can easily be verified that
this is a valid harmonious coloring.

In the example, vertices 1, 2, 3, 4, 5 in V1 are colored with T1, Tz, T3, T4, T5 and
1’,2’,3’,4’,5’ in V are colored with F1, F2, F3, F4 and Fs. Vertices
(c, 1, 1),. ., (c, 1, 7) are colored with c FT," ", C Twr. Vertices (c, 2, 1),. ., (c, 2, 7)
are colored with C2FFr, C

2
7w’r. Vertices (f, 1, 1),..., (f, 1, 5) are colored with

f,..., f, and (f, 2, 1),..., (f, 2, 5) are colored with f,..., f52. Vertices 1", 2", 3",
4", 5" are colored with T1, T2, T3, T4, T5 (i.e. u T, u2 T, uy3 F) and 1’", 2’", 3"’,
4"’, 5’" are colored with F1, F2, T3, F4, Fs. Vertices (q, 1), (q, 2) are colored with c rF
and c 2FFr respectively.

On the other hand we will prove that if there is a harmonious coloring of G then
the 3-SAT problem is satisfiable.

Let the colors assigned to vertices in V1 and V2 be T1, T2,"’, Tn/a, and
F1,’" ,Fn/a and let the colors assigned to vertices in V5 be of the color type
CF-r, ", C ’r and vertices in V6 be colored with f,..., f/5. (We could rearrange
the colors if it is done in some other manner.)

CLAIM 1. Vertices in V3 (of degree >1) and V4 cannot be colored with
fJ5C ’’-r, C TTT Or fI,

This is so because exactly three vertices are not connected to each of
CeFT, ’’, CTw-r and exactly six vertices are not connected to f,..., f. But vertices
in V3 and V4 are connected to at least seven vertices and hence the claim.

CLAIM 2. Vertices in V7 must be colored with fil, fi7.
They cannot be colored with T or Fg by Claim 1 (none is left). Colors of type

c Fv-r,’"", c zT-r cannot be given to V6 because each vertex in V6 (of degree >0) is
connected to exactly six vertices.

This forces us to color the vertices in V8 with a color of type cvv-r,"’", c77-r.
This will force a corresponding coloring assignment in V3 and V4. Also it is easy to
see that if i" in V3 is colored with Tg(F) then the vertex i’" in V4 has to be colored
with F(T). It can be verified that it is possible to color the node i" with tg or F/ if
there is a valid harmonious coloring. This will give us a truth value assignment to the
variables appearing in each clause.

This proves the theorem.

3. Conclusion. In this paper, we have defined the harmonious coloring problem
for graphs and shown that this problem is NP-complete. The harmonious coloring
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problem for directed graphs can also be shown to be NP-complete, using a similar
construction. The theorem, we have proved is interesting, as the corresponding
complexity results are not known for graceful and harmonious numbering of graphs.
Finding efficient algorithms for the harmonious coloring problem on restricted classes
of graphs merits further study.

Appendix (added in proof). After the acceptance of our paper, the authors were
notified that David S. Johnson came up with a short proof of our main theorem. His
proof is as follows:

It’s by a transformation from INDEPENDENT SET. Suppose we want to know whether a
graph G V, E) has an independent set of size K. The corresponding instance of HARMONIOUS
COLORING consists of two connected components G’ and G". The first is G with three additional
vertices u 1, u2, and u3, each joined to the other two and all vertices in V. Note that any harmonious
coloring of G’ must use IV] + 3 colors, one for each vertex. The second component is a clique on K
vertices. The claim is that this two-component graph can be harmoniously colored with VI + 3 colors
if and only if G has an independent set of size K.

REFERENCES

A. AHO, J. HOPCROFT AND J. ULLMAN, The Design and Analysis of Computer Algorithms, Addison-
Wesley, Reading, MA, 1974.

[2] R. CICHELLI, Minimal perfect hash functions made simple, Comm. ACM, (1980), pp. 17-19. (Also
see Technical Correspondences, Comm. ACM, 12 (1980), pp. 728-729; 5 (1981), p. 322.)

[3] M. R. GAREY AND D. S. JOHNSON, Computers and IntractabilitywA Guide to the Theory of
NP-Completeness, W. H. Freeman, San Francisco, 1979.

[4] S. W. GOLOMB, How to number a graph, in Graph Theory and Computing, R. C. Read, ed., Academic
Press, New York, 1972, pp. 23-37.

[5] R. L. GRAHAM AND N. J. m. SLOANE, On additive bases and harmonious graphs, this Journal,
(1980), pp. 382-404.

[6] F. HARARY, Graph Theory, Addison-Wesley, Reading, MA, 1969.



SIAM J. ALG. DISC. METH.
Vol. 4, No. 3, September 1983

1983 Society for Industrial and Applied Mathematics
0196-5212/83/0403-0004 $01.25/0

CROSSING NUMBER IS NP-COMPLETE*

M. R. GAREY- AND D. S. JOHNSONt

Abstract. In this paper we consider a problem related to questions of optimal circuit layout: Given a
graph or network, how can we embed it in a planar surface so as to minimize the number of edge-crossings?
We show that this problem is NP-complete, and hence there is not likely to be any efficient way to design
an optimal embedding.

A fundamental concept in graph theory is that of the crossing number u(G) of a
graph G (V, E). This is the least integer K such that G can be embedded in the
plane so that there are no more than K pair-wise intersections of curves representing
edges (not counting the required intersections at common endpoints). Recent work
by Leighton [4] has shown that the crossing number of a graph can be used to obtain
a lower bound on the amount of chip area required by that graph in a VLSI (very
large scale integration) circuit layout, and the relevance of crossings to older tech-
nologies, such as printed circuits, has been discussed by Sinden [5].

There already exist efficient, linear-time algorithms for testing whether a graph
has crossing number u(G)= 0, i.e., for testing whether a graph is planar [3]. In this
paper we show that the general CROSSING NUMBER decision problem "Given G
and an integer K is u(G) -<_K?" is NP-complete [1] and hence likely to be intractable.
As a consequence, future research into crossing numbers will be justified in focusing
on inexact methods that only estimate crossing numbers, and the quest for exact values
of u(G) will have to be restricted to promising special cases.

As defined, CROSSING NUMBER is in NP. One need only guess the K or
fewer crossings (and the order in which they occur along edges involved in more than
one crossing), create a new "crosspoint" vertex for each, replace each edge involved
in one or more crossings by a path that contains all the crosspoint vertices associated
with that edge in the appropriate order, and then test the resulting graph for planarity.
Note that the above approach also allows us, for any fixed value of K, to test whether
u(G) <=K in polynomial time (the degree of the polynomial depending on K).

To prove that CROSSING NUMBER is NP-complete, we must show that a
known NP-complete problem can be transformed to it. Our "known" NP-complete
problem will be OPTIMAL LINEAR ARRANGEMENT [2]" "Given a graph G
(V, E) and an integer K, is there a one-to-one function f: V {1, 2, , VI} such that

We transform OPTIMAL LINEAR ARRANGEMENT to CROSSING NUMBER
via an intermediate problem, which we shall call BIPARTITE CROSSING NUMBER:
"Given a connected bipartite multigraph G (V1, V2, E) and an integer K, can G be
embedded in a unit square so that all vertices of V1 are on the northern boundary,
all vertices in V2 are on the southern boundary, all edges are within the square and
there are at most K crossings?"

LEMMA 1. OPTIMAL LINEAR ARRANGEMENTecBIPARTITE CROSS-
ING NUMBER.

* Received by the editors March 29, 1982, and in revised form August 20, 1982.
Bell Laboratories, Murray Hill, New Jersey 07974.
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Proof. Suppose we are given an instance G (V, E), K of OPTIMAL LINEAR
ARRANGEMENT, where V={ul, uz,"’, un}. We may assume without loss of
generality that G is connected. The corresponding instance of BIPARTITE CROSS-
ING NUMBER is G’= (VI, Vz, E1 [AF_.z), K’, where

V1 {Ui 1 =<i =<n},

V2 {wi l<-_i<-n},

Ex {]E]z copies of {ui, wi} 1 <- <- n },

Ez {{ui, wi} <i and{v/, vi} E},

K’= IEIZ(K- IEI) + (IEI=- 1).

Note that both G’ and K’ are constructible in polynomial time, given G and K. Note
also that G’ is connected because G is. We must show that the answer for G, K is
yes if and only if the answer for G’, K’ is also yes.

Suppose first that the desired ordering function f exists for G. Then we can
construct the following layout of O’. Suppose the corners of the unit square have
coordinates (0, 0), (0, 1), (1, 0) and (1, 1). We place each U V1 at position (1, f(vi)/n)
and each w V2 at position (0, f(vi)/n), 1 <= <-_ n. We then embed the multiple edges
joining pairs {u, w} so that none cross, as in Fig. 1. Each edge {ui, wi} E2 will then
cross (If(vi)-f(v)[-1). IE]2 edges of Ex and the total number of crossings of edges
in E1 with edges in E2 will be at most

E (If(u)-f(v)l- 1). IEIz <= (K -IEI)" IEIz.
{u,v}E

(0,1)

(0,0)

FIG. 1. Embedding for Lemma 1.

Since the total number of crossings between edges in E2 is less than (IE[2-1), we
conclude that the overall number of edge-crossings is at most K’.

Conversely, suppose the desired embedding of G’ into the unit square exists. It
naturally defines two one-to-one functions fx, f2:V {1, 2,..., VI} determined by
the orderings of the vertices of Vx and V2 from left to right along their respective
boundaries. These functions must be identical, since if fl(Vi) <fl(V/) and f2(vi)
the embedding would contain at least [El4 crossings of edges {ui, w} with edges {ui, w.},
a contradiction of our bound on the number of crossings in the embedding. Thus the
embedding looks like the one pictured in Fig. 1 and each edge {u, wi} E2 must be
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involved in at least (If(vi)-f(v)l- 1). IEI= crossings. From this we conclude that

Y’. (]fl(u)-fl(v)]- 1)’[E[2=<K’= (K-IEI)’IEI=/(IEI=-
which implies that

E (If(u)-f(v)[- 1)<=K-IE[,
{u,v}eE

and so fl will serve as the desired ordering for G. This completes the proof of the
lemma.

LMMa 2. BIPARTITE CROSSING NUMBERocCROSSING NUMBER.
Proof. We actually give a transformation to the version of CROSSING NUMBER

where multigraphs are allowed. The final step to CROSSING NUMBER for graphs
with no multiple edges allowed is obtained by simply adding a new degree-two vertex
into the middle of each (multiple) edge, which eliminates the multiple edges without
affecting the crossing number.

Suppose we are given an instance G (Vx, V, E), K of BIPARTITE CROSSING
NUMBER. It is easy to construct the following multigraph G’ (V’, ELI E1 LI E2 E3)
in polynomial time, where

V’= V t.J V t_J (u0, Wo},

E1 {3K + 1 copies of {Uo, u}:u V1},

E2 {3K + 1 copies of {Wo, w}:w V2},

E3 {3K + 1 copies of {u0, Wo}}.
We claim that G has an embedding of the required form into the unit square (with
K or fewer crossings) if and only if G’ can be embedded in the plane with K or fewer
crossings (the same K for both instances).

First, suppose the desired embedding of G into the unit square exists. Fig. 2
shows how the extra vertices and edges of G’ can be added to the embedding (by
being placed outside the unit square) with no increase in crossings.

I.I o

IIt0
FIG. 2. Embedding for Lemma 2.



CROSSING NUMBER IS NP-COMPLETE 315

We now wish to argue that if the desired embedding of G’ exists, there must be
one whose form is just like that of Fig. 2. We proceed by a series of "normal form"
simplifications.

Normalization 1. We may assume that each pair of edges crosses either 0 or 1
times and edges which share an endpoint do not cross at all. (This is easily proved
using the transformation illustrated in Fig. 3, which always decreases the total number
of crossings.) Thus each set of 3K + 1 multiple edges can be viewed as creating an
ordered sequence of 3K bounded regions.

t
I

/
\\

/’,, / /’\ \

FIG. 3. Removing multiple crossings.

Normalization 2. The edges of E1 divide the plane into a collection of regions,
one of which is unbounded. By a standard transformation, we may assume that w0 is
inside (in the interior of) the unbounded region. Then, since each vertex in V2 is
connected by 3K + 1 edges to Wo, all these vertices must be inside the unbounded
region too (if any such vertex were in a different region, it would introduce at least
3K + 1 crossings, which is too many).

Normalization 3. We may assume that no vertex is inside any of the 3K regions
formed by the edges (Uo, u }, for any fixed u Vx and that no edge crosses any of these
3K + 1 edges. We may also assume that the same properties hold for the 3K regions
formed by the edges {w0, w}, for any fixed w V2. We shall prove this for the case
of {u0, u}; the other case follows analogously.

From Normalization 2 none of the 3K regions bounded by edges {u0, u} can
contain a vertex from V2 U {w0}. Thus an interior vertex, if it exists, must be from V1.
First let us make two observations about the middle K regions.

(a) No vertex from Vx can be contained in any of the central K regions: such a
vertex would have an edge to some vertex in V2 since G is connected and that edge
would have at least K + 1 crossings.

(b) No edge can cross any of the K middle regions: such an edge would have to
cross all K regions if it crossed any, since by Normalization 1 it cannot double back,
and by (a) its end-points must be at least K regions (and hence K + 1 boundary edges)
apart.
Given (a) and (b), it follows that we can transform the embedding, by moving all
edges joining Uo and u into the interior of a single one of the middle regions, and no
new crossing will be created. As a result, all vertices other than u0 and u are left on
the outside, and no edge will cross any of the boundaries.

Note that at this point we have obtained an embedding which is topologically
equivalent to one like that in Fig. 2, except possibly for the edges in the original set
E and the 3K + 1 edges joining u0 to w0.
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Normalization 4. We may assume that all of the vertices in V1 [,.J V2 and all of
the edges in E are contained inside the same one of the 3K bounded regions formed
by the edges joining Uo to w0.

Let us begin our proof of this claim by numbering the bounded regions in order,
R through R3:, with R0 being the unbounded region. Suppose there is a vertex u
inside region RI. Then there can be no vertex u’ in regions R1+K+X(mod3K+l) through
RI+2K(mod3K+l). This is because there was a path in our original graph from u to u’,
and this path would have to cross at least K + 1 of the edges {u0, w0} if u’ were in
one of the prescribed regions. Consequently, as in claim (b) of the proof of Normaliz-
ation 3, there can be no edges passing through any of these K regions. Thus, as in
Normalization 3 we can move all the edges joining Uo to Wo into just one of these
empty regions, without creating any new crossings. This leaves V1, V2 and all of E
in the single unbounded region. Now a simple transformation sends our embedding
to one in which all of G is contained within the same bounded region.

Finalization. At this point we are done with the proof of Lemma 2, for the
embedding created by our four normalizations is now topologically equivalent to one
in the form of Fig. 2 and hence induces the desired embedding of G into the unit
square.

The main theorem of this paper (and its title) follow as an immediate consequence
of Lemmas 1 and 2.

Acknowledgment. The authors thank Gary Miller and Tom Leighton for sugges-
tions that improved the presentation of this result.
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WEIGHT ENUMERATORS OF NORMALIZED CODES II.
THE HERMITIAN CASE*

STEPHEN M. GAGOLA, JR.+

Abstract. Let F be a finite field whose order is a square. A linear code C in F" is self-dual if C
coincides with its vector space dual with respect to the natural "Hermitian" form on F". If C contains the
all-ones vector, then C is said to be normalized. The complete weight enumerator of a normalized self-dual
code over F is invariant under the action of a linear group G which is explicitly determined. The character
of this linear group is then used to calculate the Molien series.

Other conditions may be imposed on C which lead to its weight enumerator being invariant under
the action of a larger linear group containing G. However, there are only finitely many finite linear groups
containing G with the property that the only scalar matrices appearing are those already contained in G.
In fact, if the characteristic of F is odd and if GO is the unimodular subgroup of G, then the finite unimodular
subgroups containing GO are contained in a unique maximal such linear group.

1. Introduction. In [3] the author determined, for every field F, a finite linear
group of complex IFI IFI matrices which leaves invariant the weight enumerator of
any normalized self-dual code over F. Duality, as defined in that paper, was with
respect to the natural "dot-product" on F". However, if F is a quadratic extension
of some subfield, then a natural "Hermitian" form exists on F". The present work
represents the natural extension of the results in [3] to this "Hermitian case."

The terminology and notation used in [3, 2], with some slight variations, will
be assumed. General references for group theory are 15] and [8], while those for
representation theory are [1] and [9], although 13, 3] summarizes most of the
necessary group theoretic results needed here.

The notation "Theorem 1.4.3" will be used to refer to Theorem 4.3 of [3]. As
in that paper, a code (linear subspace of F") is normalized if it contains the all-ones
vector. The definition of duality as used here is slightly different, however.

Throughout this paper F denotes a finite field which is a quadratic extension of
the field F0. Let denote the unique automorphism of F with fixed field F0, and write
IFI--q2 so that IF01-q. The symbol (.,. will be used to denote the "standard
Hermitian form on F"’’, that is,

for all v and w in F". For any code C contained in F", the dual of C is the subspace
defined by

C*={v F"l(v,c>=O for all c C}.

A code C is self-dual if C C*. Notice that C* 1 in the notation of [3].
If the characteristic of F is p, let GF(p) denote the prime subfield of F and

tr:F-.GF(p) the usual trace map. As in [3], let ixo:GF(p)-C be the "standard
character" given by/xo(/’) exp (27ri]/p) and set A txo tr. For a eF define Aa :F C
by Aa (x)= A (ax) so that {Aala F} is the full set of irreducible characters of the group
(F, +). Notice that A A and that Ao is the principal character of F.

It is convenient to record here the version of the MacWilliams identity which
will be used:

* Received by the editors December 30, 1981, and in revised form July 16, 1982.

" Department of Mathematics, Texas A&M University, College Station, Texas 77843, and Kent State
University, Kent, Ohio 44242.
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THEOREM 1.1 (MacWilliams). Let C be a code in F, and for each a F let Ma
be the FxF matrix whose (r,s) entry is (1/q)ha(rg). Then the complete weight
enumerators of C and C* are related by the equations

Wc, Wc Ma
which hoM for all a F. In particular, if C is self-dual, then Wc is invariant under
the action of the matrices Ma for a F.

Notice that the definition of Ma differs from the definition in [3] to accommodate
for the Hermitian form (., ). The proof of Theorem 1.1 will be omitted.

For each a e F define F F matrices Na, D and E as follows:

(Na)r.s 8r,.s, (D,)r., 6,.,Aa(r?), (E,)r,,

The matrices Na and E, coincide with their earlier definitions in [3], but D, is
slightly different, again to accommodate the Hermitian form.

The relation Y cirri 0 holds for any vector c of a self-dual code C, and this leads
easily to Wc" Da Wc for all a s F. Moreover, since C is also a subspace of F", we
have Wc" Na Wc for all a s F. Hence, Wc is an invariant of the linear group

Go (Ma, Na, Db la, b e F, a 0).

If in addition C contains the all-ones vector, then Y ci 0 holds for all c in C. This
leads easily to Wc"E Wc for every a F, and Wc is invariant under the larger group:

G=(Ma, Na, Db, Ebla, bF,a 0).

LEMMA 1.2. For every a, b, c, d F with a 0 and b # 0, we have

MaMb N_,-, M- N,I,, N-
NaNb Nab, N-1DcN Dc aa -1,

DDd D+a, N-SIEnNa E-I,

Moreover, D I ii and only i[ c + O.
Proof. These relations are similar to those appearing in Lemma 1.2.3, and the

proof for all but the last assertion is omitted.
The equation Dc I is equivalent to At(r?)= 1 for every r F. Since the norm

map FF0 is surjective, this is equivalent to )to(F0)={1}. Hence D ! if and only
if {1}=A(Fo)=A(cFo), or cF0-<ker A. Now let K ={x FIx + =0} be the kernel of
the trace map from F to Fo. Clearly K ker (tr) ker )t. Now ker A <F and since

dimFo F 2, ker can contain at most one nontrivial F0-subspace of F. Hence D =I
if and only if cFo {0} or cFo K (that is, if and only if c e K), as desired. ]

The groups Go and G are determined abstractly in 2 and 3, and the Molien
series (in unsimplified form) for the given matrix representations of them are worked
out in 4 and 5.

It is possible to impose conditions on the weight enumerator of a normalized
code C, which implies that it is invariant under the action of a larger matrix group
containing G. For example, if C is setwise invariant under the action of the Galois
group of F over some subfield, then this larger matrix group is obtained by forming
the semidirect product of G with the Galois group.

The case of GF(4) illustrates this nicely. If C is a self-dual code (in the non-
Hermitian sense) over GF(4) in which all weights are even, then C is also self-dual
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in the Hermitian sense, and C is stabilized under the action of Gal (GF(4)/GF(2))
(see [10, 2]). If C is also normalized, then the complete weight enumerator of C is
invariant under the internal semidirect product G (A) where (A)=
Gal (GF(4)/GF(2)) is cyclic of order 2 and is generated by the permutation matrix

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

which corresponds to the permutation of the elements of GF(4) by the nontrivial
automorphism. In 3, G is shown to be an extension of an extraspecial group of
order 2.42 by U(2, GF(4)) which has order 18. Hence, the order of G > (A) is
21GI 1152. This group appears in the proof of [10, Thm. 17], where it is denoted
by G and is defined as the matrix group generated by the matrices

AM,,, D, M1E1M1, N
2where GF(4) {0, 1, a, a a + 1}.

The full ring of polynomial invariants is a free ring with 4 generators Ro
C[/2, f6, fs,/12] (using the notation of [10]). Clearly, this is contained in the ring of
invariants for G, say R. In fact, by consideration of the Molien series for G given in
the appendix, if a homogeneous polynomial A of degree 12 can be found which is
invariant under G, but not under G > (A), then

R =Ro+Ro. A.

Such a polynomial is easily found, and

a (Xo x )(Xo x )(Xo 2-Xa+l)

is one such. Clearly, A is invariant under any diagonal matrix whose entries are + 1,
as well as any permutation matrix corresponding to an even permutation. Hence
A.H A where H is Da, Ea, or Na (for a # 0 in the last case). Moreover, (X0 +X),
(Xo-X),’.. (the linear factors of A) are permuted by M without sign changes, so
A is invariant under M1, as well as M, =N_,M-. Clearly, A.A =-A # A, so A is
invariant under G, but not G (A).

The general question of calculating rings of invariants for arbitrary fields is not
considered here, however.

Finite linear groups containing G in the odd characteristic case are discussed in
6. For a justification for considering only finite subgroups of GL([FI, C), see the

remarks following [3, Thm. 2.1].
The Molien series for Go and G are given in simplified form for [FI 4, 9 and

16 in the appendix.
The author would like to take this opportunity to correct an error which occurs

on [3, p. 365] after Lemma 6.5. There it is asserted that f/(x) is the first polynomial
stated in the lemma if p-= 1 mod 4, while it is the second polynomial if p--3 mod 4.
In these congruences, p should be replaced by p k. The author is indebted to the
current referee for finding this error.

2. Construction of 17 (odd characteristic). Throughout this section, the charac-
teristic of F is an odd prime p. Since F has eardinality q2, we may write F GF(q2).
Recall that denotes the unique automorphism of F having order 2. (Thus ci a
for all a F.)
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Let V denote the F-space {(a, b)la, b F}, and define the group E as follows. As
a set, E is V GF(p). If (u, m) and (v, n) are in E, then the product (u, m)(v, n) is
defined to be (u+v,m+n +tr (ul32-uz71)). Here, u=(ul, u2), v=(va, v2), and as
defined in the previous section, tr’F- GF(p) is the trace map. As is readily checked,
E is a group under this operation, and is extraspecial of exponent p and order qnp.
Occasionally it is convenient to identify E as F F GF(p).

Let U(2, F) denote the full unitary group in dimension 2 over F defined with
respect to the (skew-Hermitian) form whose matrix is given by (_ ). Thus:

U(2, F)= g GF(2, F) g
-1

If (_ ) is replaced by c (_1 o) where c 0 satisfies c + g 0, then c (_ ox) is a Hermitian
matrix and the definition of U(2, F) is unaffected. This justifies using the unitary
group notation. Properties of the unitary group U(2, F) may be found in [8, Chap.
II, 10].

Define subgroups H and P of U(2, F) by setting

H={(; 0_l) laF}, P={(10 )]aFo}.
It is easy to check that if g GL(2, F) has all its entries in F0, then the condition
g U(2, F) is equivalent to det g 1. Hence SL(2, Fo) <= U(2, F), and since SL(2, Fo)
is isomorphic to SU(2, F) ([8, p. 194]), we have SL(2, Fo) SU(2, F).

If g U(2, F), then det g is in the kernel of the norm map F --> F. By Hilbert’s
Theorem 90 we may write det g aa- for some a F. Now

h=

_
H

and h-ag s e SU(2, F)= SL(2, F0). Hence g hs, and this proves the factorization
U(2, F)= H. SL(2, Fo). The index of $L(2, F0) in U(2, F) is q + 1, and so the order
of U(2, F) is (q + 1)q(q- 1).

Define an action of U(2, F) on E as follows. For g e U(2, F) and e (v, n)e E,
set e g (vg, n). It is easy to verify that this is indeed an action. Moreover, since the
multiplication within E may be written as

(u,m)(v,n)= u+v,m+n+tr u-1 0
O

the action is by automorphisms. Clearly, the induced action of U(2, F) on E/Z(E)
may be identified with the action of U(2, F) on V. Let denote the semidirect
product U(2, F)E with respect to the action defined above. Thus, as a set is
U(2, F) x E with multiplication defined by

(g, e)(h, [)= (gh, e h[).
As usual, U(2, F) and E will be identified as subgroups of .

Various subgroups of E (and hence of ) are defined as follows"

Ao {0} xF x {0} NE, A Ao Z NE,

{0} x {0} x GF(p) NE, T F x {0} x {0} NE.

Notice that H normalizes P and that the group PH normalizes Ao so that PHAo
is also a group. Since Z is centralized by this last group, PHA PHAoZ PHAo
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is also a group. Note that T is a transversal for PHA in PHE (as well as for A in E).
Recall that/x0 is the "standard character" of GF(p) 7/, and so/x0 will be regarded

as a character of Z. Define the representation p of PHE by

[31 1PHAo i ]J O)PHE

where the transversal T is used in the construction of the induced representation. For
a discussion of induced representations, see [3, 3]. Since T is a group naturally
isomorphic to F, p (g) will be viewed as an F xF matrix for each g PHE.

THEOREM 2.1. The representations p, plPZ andPxI are allfaithful and irreducible.
Moreover,

(1) ff e=(a,b,m)E, then the (r,s)entry of pl(e) is 6+.o(m)AEb(?+a/2)=
6+a,o(m)AE(r + a/2). In particular, for e (0, b, O) 6Ao we have px(e) =E2.

(2) Ifx=(lo )P (sothataFo),thenpx(x)=Da.

(3) ff h a_ e H, then o(h) N.
The proof of this last result parallels closely the proof of the corresponding result

in [3], and will be omitted.
We have already observed that U(2, F) contains SL(2, Fo) as a normal subgroup

whose quotient is cyclic of order q + 1. Thus the group U(2, F) has a unique sign
character with kernel containing SL(2, F0). Since U(2, F) is a homomorphic image
of U(2, F) E, has a unique sign character with kernel containing SL(2, Fo) E.
Denote this character by . Since H supplements SL(2, Fo) and H is cyclic (H =F),
we have (h) 1 if and only if h H is a square. Hence corresponds to the "Legendre
symbol of F. It follows easily from the definition of Na that

8
0

_
=detN.

THEOREM 2.2. e representation O is uniquely extendible m a representation o. Moreover, the determinant o[ this extension is .
Pro@ As in the proof of Theorem 1.4.3, the representation0 is extendible to. Let 0 be an extension of 01 to . Since 0e and 0 are both extensions

we have pe Ip for some linear character of PHE with E N ker . We first
prove that I is extendible to G.

The commutator subgroup of PHE is PE, so PE N ker I, and hence Iq-= 1.
Moreover,

(det 0)PHE det (p ]PHE) A q2 det 0x A det 0.

Now (detpl)(x)=f(x) for x PH is easily checked (using Theorem 2.1), so detpl
8[pH. Set /x =8 .detp. Then tXpH=SpHZ h "detpl=h, proving that /x is an
extension of to (.

Hence (p)pH la [PHZ XAp p so that/2p is an extension of pl to t. Replace
p by/2p if necessary so as to assume p is an extension of p 1. If t5 is another representation
extending pl, then t5 Op for some linear character O of (. Since IS[PH P[PHZ Pl,

we have OpH 1pH SO that PHE <= ker 0. But 0’<- ker 0 and 0 0’. H so 0 16.
Hence t5 =p is the unique extension of p to G.

Finally, det pl 8PHZ SO det P lPHZ 8pHZ. Since H supplements t’ in t, every
linear character of G is uniquely determined by its restriction to H. The equation
det p 8 now follows, completing the proof of Theorem 2.2. [-I
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THEOREM 2.3. Let p be the unique extension of pl to G. Then

( 0 a/2 -Ma for all a F.O -2/a 0 ]

Proof. By a direct computation (similar to the one appearing in the proof of
Theorem 1.4.4) we have that

/0- 01/02M- p(e)M1 =O((-02)(-212e ))
holds for all e E. Since O lz is irreducible, Schur’s lemma implies that O(- lo/) is a
scalar multiple of M1. Write 0(- 1/02)--cM1. Squaring this equation yields O(- -)=
c2M c2N_ 2

1. But O(-0 _o) N-1 by Theorem 2.1 (3), so c 1 and c +1. Notice
that (_ 1/o2)eSL(2, Fo)= U(2, F)’ so that cMl=o(_ 1/o2) has determinant 1. Hence

q21 det (cM1) c det M1 c det M1, and therefore c det
Now M =/, so the eigenvalues of M1 are 1, -1, and -i, occurring with

multiplicities a, B, 3’ and 8, say. Hence c =detM1 (-1)i v-*. To evaluate c, then,
it suffices to evaluate /3, 3’ and 8. Now the (r,r) entry of M1 is (1/q)hl(rf)=
/xo(tr (rf))/q and hence

trace (MI) (l/q) + (1/q) Y /zo(tr (r?)).
rV

Let tr denote the trace map from Fo to GF(p). Then

trace (M1)=(1/q)+((q + 1)/q) Y tzo(tr (s))
sF

=(1/q)+((q + 1)/q) Y /xo(tr (s))-((q + 1)/q)
Fo

uXo

Hence a-[3 + 3"i- 6i =-1, and this leads to a-/3 1 and 3" 8. Moreover, M12
N-1 has trace 1, so a +/3 3" 6 1. Clearly a +/3 + 3" + 6 q2. The unique solution
to this system is (a,/3, % 8) ((qZ_ 1)/4, (qZ + 3)/4, (q- 1)/4, (q2_ 1)/4). Since q is
odd, so is/3 (qz+ 3)/4, and hence c (-1)iv- =-1.

Finally, for a 0,

o-2/a 0 ]=P a-1 O-2 1"2//\ -N,M1 -M,,
O]

as desired. [3
The last result implies that Ma does not belong to p (t) for any a F. Otherwise,

since -Ma p(G) we.would have -I p(G). However, since U(2, F) acts faithfully.
on E, the center of G is contained in E (and so must coincide with ’(E)). Since G
is isomorphic to p((), the statement -! p(0) is equivalent to -I p(Z(E)), which
is clearly false since IZ(E)] is odd.

Since the matrices M leave invariant the complete weight enumerator of a
self-dual code, it is convenient to extend the group G and the representation p as
follows. Let (-1) be the cyclic group of order 2 generated by -1, and set G (-1) G.
The representation p of G extends naturally to G by defining p(s, g)= sp(g) for
s (-1) and g t. It is readily checked that p is faithful on G and that M, p(G).

It is also convenient to define Go as (-1)x U(2, F). Hence Go is a subgroup of
G and M, o(Go).
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The next theorem establishes that the matrix groups defined in 1 are matrix
representations of the abstract groups determined in this section.

THEOREM 2.4. O(Go)=(Ma, Na, Dbla, b eF, a 0) and

o(G)=(M,,N,,,Db, Ebla, b eF, a 0).

Proof. Let X (M,, N,,, Dbla, b e F, a 0). Combining all of the previous
theorems we have

M, =-O -2/a =0 -1,
-2/a

(a 0_)N=P 0 a,

Moreover, since the characteristic is not two, we have F =F0-i-ker (r) where
-:F Fo is the trace map. If b F, write b r + s where r F0 and s ker -. Then
Db Dr, and this proves X is contained in p (Go). Now

U(2,F)=PHU
-1 0 P’

so that the matrices

for a F and b Fo generate p(U(2, F))<=p(Go). Hence p(U(2, F))<=X <=p(Go).
Now

-M=o -2 0 ]
eo(U(2’F))-<-X’

and also MleX, so -I e X. We already observed that -I does not belong to 0()
and hence does not belong to o(U(2, F)). This forces o(U(2, F))<X and hence
X=o(Go).

Now let Y=(M,N,,,Db, Eb[a,bF, a S0). By Theorem 2.1, Eb p(0,/7/2, 0)
p(t)p (G), so Y p (G) follows from the first part of the proof. Clearly X Y, so
p (Go) Y.

Since the action of U(2, F) on E/(E) V is irreducible, and E’= (E) , the
only subgroups of p(G) containing p(Go) =X are p (G0), p(Go) and p(G). For b 0,
Eb p(GoZ), and it follows that Y p(G), as required.

It will now be convenient to identify the character of p restricted to various
subgroups of G0 and G.

Fix e F to be any nonzero element in the kernel of the trace map F Fo. Thus
+ 0. If r e F has norm 1 (r 1), then define

( (r + 1)/2 -(r-
M(r)

k-,(r- 1)/2 (r + 1)/2

It is readily checked that M(r)e U(2, F) and that M(rs)=M(r)M(s). By direct
calculation det M(r) r, and so if C is the group (M(r)[r 1}, then C is a complement
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for SU(2, F) in U(2, F). Clearly, C is isomorphic to N={rFlr? 1}, the kernel
of the norm mapFF. Define

s 0

so that D is a subgroup of U U(2, F) isomorphic to N as well. Since C f’lD ={1}
and D is the center of U, CD is isomorphic to C x D. Let

-1

={M(r)( 0 rO-1)lrN}
Then is another complement for SU(2, F) in U and fqC ={1}. Obviously
CD CC.

For any group L, let regr denote the regular character of L. If Lo L then regc/ro
may be viewed as a character of L with kernel containing L0. We have already used
the notation 1 to denote the principal character.

THEOREM 2.5. Let denote the character of p. Then
(a) q,, 1 +reg,,
(b) Oeo 1po + regpD regeo/p,
(c) OCD OCe regce regce/c regce/e + lee.
Proof. Identify (le,go # Ix0)P"z as the character of p (rather than itself), we

have 6P,z (leHo # IX0)P"z. The group PHE acts doubly transitively on the cosets
of PHA, so by the Mackey decomposition we have

4’eZA (lego # Ix0)e"z[e,A leHao # Ixo+ ((leHao # Ix0)XleA)e"A.

Here x is any element of PHE-PHA and we have used PA PHA (PHA)X. Now
PA -PHE, so

(1PHAo # IXO) [PA ((1PHAo # IXO)PA) (1PAo # IXo) tx # Ixo

for some linear character Ix of PAo. The particular form of Ix is not important
depends on x), although/x satisfies/xp rs 1p. Therefore

eHAo)ItpHA 1PHAo 7[][: IxO -" (Ix 7[fi IxO)PHA (1pHAo + gO

so that
PHAPHAo 1PHAo +

PHAo]As (PAo)(PH) PHAo and PAo CI PH P, we have Ix P" (Ixp)PH, SO

tpH 1PH Jr" (ixp)PH.

Now (a) follows by restricting this equation toH (as (Ixp)PH IS (11)n regH). Restrict-
ing to PD yields

/PD 1PD + (IxP)PHIpD 1pD +, ((IxP)IpnpD)PD,

where the sum extends over (double) coset representatives for (P, PD) in PH. However,
Pr f) PD P, and the double cosets for (P, PD) in PH are the cosets of PD. Moreover,
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PD -P D is the inertia group for /./,p 1p in PH, and PH/PD acts transitively on
the nonprincipal characters of P. Therefore

tOPD 1pD +E ((tzP)Y)PD 1pD +E (tZP) # regD

1PD + (regp 1 p) # regD

1PD + regpo regpD/p,

Cx=M(r
0 s

proving (b).
To prove (c), notice that

if and only if s 1, and x ( if and only if rs 1. Thus (c) is equivalent to the assertion
that

1 ifs # 1 andrs 1,
$(x)= -q ifs=lorrs=l, but not both,

2q ifr=s=l.

This will be shown directly by calculating $(x). For r 1 we have

0)x= n.
S

From part (a), then, 6(x)= 1 if s # 1 while 6(x)=q2 for s 1. Therefore, we may
assume r# 1, and hence M(r)PH. From the Bruhat decomposition of U=
PH UHPwP, we have

M(r)=( l)(0 (-1 0)(10
for some b F and c x, c Fo. Solving for b, c and cz yields

2 r u lr+1
6=- c=7(e-r), cur-l’ 4 ur-1

where we have used =-v and r? 1. Now t0(x) is the trace of p(x) where (using
Theorems 2.1 and 2.3)

O(x)=o(b0 0 1 c1) 1 1 c2 0o(_ 1 0)O(0 1)0( s)
Hence

NbDcl(-Mz)Dc2Ns.

6(x)= E
t,u,vF

(-l/q) Z ,l(vsbOgff),z(vsbO),2(v6)
vF

(-l/q) E A (clbb + 2sb +c2)vt3)
vF
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where we have used sg 1. Let k c bb + 2db + c2. Then

6(x) (-i/q)
vF

(-1/q)-(q + l)/q E hk(v)
vF

1 q+l q+l
q q q

-(q + 1). (t Io, 1o)

where (A]o, 1o) denotes an inner product of characters. This last inner product is 1
if A] 1o and is zero otherwise.

Now Ak[o 1o if and only if kFo is in the kernel of A. Obviously, kFo is an
Fo-subspacc of F. let K ={t e F]t+ 0}, so that K is an Fo-subspace of F and is the
kernel of the trace map F Fo. Clearly K ker A. Since dim F 2 and ker A < F,
kcr A can contain at most one Fo-subspacc of F. This shows that Ao 1o if and only
if kFoK (or k + k 0).

When k + k is written in terms of ,, r and s and the expression is simplified (using
p =-,, r? 1 and s 1), we have

k+= 4r
(s2- (l + ?)s + ?).

,(r- 1)

Thus, k +k =0 if and only if s 1 ors ? (i.e. rs 1). Hence for s 1 or rs 1,
(A]o, 1o)= 1 and (x)= 1-(q + 1). 1 =-q, while for s # 1 and rs # 1, (A]o, 1o) 0
and (x)= 1- 0 1, as desired.

Recall that, e F is a fixed clement in the kernel of the trace map F Fo. Define
a subgroup Eo of E by setting Eo {(s, s, n)]s e F, n e GF(p)}. It is readily checked
that o is a subgroup of , and that itself is the central product of Eo with Cz(Eo)
over (E) (equivalently, Eo is extraspecial). Moreover, since (s,, s) is an eigenvector
with cigenvaluc 1 for each matrix in the group C, it follows that C centralizes Eo in
the group G. Hence CHo C x Eo.

The character is irreducible and is the unique character of E whose restriction
to (H) is a multiple of go (i.e. is fully ramified over (H)). We already noted that
E is the central product of Eo with Cz(Eo), and it follows from this that ]Zo is a
multiple of a fixed irreducible character o of Eo that is also fully ramified over
(E) (Eo). By consideration of degrees, we have ]o=qo. For a discussion of
characters of extraspccial p-groups, see [1, Chap. 1].

THEOREM 2.6. CZo (regc 1c) o.
Proof. Since the irreducible characters of C

and fl arc irreducible characters of C and Eo respectively, we may write

6CZo a .
Restrict this equation to Ho and use Zo qo to conclude qo a(1)fl. Therefore

o for all and CZo ( a) o. Restrict this second equation to C and use
Theorem 2.5(c) to conclude

q (regc 1) (E ai)" q,

SO

lTi regc 1
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and

4’CZo (regc 1) # 0o,

as desired.

3. Construction o G (characteristic 2). Throughout this section F will denote
the field GF(q 2) where q is a power of 2. As usual,- denotes the unique automorphism
of F having order 2 (6 a for all a F). The fixed field of is F0 GF(q).

Let V =FxF, and define the group E as follows. As a set, E is V x GF(2)
(sometimes viewed as F xF x GF(2)), and the multiplication is defined by

(a, b, m). (c, d, n)= (a +c, b +d, rn +n +tr (ad))

where tr’F GF(2) is the trace map.
Define U(2, F) to be the unitary group with respect to the Hermitian form whose

matrix is (o ), that is

As usual, let $U(2, F)= {g U(2, F)ldet g 1}. As in 2, let

H={(0a ,-01) ]a F} and P={(I0 )laFo}.
The equation $U(2, F) $L(2, Fo) and the factorization U(2, F) H 5’L(2, Fo) hold
in this section for the same reasons that they did in the last section.

Define

Ho=HfqSL(2, Fo) and o=( 10).
The group H (and hence Ho) normalizes P so that PH and PHo are groups. From
the well-known Bruhat decomposition of SL(2, Fo) PHo tA PHooP, we have
U(2, F) PH I..J PHoP.

Define matrices B and C by setting

(0 0)B and C=, 0 0’

where u is any fixed element of F satisfying u + 1 (u exists as the trace map F Fo
is surjective). Notice that for v (a, b) and w (c, d) we have tr (aaT) tr (nC
so that the multiplication in E may be written as

(v, m)(w, n) (v + w, m + n + tr (vC 7-)).
For each g U(2, F) it is convenient to define the (Hermitian) quadratic form

bg by setting Ckg(V)=v(B+gBgT")Or for each v V. Now, for gU(2, F) and
e (v, n) E define e g E by the equation"

e g (vg, n +tr (bg(v))).

LEMMA 3.1. The function (e, g)--e g, as defined above, is an action of U(2, F)
on E by automorphisms.

Proof. The functional equation (the "1-cocycle condition")"

)gh (/2) g(D) "]- (h
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is easily checked (using characteristic 2) and implies that (e, g)--e is an action. The
action by automorphisms condition amounts to checking that

tr (vC 7")+ tr (6g(v + w))= tr (6g(v))+ tr (6g (w))+ tr (vgCg 7"v 7").

When bg(V + w) is expanded, the term w(B + gBgT)T may be replaced by the term
V(:OT + gj7"T), as these field elements are algebraically conjugate and so have the
same trace. When this is done, like terms are cancelled, and all terms are written on
one side, the equation becomes"

tr (v(B + BT" + C + g(B +7" + C),7")ff 7") 0.

From the definition of B and C, the matrix B +/T + C is a scalar multiple of ( ),
which is the matrix of the form over which U(2, F) is defined. Since g U(2, F) we
have

g(B + J7" + C)g7" B +g7" + C,

and the previous equation is verified, since the characteristic is two. 71
It is worth pointing out that B and C may be replaced by any other pair of

matrices which satisfy B +/7" + C s( o) where s is any scalar in F which lies outside
of F0. The last condition is needed to guarantee that C + 7" (s + g)( 0) 0 so that
E is a non-abelian group. (The commutator [(v, m), (w, n)] simplies to (0, tr (v(C +
)v)).)

COROLLARY 3.2. Let (v, m) (Vl, v2, m) E. Then each of the matrices

(; 0) (0 0)h=
l"-1

w=
1 Y= 0

where a Fo and c F, belongs to U (2, F) and
(1) (v, m)h (vh, m),
(2) (v,m)=(vo),m +tr (vlTz)),
(3) (v,m)" =(vy, m +tr(avlOl)) where a F is any field element satisfying

a+6=a.

Pro& We have already seen that each of the matrices h, o) and y belongs to
U(2, F). Moreover, hBw B so that bh (v) 0 for all v, and the first equation follows.
Also, o)Bo5 7"= B r

SO that

Since//1/32--)lt2 PUI2-[-Vl2, we have"

tr (4,o (v)) tr (v71v2 + vvlf2) tr (v71v2 + vv132) tr (v 172),

and the second equation follows. To verify the third equation, let a F satisfy
a +c =a. Then B +yB;T =(v o) so cy(v)=avvlOl. Hence

tr ( (v)) tr (auvO) tr (uavO +

Now /Vl/1 and/,’CVl/l (p q- 1)aVl/71 have the same trace, and this implies that

tr (4y (v)) tr (avlOX),

verifying the last equation. 71
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By Lemma 3.1, the semidirect product G U(2, F)<E is defined, and as usual,
U(2, F) and E are viewed as subgroups of G. Recall that multiplication within G is
defined by setting

(g, e). (h, e’)= (gh, e he’).
Define the subgroups of E (and hence of G) by setting:

Ao {0) F {0), Z {0} {0} GF(2),

T F x {0} {0}, A AoT/ (= Ao < 7/).

The group H normalizes each of these four subgroups of E, and PH normalizes
Ao and 7/. Hence PHA PHAo "2 7/is a group. Notice that T is transversal for A in
E, as well as for PHA in PHE.

Recall that/xo denotes the standard character of GF(p)- Z, and hence we may
regard /xo as a character of 7/. Define the representation 01 of PHE by setting
Pl (1pHAo [d.O)PHE, with the understanding that the transversal T is used in the
construction of the induced representation. Since T naturally corresponds with F,
p (g) will be viewed as an F F matrix for g PHE.

THEOREM 3.3. The representations pl, Pl[PE and Pllz are allfaithfuland irreducible.
Moreover,

(1) fie (a, b, m) E, then the (r, s) entry ofpl(e is tr+a,stZo(m )hg(r). In particular,
fore (0, b, 0) Ao, we have pl(e)=E.

(2) If y (Xo ) P, then a Fo may be written in the form a a + for some ce F,
and p (y) D.

(3) If h =() -)H, then pl(h)=N.
Proof. The proof of the first assertion, as well as the formulas in (1) and (3), is

similar to that of Theorem 1.5.1 and will be omitted. Only the assertion in (2) will be
proved here. Let y P so that y (0 ) for some a F0. Then a =a + for some
a F, as the trace map F-Fo is surjective. If rF then PHA(r,O,O)y=
PHAy(r, O, O) =PHA(r, ar, tr (arg)). Hence, the (r,s) entry of pl(y) is zero unless
s r. The (r, r) entry is:

(1PHAo # /Xo)((r, 0, 0)y(r, 0, 0))= (1pnAo # /Xo)(y (0, ar, tr (ar?)))

=/xo(tr (ar))= A (r?).

By definition of D, then, Pl(Y)=D. 71
THEOREM 3.4. The representation 01 ofPHE is uniquely extendible to a representa-

tion p of G. Moreover, p is unimodutar if q>4, while if q= 4, the index in G of
ker (det p) is 2.

Proof. The uniqueness of p will be established first. Assume that O and fi are
extensions of pl to G. Then fi p for some linear character of G. Now G’_ ker ,
and since G G’. PH, the character is uniquely determined by its restriction to
PH. However, [Pn [J[Pn (since both equal [IlPH), and hence 14,pH 1pH. This proves
1 and fi =p.
To prove the existence of p, notice first that, as in the proof of Theorem 1.4.3,

the representation Pllz is extendible to G. Let fi be an extension of PI to G. Since
fi[pnz and pl are both extensions of pllz to PHE, we have filP,Z pl for some linear
character of PHE. Hence (PHE)’_ ker .

Assume first that q=4. Then (PHE)’=E and PH is a complement for G’ in
G. Thus, PHE/E GIG’ so that 0 has a unique extension, say A, to G. Then p fi
is an extension of p to G.
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Suppose now q2> 4. We still have 5[pHE 001, but this time (PHE)’ PE, so that
PE_ker 0. Hence 0q2-1= 1pHE. Now let =det5 and p =g. Since G =G’H we
have 8q2-1= 1. Hence det p det (tS)=2 det 5 1-q2 1. Therefore

1PHZ (det p)pH det (O IPHZ) det (gPHPHZ) det (gpHOOl)

(8-euEO)q det Ox euO det pl.

The equation det 01 1pHE follows from Theorem 3.3 (where the hypothesis q2> 4
is also used in the second part of that theorem) so 1pHE tPHEO or ipuE 0. Hence,
D IPHE gpHEO[91 01, SO that 0 extends 01.

Finally, since G PHG’, we have IG’ ker (det O)[ IPHE" ker (det 01)1. We
already observed that 01 is unimodular when q2>4, and hence so is O in this case.
When q2=4, Theorem 3.3 (1) and (3) imply that ker (deto1)_HE. However, by the
second part of that theorem, det01(y)=-I where y =(0 ) is the generator of P.
Hence, this index is 2 and the proof of Theorem 3.4 is complete.

THEOREM 3.5. Let O be the unique extension of 01 to G guaranteed by Theorem
3.4. Then

0 a) -M,, for aP -1 0
all F.

Proof. By Lemma 1.2,M2 N-I N1 L soM-1 M1. Using this and Theorem
3.3 (1), the (r, s) entry of M-lp(a, b, re)M1 is

(1/q 2) Y hi(r, ?) 8t+a.ulxo(m)h(t)hl(ug)
t,u V

=(1/q 2) . hl((f++g)t+ag)tzo(m)
tT

where we have used the identities h 1()) ’ I(X) and h l(x + y) h l(X)h I(Y). If
+ b + g 0 then the sum reduces to zero. Hence, the (r, s) entry reduces to

t+b.slxo(m )h x(ag) t+b.sl.xo(m )ha (b)Aa (r)

8r+b.lxo(m + tr (ab))ha(r).

By Theorem 3.3 again, this is the (r, s) entry of pl(b, a, m / tr (ab)). Hence

M-(lp(a, b, re)M1 p(b, a, m + tr (a/;))= p((a, b, m)’)

O(to)-lo(a, b, m)o(to)

where to ( ). Therefore, 0(to)Mi-1 centralizes o(E) and hence is a scalar matrix
by Schur’s lemma. This proves that 0 ( lo) cM1 for some scalar c. Now MaM1 N_
N, so M,, NM1. By Theorem 3.3 (3), we have

ai0(i0-1 0)’-"/9((; 01)( lo)) ga cM1-- CMa.

It remains to prove c =-1. Notice at this point, since p( ) and M1 both have order
2, we know c2= 1 so c +/-1.

The (r,r) entry of M1 is (1/q)hl(r)=(1/q)lo(tr(r?)). As rfFo, tr(r)=0
and o(0) 1, so each diagonal element of M1 is 1/q. Therefore, trace (M1) q2/q q
and c=(1/q).(traceo( o)). Now ( o)is conjugate to (o )in SL(2, GF(2))<=
SL(2, Fo)<=U(2, F) so c=(1/q).(tracep( ))=(1/q)(traceD) where u+7=l.
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Hence

c (1/q) , ,v (r) (1/q) Y /xo(tr (urn)).
rF rF

Let tr’Fo-GF(2) be the trace map. Then tr(ur)-tr(urF+r)-tr(r).
Hence.

c=(1/q)(l+(q+l) F/xo(tr (s)))
=(1/q)((q+l) ., o(tr(s))-q)

F

=(1/q)(O-q)=-l.

This completes the proof of Theorem 3.5.
Define Go U(2, F). ’ _-< G. The next result identifies the linear groups defined

in 1 as representations of the groups Go and G.
THEOREM 3.6.

p(U(2, F). 7Z)= (M,, N,,,Dbla, b F, a O)

and

p(G) (M,, Na, Db, Ebla, b F, a 0).

Proof. Let X (Ma, Na, Db [a, b e F, a 0) and let X1 be the group generated by
X and -L Clearly, -I 0 (0, 0, 1) e 0 (Z) <-- 0 (U(2, F)7/). By Theorems 3.3 and 3.5,
the generators of the group X belong to o(U(2, F)7/), and hence X1 <-o(U(2, F)7/).
Now the decomposition

(01 1)U(2, F) PH tA PHtoP where to
0

proves the reverse inclusion (using Theorem 3.3 again). The first assertion of the
theorem will follow from the equation X X1, i.e. -! X.

Clearly the index of X in X is at most 2, and hence X <=X. Now X
o(U(2, F)7/)’=o(U(2, F)’). If q2>4 then U(2, F)’=SU(2, F), so

p($U(2, F)) O (U(2, F)’) _-<X.

Since Mx X, this leads to -I X. Suppose then q2= 4. Recall that u F was chosen
so that u + 1. By direct calculation, -I (D4f)3 X. In either case, then, X Xx
and the first assertion of the theorem follows.

Now let Y (Ma, N, Db, Eb la, b F, a 0). Clearly X <_- Y. As Eb p (0, , O)
p(G), we have Y <-(X, Eblb F)<-O(G). Butp(U(2, F)7/)=X <- Y, and since U(2, F)
acts irreducibly on E/7(E), it follows that U(2, F)7/ is a maximal subgroup of G.
Hence X is a maximal subgroup of 0(G). For b S0, Eb =p(0, b, O)p(E)-p(7/(E)),
SO Eb Y-X, and this proves Y =p(G). 71

As in the preceding section, the restriction of the character of p to various
subgroups of G0 and G will be identified.

Let C denote the subgroup of U(2, F) consisting of those matrices which fix
(u, 1) V. Recall that u # 0 and u + 7 1. Any matrix M fixing (u, 1) has the form

(a b)au + u bu + 1
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If, in addition, M U(2, F), then ab gtb and + bu 1, so that a + b7 1. Setting
r det M, we have a + bu r, and this leads easily to b 1 + r and a 1 + (1 + r)ff. In
particular, any matrix M in C is uniquely determined by its determinant r, and is
given by

M(r)=(l+(l+r)f, l+r )u(1 + r) 1 + (1 + r)u

The determinant of any matrix in U(2, F) belongs to N, so that C ={M(r)lr e N}.
Since M(rl)M(ra) C has determinant rlr2, the preceding paragraph implies M(rra)
M(rl)M(ra). Of course, this can be checked directly. Hence C’N and since C
SU(2, F) {1}, the group U(2, F) is an internal semidirect product of C and SU(2, F).

Let y-Cy where

Y= 1
e U(2, F).

Since (u, 1)y (if, 1), may be defined equivalently as the subgroup of U(2, F) fixing
the vector (, 1). For r N,

(1 O1)M(r)(1 0

1 1 O1)=M(?)(; r) eCD’
where D is the set of scalar matrices belonging to U(2, F). Clearly, CD (C is
isomorphic to N N.

THEOREM 3.7. Let O denote the character of to. Then
(a) H 1n + regH,
(b) PD 1PD -+- regeD regpD/p,

(c) $CD regc regc/c regc/C + lc.
Proof. The proof of (a) and (b) is identical to the corresponding parts of the proof

of Theorem 2.5, and will be omitted. As in part (c) of Theorem 2.5, the assertion that

CD regcD regc/c regcc/d

amounts to showing that

l_zq ifs#landrs#l,
(x) if s 1 or rs 1, but not both,

q ifr=s=l

where x M(r)( o) e CD.
When r 1, the formula for (x) follows from (a) as x e D -<_ H. For r # 1, x has

the form

where

b=r/u(r+l),

cl =(1 +(1 +r)7) u7(1 +?),

ca (1 + (1 + r)u)/u(1 + r).

Let "y1--/]Cl and y2--/2c2 so that yx+Tx=cl and y2"+-’2=C2 By a calculation
similar to the one appearing in the proof of Theorem 2.5 (c), we have

(x) 1-(q + 1)(3tk Io, 1o)
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where k 3,1b+ sb q-2. The inner product (hk[Fo, 1Fo) is equal to 1 if kFo is in the
kernel of h, and is zero otherwise. Since Fo is the only nontrivial Fo subspace of F in
the kernel of h, we have (x)= 1 if k Fo and (x)=-q if k Fo. Now k Fo if and
only if k + k -0. When k + k is expressed in terms of r and s, the result is

k +/
r

(s
,ff(r + 1)

Thus, k +k =0 if and only if s e{1, }. The formula for O(x) follows, and with it,
the proof of Theorem 3.7 is complete.

Define a subgroup Eo of E by setting Eo {(s,, s, n)ls F, n e GF(2)}. The group
Eo is an extraspecial subgroup of E. In fact, 7/(Eo)= 7/(E), CE(Eo)= {(s7, s, n)[s F,
n GF(2)}, and E is the central product of Eo with CE(Eo). Since (su, s) V is an
eigenvector with eigenvalue 1 for any matrix in C, the group Eo/7/(Eo) is centralized
by C. Clearly 7/(Eo) is centralized by C since [7/(Eo)l 2, and hence [Eo, C, C] 1.
As [CI is odd this implies leo, C] 1, and so C centralizes Eo. Of course, this last
result may be verified by direct calculation. Hence CEo- C’). Eo.

As in the discussion preceding Theorem 2.6, the character 6lEo is q6o where o
is a fixed irreducible character of Eo. The proof of the next result is similar to that
of Theorem 2.6, and so will be omitted.

THEOREM 3.8. 0Co (regc lc) # 0.
4. Molien series (odd characteristic). The Molien series of a representation r of

a finite group H is the rational function

(1/Igl) 2 1/det (I-Xo’(g)).
gH

The coefficient of Xa in this expansion is the dimension of the space of homogeneous
polynomials of degree d which are invariant under the action of the matrix group
or(H). A proof of this fact may be found in [11].

Each polynomial det (I-Xo-(g)) is an invariant of the conjugacy class of g, and
it is convenient to group together terms from the same class. The sum may then be
calculated once the conjugacy classes (and their sizes) are known, and for each class
the polynomial det (I-Xo-(g)) is determined. The construction will be carried out
here for the groups Go and G with the representation O defined in 2.

Recall that (-1) (the cyclic group of order 2) occurs as a direct factor of both
Go and G, namely

a=(-lxd and Go=(-1)xU,

where U U(2, F). Moreover, -1 is represented by -I under O. Omitting the
dependence of the Molien series on O, we may write"

Oo(X)=(Od(X)+Od(-X))/2 and Oo(X)=(Otr(X)+Otr(-X))/2.

These equations show that and o are easily determined from d and t. The
goal for this section is to establish a workable notation for the classes of ( and U,
and for each class representative g, to determine det (I-Xp(g)). The results are
tabulated in Tables 4.1 and 4.2, and the Molien series are given in Theorems 4.6 and
4.7. Notice that since ( U <E, the group U occurs as a factor group of 0, and
distinct conjugacy classes of U are contained in distinct conjugacy classes of (
(although their sizes are not generally the same).
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Even though the notation of 2 is carried over to this section, it is worthwhile
to observe that the results of the next four lemmas remain valid in characteristic 2,
with only minor changes. In fact, the statements of Lemmas 4.1 and 4.2 require no
change at all.

LEMMA 4.1. If x H-D, then Ctr(x)= H. If x CD D, then Ct:(x)= CD.
Proof. In either case, x is not a scalar matrix. For x H-D, C(x) must consist

of diagonal matrices, so Ct:(x)=H. For x CD-D, x stabilizes two orthogonal
one-dimensional subspaces of V, say Fv and Fw (in fact, we may take v (v, 1) and
w (if, 1)). Since x does not act scalarly on V, C(x) must stabilize these subspaces,
and Ctr(x) acts as a one-dimensional unitary group on each. Now [U(1, F)I=q + 1,
so [Cu(x)[ <-_ (q + 1)2. Clearly, CD <_-Ctr(x), and the result follows. [3

LEMMA 4.2. (a) Let

)(S O)and x’ M(r’)(sO’ Os,)x=M(r
0 s

be elements ofCD -C. Then x is confugate to x’ ifand only ifx x’ orr’ r -a and s’ rs.
(b) Let

(; 0) (a’ ,0_)h= a_ and h’=
0 a

be elements ofH-D. Then h is confugate to h’ if and only if h =h’ or a’=a-1.
Proof. Assume x is conjugate to x’ in U. Then the eigenvalues of x and x’ must

coincide, and so {rs, s} {r’s’ ’}. -1,s Hencex=x’orelser’=r ands =rs. Conversely
choose c F so that cg =-1. Then y =c(- ) belongs to U and conjugates M(r) to
M(r-1)(; o). Hence, y conjugates M(r)( o) to M(r-a)(oS s), completing the proof
of (a).

To prove (b), notice that (_ o) belongs to U and conjugates ( oa_) to (-1 o).
Conversely, if h is conjugate to h’, then equating eigenvalues we have {a, a -a}
{a’, a’-a}, and (b) follows. V1

Notice that in the situation of Lemma 4.2, any element x satisfying (a) has order
dividing q + 1, while no element h satisfying (b) has order dividing q + 1. Thus x is
never conjugate to h. This same conclusion can be reached using Lemma 4.1, as the
elements have centralizers of different orders.

It is convenient to define indexing sets for these two types of conjugacy classes.
Recall that N ={a Flat 1} is the kernel of the norm map. Let denote the
equivalence relation on F-N defined by a---b if and only if a =b or a =/;-1, and
let F be a set of representatives for the equivalence classes. Similarly, let be the
equivalence relation on N#xN defined by (r, s)= (r’, s’) if and only if (r, s)= (r’, s’)
or (r’, s’) (r -a, rs), and let A be a set of representatives for the equivalence classes.

We assume that the representatives in A are chosen so that if (r, s)e h and
g M(r)( o), then [(g) C[ => [(g) fq 1. This choice is possible, as g is conjugate to
g’= M(r)(r-ois r-s) where [(g’) C[ [(g) [ and [(g’) [ [(g) CI. As a special
case, since (a, a -a) (a, 1), we have (a, a -a) A for all a N#, and so N# {1} A.
This choice will be important when classes of G are described.

The preceding lemma showed that the elements

0)f-a forrF
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lie in distinct conjugacy classes of U, as do the elements

M(r)( O)s for(r,s)A.

Moreover, it was already observed that these two sets of classes are disjoint.
Clearly, the elements ( 0) for s e N are in distinct classes of U (since they are

central in U) and the p-singular elements ( os)(O ) for s e N are also in distinct classes.
By direct computation the centralizer of ( 0)( )in U is PD, which has index
(q + 1)(q 1) in U.

At this point we have verified the second and third columns of Table 4.1. As the
dot product of these two columns is (q + 1)2q (q 1) IUI, all classes of U are accounted
for.

It is convenient to observe that Lemma 4.1 remains valid in characteristic 2 (even
though the subgroup C is given by a different definition). Moreover, Lemma 4.2 also
remains valid. The only necessary change to make in the proof is to substitute y (I )
for the conjugating element c(- ). No restriction on the characteristic of F was
needed to define the relations and (and the corresponding sets F and A). With
this in mind, the entries in the second and third columns remain valid for q a power
of 2.

We have already observed that distinct conjugacy classes of U lie in distinct
conjugacy classes of 0. The following lemma extends this to the subgroup U7/, and
determines the second and third columns of Table 4.2 for the first seven lines of that
table.

LEMMA 4.3. If u U and 7/ with # 1, then u is not conjugate to u( in .
Moreover, Cd(u)= Cd(u’), so that the sizes of the confugacy classes containing u and
u( are identical. Table 4.3 determines centralizers in G of specific elements of U.

TABLE 4.3

u uD u6H-D

Cd(u) UY HT/ CD 77

u =M(r)
N u P u P#D #

CDEo DPA PD 7/

Proof. Suppose u is conjugate to ur in t where u U and " 7/#. Any element
which conjugates u to ur must centralize u mod E, and so has the form ce where
c Cu(U) and e E. As Cu(U) centralizes u, we may assume the conjugating element
is e. Thus e-lue u(, which is equivalent to ueu -1 er. Write e (v, m) and " (0, n).
Then (vu-1, m) (v, m + n), so that n 0. However, r # 1 so n 0, and this contradic-
tion establishes the first part of the lemma. Clearly, since 7/ is the center of
G, C(u) C(u’). The centralizers appearing in the table are easily worked out, and
the proof is omitted. 71

Recall that A is a set of representatives for the equivalence classes under the
relation defined on N# x N. From the original definition of zX we have N# x {1}

_
Z.

=N#Let A1 x {1} and A2 A-A1. By the preceding lemma, A X 7/ and A2 x 7/ are
natural index sets for the conjugacy classes of ( represented by elements contained
in CD T/ D 7/.

Let A be a set of coset representatives for N in F. Thus IAI- If" NI-q- 1.
The set A is a useful index set for several of the conjugacy classes of ( not covered
by Lemma 4.3, as the next lemma shows.
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For any group element g, let go’ and go denote the p’- and the p-part of g
respectively. That is, g gpgp,= go,go where go, has order prime to p, and the order of
gp is a power of p. Since PE is a Sylow p-subgroup of t, every element of ( is
conjugate in G to an element g for which go PE.

LEMMA 4.4. Let g G and assume that go, the p-part of g, is contained in PE.
(a) If go 7, then g is conjugate to an element of UT/.
(b) If go E 7/, then exactly one of the following cases occurs"

(i) go’ 1 and g is conjugate to (0, 1, 0);
(ii) go, 1 and g is conjugate to (su, s, O) for some unique s in A;
(iii) go, 1 and g is conjugate to M(r)(su, s, O) for some unique r 6N# and

seA.
(c) If go PE-E, then either g is conjugate to an element of UT/, or else g is

conjugate to (o.)(s, O, O) for some unique s in A.
Proof. (a) Assume go 7/. Then the element gT/of the group G/. is p-regular.

Let L=(g)E so that IL’EI is the order of go’ and equals [U LI. By the Schur-
Zassenhaus theorem, go, L (U fqL). E must be conjugate in L to an element of
UL (see [8, 1.18, pp. 126ff]). Hence g is conjugate to an element of UT/.

(b) Assume go E- 7/. By part (a), go’ is conjugate to an element of U, and hence
is conjugate to an element of H or CD. Since E- 7/is a normal subset of (, we may
asume go,H CD. Now no nonidentity element of H centralizes any element of
E-7/, so goCD.

Suppose first go, 1. Then g go E-7/, so g has the form (v, m) for some
v V=FF and m GF(p). Since (v, m) is conjugate to (v, 0) in E, we may assume
m 0. The action of U by conjugation on V x {0}c_ E may be identified with the
action of U on V given by matrix multiplication. Recall that , is a fixed element of
F# satisfying , + 7 0. The "norm map" r/" VF0 given by r/(v)= ,v(_l o)t37" is
invariant under the action of U. In fact, U acts transitively on the sets r-l(a) for
a F’, and is transitive on r/-l(0)-{0}. Clearly (0, 1)7-1(0), and since r/(s,, s)

--12,2sg, the elements (s,, s) for s A lie in the distinct r (a) for a F0. Thus, g is
conjugate to (0, 1, 0) or else to (s,, s, 0) for some unique s A.

Assume now go’ 1 and go’ CD. Write go (v, m) where v V. Since go’ central-
izes go, v is an eigenvector of go’ with eigenvalue 1. Since no nonidentity element of
D has 1 as an eigenvalue, we have go’ CD -D. Conjugating within U we may assume
go,=M(r)( o) where (r, s) A. Since 1 {rs, s} and (s -1, s) A by definition of A, we
must have s 1 and g M(r) C. As already observed, v is an eigenvector of go’ with
eigenvalue 1, so v (s,, s) for some s F. Thus g M(r)(s,, s, m) for some m GF(p).
Conjugating g by ( )D (where aa 1) yields M(r)(sa,,sa, m), and so we may
assume s A. Finally (s,, s, m) belongs to the nonabelian group Eo, and is conjugate
within Eo to (s,, s, 0). Since Eo centralizes M(r), we may assume m 0. Thus, g is
conjugate to M(r)(s,, s, 0) where r N# and s A. The uniqueness of r and s follow
from Lemmas 4.2 and 4.4(b)(ii) as go, M(r) and go (s,, s, 0).

(c) Assume finally gp PE-E. In the group /E, go,E centralizes gE so go,E
DE/E, PE/E and hence go’ DE. As E normalizes the set PE E, we may conjugate
g by an appropriate element of E so as to assume go, D. Since D-<_ 7/(U), we may
conjugate by an element of U to yield gp ( )e for some e E and still preserve
go, cO.

Suppose first that go’ 1. Clearly, go’ centralizes go- ( )e, and since ( ) U,
go’ centralizes (o ). Hence go’ centralizes e. But the only elements of E centralized
by any nonidentity element of D are contained in 7/(E). Thus g D P. 7/= UT/and
thre is nothing more to prove.
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Assume finally that gp,=l. Then g=( l)(t,v2, m) for some v,v2c=F and
m eGF(p). If Vl=0, conjugate g by (v2, 0, 0) to yield (o
Assume then V 0. Since the trace map is surjective, c e F may be chosen so that

tr (/1)= (-m +tr (v272)- tr (v72))/2.

Conjugating (ao l)(v, v2, m) by (vz, c, 0) yields ( l)(va, 0, 0) and then conjugating by
(g )D yields (o l)(av, 0, 0). Choose a 6N so that avx cA. Suppose now (o l)(s, 0, 0)
is conjugate to (o l)(s’, 0, 0) for some s, s’e A. The conjugating element centralizes
(l) modE and so belongs toDPE. Letx (go)(0 )e be the conjugating element,
where e e E. Then x-X(o l)(s, 0, 0)x (o l)(s’, 0, 0) implies as s’ and since a e N, s
must equal s’ by the definition of A. I-I

Lemma 4.4 completes the list of conjugacy classes of . The centralizers of the
various elements described in that lemma are straightforward to calculate. If g-
(0, 1, 0) then Cd(g) PCE(g), while if g (st,, s, 0) for s e A then Cd(g) CCz(st,, s, O)
where IE:C(sv, s,O)l-p since s C0. For g=M(r)(st,,s,O), we have Cd(g)
CCzo(St,, s, 0) where leo: Czo(St,, s, 0)[ p. Finally, for g (o l)(s, 0, 0) we have

Cd(g) {(10 )(ks, b, eFo, b F, m GF(p) and tr (2sff+ ksg-k2sg) 0}.
Notice that for each given k e F0 there are [FI/p =q2/2 choices for b for which
( )(ks, b, m)s C(g), and so IC(g)l-q" q=/p p _q3.

This verifies the second and third columns of Table 4.2. As a check, the dot
product of these two columns equals p(q + 1)2qS(q 1) Idl,

The polynomials det (I-Xo (g)) will now be determined for each class representa-
tive g in the groups U and t. In the case of t, if " e 7 and 0(sr) eL then det (I-
Xp(g())=det(I-(eX)o(g)). In particular, det(I-Xo(g)) need only be calculated
for class representatives of G given in Table 4.2 for " 1.

For any group G and any character X of G, let f,(g, X) denote the polynomial
det (I-Xr(g)) where r affords X. The next lemma provides an effective method for
computing f (g, X).

LEMMA 4.5. Let G be a group and L a subgroup of G. Assume g L.
(a) IfX is a character ofG such that XL decomposes into a +, say, then f (g, X)

f,(g,X)f(g,X).
(b) If y and are characters of L such that y is a constituent of /, say 0 =3’ + 6,

then

G(g, X) fz(g, X)/f (g, X).

(c) If 0 is the regular character of (g), then fo(g, X)= 1-X where is the order
ofg.

(d) If 0 is the regular character of L, then fo(g, X) (1 -X) where is the order
of g and rn

Proof. Let n ,(1) and let r be a representation affording X. Then (a) ollows
readily from the observation that fx(g,X) is (-1)"X" times the characteristic poly-
nomial of or(g) evaluated at X-x, and (b) ollows from (a). ff 0 is the regular character

l-1of (g), then all of the distinct /th roots of unity, say 1 e , e, e , where
l-1l=o(g), occur as eigenvalues of r(g). Then fo(g,X)=l-[=o (1- eX) 1-X, and (c)

follows. If K is a subgroup of L then regLl ]L: Klreg. Part (d) follows from this
and (c), using a repeated application of (a).

The last lemma, together with Theorems 2.5 and 2.6, is sufficient to calculate
det (!-Xp (g)) for all the class representatives of U in Table 4.1 and for most of the
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class representatives of ( in Table 4.2 (for r 1). The most difficult case covered
here is that of g M(r)(; o). Let a I(g) f’l CI, b I(g) f’l (1 and abk o(g) (notice
that a and b are necessarily relatively prime). We have regcdl(g> (q + 1)((q + 1)/abk)
reg(g>, and of course lcdl<g>=l<g>. Also regcd/cl<g> may be identified with
regcd/cl<g>c/c (q + 1)/bk reg(g>/C/C, as the index of (g)C in C" is

Ic, <g>CI- Icl, I<g> c cI _(q + )
I<g>l IcI bk

Similarly, regcd/dl<g> may be identified with (q + 1)/ak reg<g>d/d. This, together with
Theorem 2.5 (c), verifies the polynomial det (!-Xo(g)) in Table 4.2 for g M(r)(; o).

Again we observe that the argument given above which calculates det (I-Xo(g))
for g M(r)( o) is ,alid in characteristic 2. Thus, all of Table 4.1 remains valid for
q a power of 2.

The only case in Table 4.2 not covered by Lemma 4.5 and the theorems of 2
is that of g (o )(s, 0, 0). In this case, g is conjugate to g.i for all i, where r is a
generator of 7/. Hence, if e is a primitive pth root of unity, then multiplication by e

induces a permutation on the set of eigenvalues of o(g) (preserving multiplicity).
When p > 3, g has order p and so det (I-Xo(g)) (1-XP)q2/p. For p 3, g need not
have order p. In fact,

3

((10 1)(s’l 0,0)) =(00,,-tr(sg))7/.

Let o be the cube root of 1 defined by O (0, 0, 1)= o)L Then, the third power of any
-tr(sg) -tr(sg)

eigenvalue of O (g) is o) Each of the three cube roots of o) occurs with the
same multiplicity, namely, q2/p =q:/3, as an eigenvalue of O(g). If 6 is any one of
these, then the other two are 8w and 8w2, and

det (I XO (g)) [(1 8X)(1 8ooX)(1 6002X)]q2/3

.--(1_3X3)q2/3

(1- o -tr(sg)x3)q2/3

This verifies the last entry in Table 4.2.
The Molien series for U (for all characteristics) and t (for characteristic 2)

follow readily from Tables 4.1 and 4.2.
THEOREM 4.6. The Molien series tr(X) with respect to O is given by

E
4()

(q + 1):q (q 1)Ot(X)=
1/ (1-X)(1-X)

2 (q+l)/l(q 1)b (/)(1-X
pl q(q+l)/pl+ --/Iq+l

q(q+l)(m)/2

ml -1 (1-X)(1-Xm)(q--1)/m

rnN+l

q(q- 1)4)(k)qb(abk) (1--xak)(q+)/ak(1--xbk)(q+x)/bk

+2
(a,b,k) (1 --xabk)(q+l)2/abk (1 -X)
a>b

q(q 1)(qb(k):-qb(k))/2
+2
klq+a (1-X)(1-xk)(q-e)/k"
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The fourth sum extends over all triples of positive integers (a, b, k) where a > b,
g.c.d (a, b)= 1 and abkl(q + 1).

Proof. The expression (q + 1)2q(q- 1)u(X) equals Y’.gv 1/det (I-Xp(g)) by
definition, and is obtained in the theorem by grouping together equal terms as given
by Table 4.1. The first three sums correspond directly to the first three rows of that
table. The classes corresponding to the last row in Table 4.1 contribute

q(q 1)(1--xak)(q+l)/ak(1--Xbk)(a+l)/bk

ab,),+:/,b,,a (1 -X (1 -X)

where a, b and k depend on (r, s) and have the same meaning as given in the table.
Notice that by choice of A, a >= b.

It remains to prove that the fourth summation appearing in the theorem corres-
ponds to terms in the above sum for which a >b, and that the last summation
corresponds to a b.

Let g M(r)( o)C and let (a, b, k) be the parameters associated with g. Thus
a [AI and b IBI where A (g) f3 C and B (g) fl . Moreover, A >B AB is a
subgroup of (g), and so is cyclic. Thus, g.c.d. (a, b)= 1. Notice that (g)/AB is cyclic
of order k and intersects CAB/AB and OAB/AB trivially. If (r, s)e A, then a >=b,
and if a b, then a =b 1.

It suffices to prove that the number of pairs (r, s)e A corresponding to a fixed
triple (a, b, k) is 49 (k)49 (abk) when a > b and is (& (k)2 & (k))/2 when a b 1.

Toward this end, fix (a, b, k) with g.c.d. (a, b)= 1, a => b and abklq + 1. Let A
and B denote the unique subgroups of orders a and b, respectively, of C and C.
There are exactly (k) cyclic subgroups X/AB of C/AB of order k which intersect
trivially with CAB/AB and AB/AB, and each such X is necessarily cyclic. For any
fixed X, there are (Ixl) -(abk) generators for X. When a b, then any generator
of X automatically belongs to Cd-D, and when a >b, all of these generators
correspond to elements of A. This accounts for the factor of 49 (k)4)(abk) appearing
in the fourth summation of the theorem.

When a b 1, there are still (k)2 elements g of C corresponding to the
triple (1, 1, k). However, (k) of these belong to D. The remaining (k2)-(k) in
(C-D fall in conjugate pairs, and so exactly half of these correspond to elements
of A. This accounts for the factor of ((k)2-(k))/2 in the last summation, and the
entire theorem is now proved. 71

Notice that the first and fifth summations appearing in Theorem 4.6 may be
combined as a single sum.

A consequence of the proof of the last result is the combinatorial identity
4)(k)49 (abk) m 2 where the sum extends over all triples of positive integers (a, b, k)

satisfying abk[m and g.c.d. (a, b)= 1. This is stated as lAmer. Math. Monthly, 88
(1981), p. 537, problem E2896].

THEOREM 4.7. The Molien series d(X) with respect to p is given by
p--1

5 )2pq (q+l (q-1)d(X)= Aq(eiX)+Bq(X)+Cq(X)
i=0

where e is a primitive pth root of 1. Here

Aq(X)= 1/(1-X)q2+ E &(l)q4/(1-S)(1-st)(q2-1)/t

/Iq+l
ll

q" llq-I cb(l)qS(q + 1)/2(1-X)(1-xl)(q=-Ivt
lfq +
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and ]:or p > 3,

while .for p 3,

+ ., O(a)q3(q 1)(1-X)q/(1-X’)’(q+l)/’

alq+l
a#l

+ y’. ((qb(k)Z-g)(k))/2)qS(q- 1)/(l_X)(l_Xk)(’:--)/"
klq+l

,(k),(abk)qS(q- 1)(1 _Xak)(q+’)/ak (1 _xb.)(’+’)/bk
+ 2

abklq+ (1 X)(1 X’bk )co+ 1):’/abk

g.c.d. (a,b )=
a>b, bk>l

+q2(q2_ 1)(I_X)q/(I_XO)O(,//o

+ 2 qb(l)q4(q 2-1)(1-Xt)(q+l)/l/(1-X)(1-XOt)q(q+)/Pl;
/Iq+l
l#l

Bq(X) E pq3(q + 1)(q- 1)2b(/)(1-X’)q/’/(1-X’t)qcq+)/’
/Iq+l
I#1

+p (q4_ 1)/(1-X’)’:/’,

Cq(X) pq2(q2_ 1)2/(1 _X,)q:/,,

Cq(X) 3(q + 1)2q2(q 1){(q/3-1)/(1-X3)2/3

+ q/3(1-ooX3)q2/3 + q/3(1-oo2X3)q2/3},

Proof. The terms in Aq(X) correspond to the class representatives appearing in
the first seven rows of Table 4.2 for which r 1. The next three rows correspond to
Bq(X) and the last row to Cq (X). The only terms which need explaining are the fourth
and fifth summations appearing in Aq(X). These terms originate from the class
representatives in the fifth row of Table 4.2 corresponding to r 1. The natural index
set for the classes is A2 A-A A-N#x {1}. We have already seen in the proof of
Theorem 4.6 that for a given triple (a, b, k) with g.c.d. (a, b) 1, abk Iq + 1 and a > b,
there are qb (k) (abk) associated elements of A, while for a b 1 there are
b(k))/2. The set A corresponds to triples of the form (a, 1, 1) where a > 1. Thus,
may be decomposed into At.J A, where A corresponds to all triples of the form
(1, 1, k) where k > 1, and A({ corresponds to all triples of the form (a, b, k) where
a >b and bk > 1. These correspond to the fourth and fifth summations of the
theorem.

5. Molien series (characteristic 2). This section is concerned with the Molien
series for G and Go (denoted (X) and o(X)) where it is assumed that F has
characteristic 2. Recall that from 3 we have G U< E and Go UT/= U< Z where
U U(2, F) and 7/= ;g(E). Since 7/is represented by +I under O, we have

,o(X) (,_,(x) + c,,(-x))/2.

Actually, the expression for tr(X) has already been given by Theorem 4.6 when q
is a power of 2, and so it remains only to calculate a(X).

The main difficulty with G in characteristic 2 stems from the definition of the
action of U on E"

(v,m)g=(vg, m + tr (bg(v))).
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For odd q, there is no term corresponding to bg(v), and in that case, the subset
V {0}

_
E was stabilized by U. This is no longer true in characteristic 2. Nevertheless,

Lemmas 4.3 and 4.4 remain valid, although the proofs have to be slightly modified.
Hence, the columns in Table 4.2 corresponding to the number and sizes of the
conjugacy classes remain valid, as do the descriptions of the polynomials det (I Xt (g))
for the first seven rows of that table. These rows correspond to elements of G which
are conjugate to elements of UT/.

Let F and A have the same meanings that they had in the odd characteristic case.
Since F =F <N in characteristic 2, the subgroup F is a natural set of coset
representatives for N in F, and we may as well take A F. This is not necessary,
but is obviously convenient.

LEMMA 5.1. Let u U and 1 Z so that (0, O, 1). Then u is not conjugate
to u in G. Moreover, C(u)= C(ur) and Table 4.3 appearing in Lemma 4.3 remains
valid for characteristic 2.

Proofi We shall only prove that u is not conjugate to u" for any u U. Assume
then that u is conjugate to u" for some u in U and, as in the proof of Lemma 4.3,
we may assume the conjugating element is e E. Now e-lue u implies ueu -1= e(,
and hence u2eu -2- ue(u -1= esrE=e, so u 2 centralizes e. Clearly, u itself does not
centralize e and hence u (u2), proving that u has even order. Write e (v, m) so that

(vu-1, m + tr bu-l(v)) (v, rn + 1).

Since v 0, the element u -1 (and hence u) must have 1 for an eigenvalue.
Therefore, u is conjugate either to an element of C or else to y ( ). Since IcI has
odd order and u has even order, u must be conjugate in U to y. Choose then g U
so that g-lug y. Then y conjugates g-leg to g-leg, and so we may as well assume
u =y and g= 1. By Theorem 3.2(3) we have (v,m)Y=(vy, m +tr (,v171)) where v
(vl, v2) and , + 1. However, vy v implies Vl 0, so tr (,v11) 0, which contra-
dicts (v, m) (v, m + 1). 71

LEMMA 5.2. The conclusions ofLemma 4.4 are valid when p 2.
Proof. The conclusion in (a) did not require p 2 and so remains valid.
For (b), assume y G satisfies g2 E Z. As in the earlier lemma, we may assume

g2’ CD. If g2 1 then g g2E-7/. The appropriate norm map r/" VFo for
characteristic 2 is given by rt (v) v( oa)t3 T. As in Lemma 4.4 (where a different rt was
used), r/ is invariant under U, and the orbits of U on V# are rt-l(a) for aF and

--1
r/ (0)- {0}. The elements (su, s) for s F0 A and (0, 1) represent these orbits, and
so g is conjugate to (su, s, m) for some unique s F, or to (0, 1, m), where m GF(2).
Since (v, 0) is conjugate to (v, 1) in E for any v V#, we may assume m 0. This
completes the case where g2, 1. If g2, 1, the corresponding proof given in Lemma
4.4 requires no changes.

Assume that g2PE-E. As in the earlier proof, we may assume g2--

( )(Vl, rE, m). If g2’ 1 there is no change in the argument, so assume g, 1. If
Vl 0, then when g is conjugated by (v2, 0, 0), the result is ( )(0, 0, m + tr (,v272))
UT/. Hence assume v 0. Then c F exists which satisfies

tr (Oac) m + tr (/]/32/2),

and for this value of c we have

(v2, c, 0)-1(10 1)(vl, v2, m)(v2, c, 0)=(10 1)(vl, 0, 0)
1 1
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The remainder of the argument in Lemma 4.4 now applies, as Oh(V)= 0 for all
hD.

The centralizers in G of the various conjugacy class representatives described
by the last two lemmas are easy to work out and are omitted. There is no difference
from the odd characteristic case.

At this point we know that the number and sizes of the conjugacy classes of G
are the same as in Table 4.2 (columns 2 and 3), and that the polynomials det (! -Xo(g))
are correctly given for all elements g conjugate to elements of UT/(the first seven rows).

To complete the determination of (X), the polynomials det (I-Xo(g)) are
calculated for the elements M(r)(s/t, s, 0), (0, 1, 0), (s/t, s, 0) and ( l)(s, 0, 0) where
rN# and s F.

Suppose first g =M(r)(s/t, s, 0) CEo. By Theorem 3.8, g, lCZo (regc lc) #o
where 4,o is the unique faithful irreducible character of Eo. Now g2 (s/t, s, 0) 7/(Eo),

+1and so o(g2 )= 0. If g2 has order 2 then g’o[(g2> is (q/2)(reg(g2>), while if g2 has order
4, o[<g> is q/2(reg<g2>-reg<g2>/). Let denote the order of g2’. In the first case
is (q(q / 1)/2/) reg(g>- (q/2) reg<g>/<g2,>, while in the second, g,l<g> is (q(q + 1)/2/) reg<g>-
(q/2) reg(g>/<g2.>-(q(q + 1)/2/) reg<g>/+(q/2) reg<g>/<g2,>. In the first case det (I-
XIg(g)) is (1--xEl)q(q+l)/21/(1-X2)q/2, while in the second case, the polynomial is

1 X41) q(q+ 1)/2/( 1 X2)q/2

1 X4)q/2 1 X2/) q(q + 1)/21
(1 /X21) q(q+l)/21

(1 +X2)q/2

Since (g2)2-- (sp, s, 0)2= (0, 0, tr (/tsg)), the element g2 can only have order 2 or 4,
so that these are the only two possibilities. Notice that g has order 2l when tr (/tsg) 0
and has order 4l when tr(/tsg)=l. For seA=F we have tr(usg)=tr(sg)=
tr(sE)=tr(s), where tr:Fo-GF(2) is the trace map. It follows that there are
exactly q(q/2 1) elements g of the form M(r)(s/t, s, 0) having order 2l, where r e N#

and s A F, and q q/2 elements of this form having order 4l.
Suppose next that g (0, 1, 0). Then g2 1 and since 6(g) 0, 6[(g> is q2/2 times

the regular character of (g). Hence det (I-Xp(g))= (1-Xa)/2.
If g (s/t, s, 0) where s F, then the calculation done earlier for M(r)(s/t, s, O)

is valid for r 1 and so will not be repeated here. Assume then that g ( )(s, 0, 0)
where s F. Using Corollary 3.2(c), we have

g
0 1

0, 0)= (s, s, tr (vsg))(s, O, O)= (0, s, tr

Hence g4= 1 and g2 1 so g has order 4. Now g- (0 )(s, s, tr (/tsg)), and by direct
calculation ( )g(10 )= g-, so g is conjugate to g-a. Suppose O(g) has eigenvalue 1,
-1, and -i with multiplicities a, b, c and d. Since g is conjugate to g-a, we know
c d. Moreover, the matrix p(g2) has trace (g2)= t(0, s, tr (/tsg))=0 so p(g2) has
q2/2 eigenvalues equal to 1, and the remaining q2/2 eigenvalues equal to -1. Hence
a +b =q2/2 and 2c =c +d q2/2. Clearly, the trace of p(g) is a -b +ci-di =a -b.
However, o(g)=o(o )p(s, 0, 0), and the trace of O(g) is easily calculated by using
Theorem 3.3. The result is a -b 0, and so the numbers 1, -1, and -i appear with
the equal multiplicity q2/4 as eigenvalues of p(g). This leads easily to the formula
det (I-Xp(g)) (1 -X4)q2/4.

The results above are tabulated in Table 5.1 opposite.
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Using the first seven rows of Table 4.2 and all of Table 5.1, the Molien series
for G may now be written down for the characteristic 2 case. The result is contained
in the following:

THEOREM 5.3. The Molien series dp(X) with respect to p in the characteristic 2
case is given by

2qS(q + 1)2(q 1)(X) Aq(X) +Aq(-X)

l[q+ (1 X21) q(q+ )/2/

l#l

&(l). (q/2- 1). 2q3(q + 1)(q- 1)(1-X2)/2

+2
/Iq+l (1 "l-X21) q(q+ )/21

l#l

(/). (q/2) 2q3(q + 1)(q- 1)(1 +X:)"/

+ 2(q + 1):(q 1)/(1-X)/

+ (q/2-1). 2(q + 1)q(q 1)/(1 -X)/

+ (q/2) 2(q + 1)q(q- 1)/(1 +X:)"/2

+ 2(q + 1):q2(q 1)2/(1 -X4)"2/4

where A(X) is defined as in Theorem 4.7.

6. Finite extensions of the unimodular subgroup of p (G). Let G and p denote
the group and representation constructed in 2. Thus

where

d U(2, f) <E

and IFI- q is a power of the odd prime p. Let denote the unique sign character
of d (]d" ker 81 2). By Theorem 2.2 we have det Old t. Since p(-1) -I, the
unimodular subgroup of 0 (G) is

ker t kl (-1). (d-ker t).

Let Go denote this subgroup of G. Hence Go= ker (det 0) and IG" GI- 2.
As an abstract group, Go is isomorphic to . (In fact, p(g)->8(g)p(g) is an

isomorphism from 0() to 0 (GO) .) In particular, E is complemented in Go by a group
U which is isomorphic to U(2, F), and the action of U on E is the same as that of
U(2, F).

As outlined in [3, 8], the full automorphism group of E which centralizes 7/(E)
is a split extension of the symplectic group Sp(4n, p) by the inner automorphisms of
E, where q2__p2. The semidirect product G1 =Sp(4n, p)E may be formed, and
we may assume G-> UE G. The representation plo extends to a unimodular
representation of G which we continue to denote by p. As in [3], let G2--
where 7/q is a cyclic group of order q2, and the subgroup of order p in : is
amalgamated with the center of G in the central product. Finally, p may be extended
to a unimodular representation of G2 by requiring 7/, to be represented by scalars.

It will turn out (Theorem 6.12 below) that the linear group p(G2) is the unique
maximal finite subgroup of SL(q 2, C) containing p(G). For convenience, throughout
the remainder of this section the groups GO and G2 will be identified with the linear
group p (G) and p (G2).
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The proof of the next lemma is similar to that of Lemmas 1.8.2 and 1.8.3 and
will be omitted.

LEMMA 6.1. If 7/denotes the group of scalar matrices in GL(q 2, C), then

C,,c (E/7/(E

CSL(q2,c)(E/7/(E)) ET/q:,

s(.c)(E) G2.
LEMMA 6.2. In the action of U(2, F) on V F F, the subgroups qf V stabilized

by S SL(2, Fo) are {0}, V and the q + 1 subgroups of order q2 of the form c Vo where
c F and Vo Fo Fo <= V. These q + 1 subgroups are transitively permuted by U(2, F).

Proof. Clearly {0}, V and c V0 are stabilized by S. Notice that S is transitive on
V’, and hence each subgroup c Vo for c # 0 is irreducible under S. Thus for c, d F
and c Vo dVo, we have V =CVo +dVo, and V has S-composition length 2. Let W
be any S-subgroup of V where 0 < W < V. Then W is necessarily irreducible under
S. Let (a,/3) W#. As ( )S, we have (a, a +/) W, and this leads easily to
(0, fl) W and (a, 0) W. If a # 0, then (a, 0) W a Vo, so W a Vo. Otherwise, if
a 0, then/3 # 0, leading to W =/Vo. Hence W c Vo for some c F. Clearly, if
c, d F, then c Vo dVo if and only if cFo dFo, and there are exactly IF’ F
q + 1 subgroups of this form.

The subgroup

/(oH=
0 - a e _-<U(2, F)

normalizes S, and so H permutes the sets {c Volc F}. As H acts transitively on the
vectors {(a, 0)la F}, it follows that H transitively permutes the subgroups c V0 for
c F. This proves that U(2, F) is transitive, and the proof of Lemma 6.2 is com-
plete.

COROllARY 6.3. There are exactly q + 1 proper subgroups o[E strictly containing
7/(E) which are invariant under the action o[SL(2, Fo). Moreover, these are all contained
in a single orbit under the action of U, and each of these is nonabelian.

Pro@ The subgroup V0 of V corresponds to

Eo {(a, b, m )la, b Fo, m e GF(p )} <- E.

The commutator of (a, b, m) with (a’, b’, m’) is

(0, 2 tr (ab’- ba’)) (0, 4 tr (ab’- ba’))

where tr:Fo-->GF(p) is the trace map. Since this last expression is not identically
zero, Eo is nonabelian. The rest of the corollary follows from Lemma 6.2.

Notice that the conclusion of Corollary 6.3 also holds for the group EZ with
7(E) replaced by 7/(E7/)= 7/.

The proofs of the next two lemmas are similar to that of Lemma 1.8.4 and
Theorem 1.8.5 with S replaced by U, and will be omitted.

LZMM 6.4. Let X be a finite subgroup of SL(q, C) containing G, and assume
that E <- O,(X). Then O,(X) <=ET/ and E <-_X. In particular, X <-_ G.

LZMMh 6.5. IfX is a finite subgroup of SL(q, C) containing GO and if the Fitting
subgroup g:(X) is not contained in 7/(X), then X <-G.

As in [3], it is natural to consider the following situation.
Hypothesis 6.6. X is a finite subgroup of SL(q, C) containing G, and :(X)_-<

(x).
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LEMMA 6.7. Assume Hypothesis 6.6 holds for X. Then the generalized Fitting
subgroup :*(X) has the form Z(X) Y where Y is quasisimple, and E <- Y.

Proof. By definition, :*(X)=:(X)_(X) where :(X) is the join of all the
quasisimple subnormal subgroups of X, say E(X) Y Y2 Yr. Hypothesis 6.6 implies
:(X) 7/(X), and so it remains to prove 1 and E <_- Ya.

Assume that S-SL(2, Fo) does not normalize some Yg, say YI, and choose
notation so that {Y, Y:,..., Y,} is the S-orbit containing YI. As Y Y2"’" Yt’ is a
subnormal subgroup of X, an irreducible constituent of p restricted to YI Y2"’"
has degree dividing q and is a tensor product of t’ representations. This implies

t, 2 t’p -< q Since is the index of a proper subgroup of $L(2, F0), we have by a theorem
of Galois [8, Satz 8.28, p. 241] either t’>-q or t’=6 and q =9, p 3. Either case
leads to a contradiction. Hence, $ normalizes each Y, or equivalently, $ is in the
kernel of the action of X on {Y, Y2," , Yt}. Therefore, E [E, S] is also in this
kernel, and E normalizes each Y.

Define R= YiZ/qElE_q2. Thus each Ri is an S-invariant subgroup of EZ/q
containing Zq.

Suppose there exists such that Rg 7/q. Let E ET/q/7/ and Yg YiT/q/7/q,
and let K be the subgroup of Yi containing 7/q which satisfies

Ki Ki/-, Il ?, (E).

Then [Ki, E] [9,(E), E] <- Yi fqE (YiT/q2 fqET/q2)/_q2 1. Hence, Ki centralizes
so that Ki <= CsL(q2,c(ET/o2/7/q) CsL(q,c(E/7/(E)) ET/q 2, where the last equality

follows from Lemma 6.1. AsK <- Y7/q, we have Ki =< Yg7/q CI E:, Rg 7/, proving
g . Hence, ,()= , and this implies that p-t" I7"i[. Thus, p does not divide the
order of the Schur multiplier of ’i, and so I7" YiT/o2/7/=(Yi,7/q:)/7o- Yi. The
linear group SEYi is irreducible (as E is irreducible) and Yi -SEY. Therefore, all
irreducible constituents of PlY, have degree dividing q2. If o- is one of these then the
degree of o- is a power of p. However, this degree must also divide Yg[ which is prime
to p, and hence r has degree 1. As Y’i Y, r is the principal character, and this
means that Yi is in the kernel of p, which is a contradiction asX is a faithful linear group.

The preceding paragraph shows that R YYfqET/2 > 7/ for all i. Suppose
Zq<R <EZq for some i. Then 7Zq < Czq(R)<E; and both Ri and CEZq2(Ri)
are $-invariant. By Corollary 6.3 and the remarks following that corollary, there exists
x U such that R7 is different from R and CEZ2(Ri). Now Y Yj for some/’, and
since R #Rg we have i#j. Hence [R,R]<=[Yg7q2, Y.7/o]=[Yg, Yi]=l so R =<
CEZ.(Ri) and equality must hold as these groups have the same order. But this
contradicts the choice of x, and proves that R ET/o for all i. Hence ET/o-< YiT/o
for all i. Therefore, E=[E,$]<=[ET/-,S]<-[Y7/o,$]=[Yi, S]<-Yi, and we have
E-< Y for all i. Since E is nonabelian and Yi centralizes Y for #/" we must have

1. This completes the proof of Lemma 6.7. [3
The proof of the main result of this section (Theorem 6.12) will follow once it

is shown that F*(X) does not have the form given by Lemma 6.7 for every choice
of the simple group Y Y/7(Y).

The next result, which is an improvement of Lemma 6.7, uses the Schreier
"conjecture". Its proof is similar to that of Lemma 1.8.8 and will be omitted. Recall
that $ is the normal subgroup of U isomorphic to SL(2, Fo).

LEMMA 6.8. Assume Hypothesis 6.6 holds for X. Then :*(X) 7/(X) Y where Y
is quasisimple and contains E. If q2>9 or if q2= 9 and Aut (IT")/Inn (I7") has order
prime to 3, where Y Y/7/(Y), then ES <-_ Y.
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LEMMA 6.9. LetK denote a field of characteristic 0 or a finite field of characteristic
p. Then

(a) Any faithful representation ofE over K has degree at least q2.
(b) Any faithful representation of ES/Z(E) over K has degree at least q2_ 1.
Proof. Without loss of generality, we may assume that the field K is a splitting

field for all subgroups of E and ES/’(E). Since E is extraspecial, part (a) is immediate,
as every irreducible representation of E is either linear or has degree q2.

The group U(2, F) permutes the vectors of V F F, and the nonzero vectors
-1of V fall into orbits of the form rl (a) for a eFff and r/-(0)-{0}. Here r/ denotes

the map V--> Fo given by

?(v) v
-1

v

-1(as in the proof of Lemma 4.4). A representative of r (a) for a # 0 may be chosen
of the form (s, s), and since C centralizes (st,, s) and U(2, F)=C. SL(2, Fo), S is

-1 -1transitive on rl (a). For a 0, rt (0)-{0} consists of the nonzero isotropic vectors.
These are precisely the elements of [.J (cVo)#, where Vo=FoFo. As $ acts
transitively on the sets (cVo)#, the set r/-(0)-{0} decomposes into a union of q + 1
orbits under S, each of size qe-1. As Ir/-(a)l (q + 1)q(q- 1), it follows that every
orbit of S on V# has cardinality at least q- 1.

Since the commutator map gives a bilinear pairing of E/7/(E)- V with itself, we
have V V as S-modules, and hence every orbit of S on the nonprincipal characters
of E/_(U)- V has cardinality at least q-1. This also applies to Brauer characters
over a field of characteristic #p, and Lemma 6.9(b) now follows by Clifford’s
theorem.

If Y satisfies the conclusion of Lemma 6.7, then Y Y/(Y) is simple and
7/(E) _<_7/(Y)<_- Y’ so that p divides the order of the Schur multiplier of Y. The simple
groups having a Schur multiplier divisible by an odd prime p are listed below (see [6]):

PSL(n, r) where pl(n, r- 1) or (n, r)= (2, 9),

PSU(n, r) where pl(n, r + 1) or (n, r) (4, 3),

’6(r) where p 3l(r- 1),

2’6(r) where p 3[(r + 1).

A bar is used to denote the quotient of the universal Chevalley group (or its
twisted type) by its center. In addition to these four infinite families, there are 10
other exceptional groups, and in each of these cases p 3"

AT, M22, ]3, 0’8,

G2(3), McL, Suz,

$0(7,3), Fi22 =M(22), Fi&4--M(24)’.

LEMMA 6.10. Let X satisfy Hypothesis 6.6 and let Y be as in Lemma 6.7. Then
(" Y/7’(Y) is not one of the groups PSL(n, r), PSU(n, r), ’6(r) or 2’6(r).

Proof. Suppose first that Y is either PSL(n,r) or PSU(n,r) where p4r. The
group Y is a homomorphic image of the covering group of Y which is either SL(n, r)
except for (n, r) (3, 4), or SU(n, r) except for (n, r) (6, 2). The Schur multiplier of
PSL(3, 4) is 7/3X7/4 X T/4 while that of PSU(6, 2) is 7]37/2 7’2. Since [7/(Y) is odd,
Y is necessarily a homomorphic image of either $L(3,4) or SU(6, 2) in these excep-
tional cases, even though these last two groups are not covering groups of Y.
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Let L denote either SL(n, r) or SU(n, r) so that Y is a homomorphic image of
L. Then there exists W <-7/(L) such that L/W Y and p ll’(L)" W[. Choose W0 -< W
so that p ’lW01,, and IW" Wo[ is a power of p. As E-< Y and E’ ;E(E) =< ’(L), there
is a subgroup E of L containing W such that :/W=E and (’/W)’ 7/(/W) has
order p in 7/(L)/W. Denote this subgroup by W1/W. Hence ’ covers W1 mod W.

Since WI" W0[ is a power of p and W1/Wo is cyclic: " must cover W1 mod W0.
However, ’/7/(’) has exponent p, and hence so does E’. Thus W1/Wo has order p
and this implies Wo W. Therefore, p 4"lWl. Since ([ W[, [’ W[)= 1, W is comple-
mented in E and hence E is isomorphic to a subgroup of L. Now L is a linear group
of degree n over a finite field of characteristic p (which is in fact a splitting field for
all subgroups of L), and the embedding of E in L gives a faithful representation of
E of degree n. By Lemma 6.9(a) we have q -< n. In particular, n -> 9.

Suppose we are in the case L SL(n, r). By an argument appearing in the proof
of Lemma 1.8.9, every representation of Y has degree at least r n-l- 1, so rn-l- 1
2q -< n. As pl(r- 1) we have 4-- 1 <-n, so n -< 1, a contradiction.

Suppose then that L SU(n, r). Let k In/2] so that k >- 4. By another argument
appearing in Lemma 1.8.9 again, (r2)k-- 1 <-q2 <_ n. Hence 22k-2-1 <- n 2k or
2k + 1, and this leads to the contradiction n <-5.

If I7" is PSL(n, r) where plr, then p 3 and (n, r) (2, 9), so that I?
A6. This case is easily eliminated as IE/7](E)I does not divide IA6I. If I7" is PSU(n, r)
where p lr, then I7" PSU(4, 3), and this case will be considered last.

Suppose now I7" is E6(r---’ or 2E6(r). Except for E6(2), the Schur multiplier of
these groups is cyclic of order 3 and Y---E6(r) or 2E6(r) except possibly when r 2
in the twisted case. However, E6(2) has a Schur multiplier isomorphic to
and since I:(Y)I is odd, Y must be isomorphic to 2E6(2) in this exceptional case.
Notice that in all cases p 3.

The group E6(r)/7/(E6(r)) acts faithfully on the 78-dimensional Lie algebra of
type ’6 over GF(r). As 2L6(r)<-E6(rZ), 2E6(r)/Z/(E6(r)) also has a 78-dimensional
representation, although the field is GF(r2). By Lemma 6.8, if q2> 9 then q- 1 -< 78.
However, p 3 so q is a power of 3 and so q= 9. Thus, either E6(r) or 2E6(r) has
a complex representation of degree 9.

In the case of E6(r), we have SL(6, r)=As(r)<-E6(r), and the smallest degree of
any faithful complex representation of SL(6, r) is at least r5-1. Thus, r5- 1 <-q2 9,
a contradiction. For 2E6(r), we have SL(3, r2)<=SU(6, r)=2As(r)-<-2E6(r), and this
leads to the contradiction r4- 1 -<_ 9.

Assume finally that Y -PSU(4, 3) and hence that Y is a 3-fold cover of
PSU(4, 3). The highest power of 3 dividing the order of I7 is 36, and hence q= 9.
Moreover, 3 does not divide the outer automorphism group of PSU(4, 3), so SE
embeds as a subgroup ot Y. Let V E/7(E) so that SV embeds as a subgroup of
Y--PSU(4, 3). A contradiction will be reached by showing that this last embedding
is impossible.

The group U(4, 3) may be described as {M GL(4, 9)]MC/rr= C} where C
( ), I is the 2 x 2 identity matrix, and is the automorphism of GF(9) fixing GF(3).
It is not hard to check that matrices of the form ( ) where A ( ), for a, b GF(3)
and a e GF(9), form an abelian subgroup of SU(4, 3). Let I7" denote the image of
this subgroup in PSU(4, 3). We also have that matrices of the form

belong to U(4, 3) for all X in GL(2, 9). Let $L+(2, 9)={X e GL(2, 9)ldetX +/-1}.
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Now M SU(4, 3) if and only if X $L+/-(2,9). Let H denote the image of

O_I)IXSL+/-
in PSU(4, 3). Notice that when X iI (where = -1), then det X =-1 and M is a
scalar matrix. Hence H S.L+/-(2, 9)/(iI}$L(2, 9)/(-I}.= PSL(2, 9) (-A)..By direct
calculation H normalizes V, and the full normalizer of V in PSU(4, 3) is HV.

Let Po be the subgroup of H corresponding to X ( ) for/ e GF(9), and set
P Po V. Thus P is a Sylow 3-subgroup of PSU(4, 3), and direct computation shows

a GF(3), a e GF(9)}
as well as

c(e’) f’.

The group SV embeds as a subgroup of PSU(4, 3). Let O be a Sylow 3-subgroup
of SV (hence V <=O). Replacing SV by a conjugate if necessary, we may assume
O <--P. By consideration of orders, we have IP" O[- 3, and hence O-P. As V is the
unique abelian subgroup of O having index 3, V is characteristic in O and hence is
normal in P. As IP" VI 9, we have V->P’, and as V is abelian, we have Ce(P’) >- V.
From the previous paragraph., then, V V.

As $ normalizes V V, $ embeds as a subgroup of HV. However, a Sylow
2-subgroup of S is 08, while that of HI7" is Ds. This final contradiction completes the
proof of Lemma 6.10. !-!

LEMMA 6.11. Let X satisfy Hypothesis 6.6 and let Y be as in Lemma 6.7. Then
Y Y/7(Y) is not one of the groups A7, M22, J3, O’S, G2(3), McL, Suz, S0(7, 3),
Fi22 M(22), F124 M(24)

Pro@ Suppose Y is one of these ten groups. In each of these cases, p 3, and
hence q is a power of 3. By Lemma 6.7, E <- Y and hence E/7/(E) embeds in Y. In
particular q411 I7" I, and this quickly eliminates the groups A7 and M22.

If qZ= 9 then Y is a linear group of degree 9. Since 17/(Y)] is odd, YI can have
no prime divisor greater than 11 (by [2, Thm. 1]), and hence Y must be MeL.

If q2>9 then ES/Z(E) embeds as a subgroup of I7" and hence q51]I7 I, and so
311f’l. Hence I7 is Fi4 and q2 is either 81 or 729.

Suppose first q2= 9 and I7" McL. Now McL contains a subgroup isomorphic to
PSU(4, 3) which in turn contains a Sylow 3-subgroup of McL, say P. Replacing
ES/7](E) by a conjugate if necessary, we may assume that a Sylow 3-subgroup of
ES/7](E) is contained in P. By the argument at the end of the proof of the preceding
lemma, E/7](E) is then Cp(P’), and the normalizer of E/Z(E) in McL contains a
subgroup isomorphic to A6 which acts faithfully and irreducibly on E/Z(E). Since the
dimension of this module is only 4, it must be absolutely irreducible. The commutator
map of E may be used to construct a nondegenerate skew-symmetric form on E/7/(E)
that is invariant under the action of A6.

Up to isomorphism, A6 has only one absolutely irreducible module of dimension
4 over a field of characteristic 3. This module is M/N where M and N are the unique
maximal and minimal submodules of the standard 6-dimensional permutation module
for A6. The permutation module supports a nondegenerate symmetric form stabilized
by A6, and the radical of M with respect to this form is N. Therefore, M/N also
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supports a symmetric and nondegenerate form stabilized by A6. However, M/N
E/77(E) as A6- modules. This is a contradiction, as no absolutely irreducible module
for a group can support both a nondegenerate symmetric and a skew-symmetric form
that is invariant under the group.

Suppose now I7" is Fi.4 where q2=81 or 729. Since Fi22=<Fi23 and the Schur
multiplier of Fi23 is not divisible by 3, Fi22 appears as a subgroup of Y. Let 4, be the
character of the linear group Y so that (1)= 81 or 729. The desired contradiction
will be reached by considering the character fflFi22.

The entire character table of Fi22 is known and listed in [7]. Suppose first b (1) 81.
Then 1Fi22"-3" 1Fi22 +X78 where //78 is the unique irreducible character of Fi22 of
degree 78. A Sylow 5-subgroup of Fi22 is also one for Y, and the character table of

Fi22 implies that all elements of order 5 in Fi22 are conjugate. Now ES embeds in Y
where S -SL(2, 9). Let s S have order 5. Similarly, let g E FiE2 have order 5. As
X78(g) 3, the remarks above imply $(s)= $(g)= 6. However by Theorem 2.5(c) we
have $ (s) 1.

Suppose finally that $(1) 729. Then $[Fi2 a 1Fi22 + bx78 +bx429 for some
nonnegative integers a, b, c where )(’429 is the unique irreducible character of Fi22 of
degree 429. Again, we have ES <- Y where S $L(2, 27). Thus, S contains an element
s of order 13, and since 13 divides the order of Fi22 and Y to the first power only, s

is conjugate to an element g of Fi22 of order 13. Now X78(g)-" X429(g)= 0, SO t(S)-"
$(g)=a. Calculating $(s) directly using Theorem 2.5(a), we have $(s)= 1 so that
a- 1. This implies 728 78b +429c, which is a contradiction, as 3 does not divide
728. This concludes the proof of Lemma 6.11.

The last two lemmas imply that no linear group X exists which satisfies the
conditions of Hypothesis 6.6. This strengthens Lemma 6.5 to the following theorem,
which is the main result of this section.

THEOREM 6.12. If X is a finite subgroup of SL(q 2, C) containing GO where q is
an odd prime power, then X is contained in G2.

When q is a power of 2, the linear group p(G) as constructed in 3 is irreducible
and primitive, and so some version of Theorem 6.12 is valid in this case as well.
However, no claim is made here about the existence of a unique maximal unimodular
linear group containing p(G). Notice that when q2=4, p(G) is not unimodular
(Theorem 3.4), and linear groups with determinant +/-1 would have to be considered.
This (mild) exceptional behavior when q2_. 4 contrasts that of the non-Hermitian case
of [3] when the field is either GF(2) or GF(4). In that case the resulting linear group
is not even primitive.

Appendix. The Molien series 6o(X) and 6(X) are listed here for the fields
GF(q2) GF(4), GF(9) and GF(16). Recall that Go= (-1) U(2, F) for all charac-
teristics, G (-1) 0 where U(2,F)E (as defined in 2) for characteristic
p > 2, and G U(2, F)<E (as defined in 3) for characteristic 2.

Theorems 4.6, 4.7 and 5.3 were used to calculate these series, and the calculations
themselves were done on a microcomputer. All coefficients turn out to be integral,
providing a built-in (partial) check of the results.

Unnormalized codes:

2q 4, cI)o(X)

2q 9, (I)oo(X)

1 + 3X6

(1 X2)2(1 -X6)2’

18 (9) j(2iZi=0 a

1 X2)3 1 X)4(1 X6)3 1 -X8)(1 X2),
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2q 16, Oo(X)
20 (16) (x2i X84-2i (2116)X42i=o a + + a

1 X2)8( 1 X6)4( 1 X10)3(1 X3)"

Normalized codes:

2q =4, (X)

2q =9, Oo(X)

2q 16, (I)(X)

1-X4+X8

1 X2)(1 X4)(1 X6)(1 X12)
1 -"X 12

(1 X2)(1 X6)(1 X8)(1 X

Z____7 (9) ,6iobi
(1 X6)3(1 X12)2(1 -X18)3(1 -X24)

28 (16) (x2i 116-2i (16)v58i=obi +X )+b29
(1 X2)2(1 X4)6(1 X6)4 1 X10)(1 X2)2(1 X3)"

TABLE A.1
Table of coefficients

(9) (16) b (9) (16)a a b(16) b +20

0
-1 -5 -1 -1

2 4 24 25 -5
3 20 73 167 4
4 54 549 791 22
5 102 2105 2459 33
6 219 6975 5731 93
7 306 18308 10135 359
8 399 41684 14594 1226
9 506 82248 16936 3158
10 483 147269 16196 6912
11 448 236796 12623 13734
12 389 352683 7963 25638
13 251 482896 3866 43940
14 155 623000 1438 69934
15 88 752772 341 104645
16 23 870049 45 149424
17 8 958295 1 204318
18 1 1023591 269737
19 1063239 343516
20 1085823
21 1092050

424034
508755
595717
680859
760700
829807
886525
929723
957882
967420
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ON SOME PROBLEMS IN THE DESIGN OF PLANE
SKELETAL STRUCTURES*

KKICHI SUGIHARAt

Abstract. Two-dimensional frameworks composed of rods and joints are studied from a matroid
theoretical point of view, and three problems are solved. First, an efficient algorithm is proposed for
deciding whether or not a framework has redundant rods. Second, a solution is given to the problem of
how to use a redundant rod for the construction of a "strong" framework in the sense that the rigidity is
not violated if any rod is broken. Third, a method is given for the optimal construction of rigid structures
under some constraints on available rods.

1. introduction. Rigidity of skeletal structures has recently been studied actively,
and many new and interesting results have been obtained. For example, Laman [11]
found a necessary and sufficient condition for a graph to be rigid when its arcs and
vertices are made of rigid rods and rotatable joints, Asimow and Roth [1], [2]
established a powerful approach to rigidity in terms of edge functions, and many
others characterized rigidity of various kinds of structures such as rectangular grids
(Bolker and Crapo [3]), tensegrity structures (Connelly [5], and Roth and Whiteley
[14]), and bipartite structures (Bolker and Roth [4]).

It seems, however, that in most of those works rigidity is treated from purely
mathematical interest. From an engineering point of view, there are many problems
left unconsidered. Especially, problems concerning efficient algorithms for the design
of structures with specified properties have scarcely been considered.

The present work is an application of matroid theory to some problems arising
out of the attempt to design two-dimensional rigid structures.

In 2 we follow Crapo [6] and Lovisz and Yemini [13] and define generic
independence for a two-dimensional structure. The result is a certain matroid on the
underlying graph of the structure. We also review Laman’s theorem [11], which
characterizes this matroid.

Based on these preliminaries, we shall solve three problems. The first problem
is how to determine whether or not a structure has redundant rods. This problem was
theoretically solved by Laman [11], but his method is not practical because its time
complexity is an exponential function of the size of the structure. Recently Lovisz
and Yemini [13] found a polynomial time algorithm for the recognition of nonredun-
dant structures, though they did not present its time complexity explicitly. In 3 we
shall present a new theorem which enables us to construct an efficient algorithm for
this problem. The second problem is how to use a redundant rod efficiently. Redundant
rods can make the structure "stronger" in the sense that the structure remains rigid
even if some rods are broken. In 4 we shall consider the most efficient way of making
use of a redundant rod against a breakdown of a rod. The third problem is how to
use rods efficiently for the construction of a rigid structure. In practical situations we
usually have restrictions on materials. As an example of such situations, we shall in
5 consider the problem of how to connect given points into a rigid structure by rods

of given lengths.
Finally, let us point out some of the problems we do not address.
First, the analogue of Laman’s theorem in three or more dimensions is not yet

known (see Asimow and Roth [1] and Crapo [6]).

* Received by the editors September 2, 1981, and in final revised form September 7, 1982.
t Department of Information Science, Faculty of Engineering, Nagoya University, Fur6-ch6, Chikusa-

ku, Nagoya, Japan 464.
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Second, while we restrict our consideration to independent/dependent relations
of rods, it is also important to study the structure of the assignment of degrees of
freedom to joint positions, which forms an integral polymatroid (see Lovisz [12] and
Sugihara [15]). Furthermore, we can extract many integral polymatroids from general
rigid/flexible structures in which solid members are connected by various kinds of
joints such as ball joints, pin joints, piston joints, etc.; there are many unsolved
problems there.

Third, though our consideration is restricted to the topological properties of the
underlying graphs, the reliability of actual structures depends on the positions of joints
and stiffness of rods, and consequently a quantitative approach is also necessary for
their analysis.

2. Preliminaries. We consider two-dimensional frameworks composed of rigid
rods and rotatable joints. Each joint connects the end vertices of two or more rods
in such a way that the mutual angles of the rods can change freely if the other ends
are not constrained. A framework of this kind is called a plane skeletal structure. Let
V and E denote the set of joints and that of rods, respectively. (If there are any end
vertices that are not connected with others, we shall include them in V as joints with
single rods.) Regarding V and E as a vertex set and an edge set, we obtain a finite
undirected graph G (V, E) without loops or multiple edges. G is called the underlying
graph of the plane skeletal structure.

Let S be a plane skeletal structure with underlying graph G (V, E), and (x, y)
be the Cartesian coordinates of vertex (=joint) vi ( V). Furthermore, let IV[ n and
[El m, where ]XI denotes the number of elements of finite set X. An edge (=rod)
connecting vi and vi constrains the movement of S in such a way that the distance
between the vertices is constant"

() (Xi Xj)2 q- (Yi y.)2 const.

Differentiating with respect to time t, we get

(2) (x, x;)( ;) + (y, y;)() ) 0,

where the dot denotes the differentiation with respect to t. Equation (2) implies that
the relative velocity should be perpendicular to the rod, that is, no rod is stretched
or compressed. Gathering the equations associated with each edge in E, we get a
system of linear equations

(3) Hw 0,

where H is an m x 2n constant matrix and w is a column vector of unknown variables
w=’(213)1"" 2n)n) (t denotes transpose). A vector w is called an infinitesimal
displacement of S if it satisfies (3). The infinitesimal displacements of S form a linear
subspace of R2n. The rigid motions in a plane yield a three-dimensional subspace of
this linear space. $ is called rigid if the infinitesimal displacements of $ form a
three-dimensional linear space. (This definition of rigidity is due to Laman [11];
Asimow and Roth [1] and Connelly [5] propose other definitions.)

The rigidity of a structure depends on the positions of joints. The structure shown
in Fig. 1 (a) is rigid, while the one shown in (b), which has the same underlying graph,
is not rigid; the assignment of velocities indicated by the arrows (the vertices without
arrows are assumed to have zero velocities) forms an infinitesimal displacement because
it does not violate (3). Similarly, though the structures in (c) and (d) have the same
underlying graph, (c) is rigid and (d) is not. Note that an infinitesimal displacement
does not always correspond to an actual movement of a mechanism; the structure in
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FIG. 1. Rigid and nonrigid structures.

(b) deforms mechanically, whereas the structure in (d) does not. The structure in (d)
is categorized as nonrigid only because our definition of rigidity requires the absence
of infinitesimal deformations.

The vertices of a structure S are in general position if X a, y a,’", xn, yn are
algebraically independent over the rational field. When the vertices are in general
position, the definition of algebraic dependence shows that a subdeterminant of the
matrix H is 0 if and only if it is identically 0 when we consider xa, ya,"" ", xn, y, as
variables. Therefore, if the vertices are in general position, the linear independence
of the equations in (3) depends only on the underlying graph, and consequently the
rigidity also depends only on the graph. In what follows, we shall consider structures
whose vertices are in general position.

Suppose that G (V, E) is the underlying graph of structure S whose vertices
are in general position. G is called stiff if S is rigid. For any X

_
E, let pc(X) be the

rank of the submatrix of H consisting of the rows associated with the edges in X. The
value pc(X) is called the generic rank of X. X is called generically independent if
p(X)=IXI, and generically dependent if p(X)<IXI. G is called generically
independent (resp. dependent) if E is generically independent (resp. dependent).

It can be seen that pc is a rank function of a matroid (Welsh [14]), and hence
(E, pc) is the matroid on E defined by the rank function po

For any subset X of E, let V(X) be the set of terminal vertices of edges in X
and define/x by

(4) 21 v(x)[-Ixl- 3.

Laman 11 proved a basic theorem on rigidity which is equivalent to the following.
LAMAN’S THEOREM. The graph G V, E) is generically independent if and only

if tx(X) >-0 for any nonempty subset X orE.
Laman’s theorem and the definition of rigidity imply immediately the following.
COROLLARY L.1. G (V, E) is stiff if and only if there exists E’_ E such that

I ’1 21vi- 3 and (g) >- 0 for every nonempty subsetX of E’.
COROLLARY L.2. G V, E) is stiff and generically independent if and only if
(a) (E) 0, and
(b) /x (X) _-> 0 for every nonempty subsetX ofE.
3. Efficient recognition of generic independence. If we simply use Laman’s

theorem, it would take 2 steps to determine whether or not a graph is generically
independent, where m is the number of edges. In the present section we shall construct
a polynomially bounded algorithm for the recognition of generic independence.

Let B (U1, L, U2) be a bipartite graph with node sets Ua, U2 and arc set L. A
subset L’ of L is called a complete matching with respect to Ua if the terminal nodes
of arcs in L’ are distinct and if every node in Ua is a terminal node of some arc in
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L’. For X
_

U1, let F(X) be the set of those nodes in U2 that are connected to nodes
in X by some arc in L. It is known that G has a complete matching with respect to
U1 if and only if Ixl--< Ir(x)l for every X __. U1, and an efficient algorithm for finding
a complete matching is also known (Hopcroft and Karp [7]).

Let G (V, E) be a graph with n vertices and m edges. For each vertex vi of G,
let pi, qi be distinct symbols. Then let B (G) (N1, A, N2) be the bipartite graph whose
node sets N1, N2 and arc set A are defined by

N2 {pl, q, p,,, q,},

A {(e, Pi), (e, qi), (e, Pi), (e, qi)le ={vi, vi}eE}.

Let tl, t., t3 be three distinct symbols. Then for any l_-<i </’-<n, let Bo.(G)=
(N1, Ao., N2) be the bipartite graph constructed from B(G) by the addition of three
nodes and three arcs in the following way.

N1 N1 U {t, t2, t3},

Aii A U {(tl, Pi), (t2, qi), (t3, p’)}.

For any Z
_
N1, we shall denote by Fi(Z) the set of nodes in N2 that are connected

to elements of Z by arcs in Ao’. Note that 21V(X)l- IF,(X)I for any X
___
E. Then we

can prove the following theorem.
THEOREM 1. The graph G (V, E) is generically independent if and only if, for

any and ] (1 =<i <] <=n), Bij(G)= (N, Ao., N2) has a complete matching with respect
to N.

Proof. Suppose that G is generically independent. Let Z X U Y (X
_
E, Y

_
{tl, t2, t3}) be any subset of/1. If S , then Ir,(z)l- YI--Izl, If x ,
then

Ir,;(z)l >- 21 v(x)l }xl + 3 >-IzI,

where the first inequality follows from the definition of Bii(G) and the second from
Laman’s theorem. Thus Ir,(z)l _-> IzI in every case, and hence Bi(G) has a complete
matching with respect to N1.

Next suppose that, for any 1-<-i <f-<-n, Bgi(G) has a complete matching with
respect to/. Then, Izl-<-[r,(z)l is satisfied for any Z _/1. Let X be any nonempty
subset of E. Then V(X) contains at least two vertices, say v and v (1 _-< k < _-< n).
Because Bkl(G) has a complete matching, we get

IX U {tl, t2, t3}l--< IG(X U {t, t, t3})[.
Since F(X U {tl, t2, t3}) Ikl(X), we obtain

2] V(X)[ [rta(X)] IX U {tx, t2, t3}] IX[ + 3.

By Laman’s theorem we conclude that G is generically independent. Q.E.D.
A complete matching of the bipartite graph B (U, L, U2) can be found in

O(([L[ + lUg[ + [U2])[U[ /2) steps (Hopcroft and Karp [7]) and consequently a complete
matching of Bi(G) (]QI, Aq, N2) can be found in O(m L) steps, because [/[ m + 3,
[N] 2n, [Aj[ =4m + 3, and n _<-2m, where m and n are the number of edges and
that of vertices, respectively, of G. The number of Bii(G)’s is proportional to m 2.
Therefore, by the simplest implementation of Theorem 1, we can decide whether G
is generically independent or not in O(m 3"5) steps.
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This order of time complexity can still be lessened. Recall that the bipartite graph
Bi(G)’s are very similar to each other. Once a complete matching of any one of
Bi(G)’s is found, complete matchings of the other Bi(G)’s can be efficiently obtained
by slight modifications of this complete matching. On the basis of this observation,
Imai [8] found quite recently an O(m 2) algorithm for the recognition of the generic
independence of G.

4. Strong structures. Let G (V, E) be an underlying graph of structure S. Edge
e (e E) is redundant in G if pc(E) p(E -{e}). G is redundant if G has a redundant
edge. G is globally redundant if every edge of G is redundant. G is strong if G is
stiff and globally redundant. A strong graph remains stiff if any edge is deleted. G is
C-strong if G is strong and IEI 21 v[- 2. Since a stiff graph contains at least 21 vI- 3
edges, a C-strong graph affords us the most efficient way of bracing a structure with
one redundant rod. In the present section we shall investigate C-strong graphs.

It is easy to see the following.
THEOREM 2. The graph G (V, E) is C-strong if and only ifE is a circuit of the

matroid (E, pc).
For any n (_->4) we can construct a C-strong graph with n vertices. Let V

{1, 2,. , n}, and G be a graph constructed first by connecting vertices 1, 2, 3 by the
three edges and next, for each =4, 5,..., n, connecting vertex to vertices i-1
and i-2, as illustrated in Fig. 2(a). G is stiff because it is composed of triangles
sharing edges. Since G has 2n- 3 edges, G is generically independent by Corollary
L.1. Let G’ be the graph obtained by the addition of edge {1, n} to G, as shown in
Fig. 2(b). G’ is generically dependent because it has 2n- 3 edges, and moreover the
deletion of any edge from G’ yields a graph that satisfies the condition in Laman’s
theorem. Therefore, G’ is C-strong.

2

5 n-I
3

(a) generic independent (b) C strong

FIG. 2. C-strong graph.

Now suppose that G is any graph which is stiff and generically independent. Is
it possible to make a C-strong graph by the addition of one edge to G? If so, how
shall we brace it? Since G (V, E) is stiff and generically independent,/x(X) =>0 for
every nonempty subset X of E, where/ is defined in (4). Let ’(G) be the collection
of maximal proper subsets X of E such that/x(X) 0, that is,

(G) {XIX E,/zG (X) 0, and/(Y) > 0 for any Y such that X Y E}.

For every X (G), (V(X), X) is a stiff subgraph of G. Let G (V, E(G)) be the
graph having vertex set V and edge set

#(G) {{vi, vi}lvi, vi e V(X) for someX e $(G)};

that is, two vertices in G are connected by an edge if and only if they belong to the
same stiff proper subgraph of G. Obviously E

_
E(G). We get the next theorem.
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THEOREM 3. Let G V, E) be stiff and generically independent. An addition of
new edge e (e:E) to G yields a C-strong graph if and only if eeE(G).

Proof. Let E’=E{e} and G’=(V,E’). E’ is generically dependent because
IE’l-[El / 21V[-2.

First, suppose that e E(G). Then, there exists Y(G) such that V({e})_
V(Y), and hence V(Y)= V(Y{e}). Since 21v(Y)l=lYI-3, we get 21V(YU{e})l
[Y U {e}[- 2 and consequently Y U {e}, which is a proper subset of E’, is generically
dependent. Therefore, G’ is not C-strong.

Next, suppose that e E(G). Assume that, for some e’ E, E U {e}- {e’} is generi-
cally dependent. Then, there exists X_E-{e’} such that 2]V(XU{e})l=
[S U {e }l- 2 Ixl- 3. Since 2[ v(x)[ >-Ix[- 3, we get Iv(x {e })[ Iv(x)[, and con-
sequently 2[V(X)[=]X[-3 and V(X{e})= V(X). Hence, eff(G), which is a
contradiction. Therefore, E tO {e}-{e’} is generically independent for any e’ E, and
hence G’ is C-strong. Q.E.D.

Let G- (V,E) be the graph shown in Fig. 3(a). G is stiff and generically
independent with six vertices and nine edges, ge(G) consists of the two subsetsE -{a, b}
and E -{h, i}. Because V- V(E-{a, b}) {1} and V- V(E -{h, i}) {6}, graph G is
as shown in 3(b). Therefore, the only way to make a C-strong graph is to add an edge
connecting 1 and 6, as shown in Fig. 3(c). By similar argument we can see that the
bracing in Fig. 2(b) is the only way to make a C-strong graph from Fig. 2(a).

4

6

(a) (b)

FIG. 3. Construction of a C-strong graph.

Two more examples are shown in Fig. 4, where the graphs illustrated by the solid
lines are stiff and generically independent, and the broken lines represent new edges
to be added for the construction of C-strong graphs.

(o)

FIG. 4. Some examples of C-strong graphs.
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Next, let G be the graph shown in Fig. 5. 8’(G) consists of the three subsets
E-{a, b}, E-{c, d} and E-{h, i}. It is easily shown that any pair of vertices in V
belongs to V(E-{a, b}), V(E-{c, d}) or V(E-{h, i}), and hence G is a complete
graph. Therefore we can not make G C-strong by adding an edge. Two new edges
are necessary to make G strong.

FtG. 5. Graph which requires two new edges to become strong.

5. Design of rigid structures under rod-length constraints. In the present section
we shall consider the following problem.

Problem 1. Suppose that we are given a graph G (V, E), a partition {Ei}’=l of
E and nonnegative integers h 1, , ho. Find subset Xi of Ei for 1, , p such that
graph (V, X1 UX2 t.J. LI Xo) is stiff and generically independent and

This problem arises, for example, in the following situation. Let V be a finite set
of vertices whose locations are specified in general position on a plane. Let E be the
set of pairs of vertices that can be connected by rods. Suppose that hi (i 1,..., p)
is the number of available rods of length di (dl< dz <" < do). We consider the most
efficient way of using these rods to connect the vertices into a rigid structure. It would
be wasteful for us to connect close vertices by a long rod. Therefore, when the distance
from vj to vk is d(vj, vk), it seems most efficient to connect v. and v by using part of
a rod of length di where di-1 < d (vi, v)<= di. Let us define

E {{v, v}l{v;, v}E, d(v, v) <_- d},

Ei {{/.)], 13k}l{V], Vk}E, di-1 <d(vi, Vk)<=di}

for 2, , p. Then Problem 1 is equivalent to finding a way of constructing a rigid
structure with a minimum number of rods subject to the constraints on the number
of available rods of each length.

Let O" be the nonnegative, integer-valued function on 2’ defined by

tri(X) min {IX[, hi},

for X
_

Ei, and let tr be the function on 2z defined by

o
(x) Y. ,(x (qE,)

i=1

for X _E. Then, (Ei, o’i) is a matroid and consequently (E, o-) is a matroid. ((Ei,
is a uniform matroid of rank hi, and (E, tr) is the union matroid of the matroids (Ei,
(i 1,..., p); see Welsh [16].)

Note that a subsetX X1 CI. U Xo (Xi
_
Ei) of E satisfies the condition

if and only if X is an independent set of the matroid (E, tr). We have already seen
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that X_E is generically independent if and only if X is an independent set of the
matroid (E, pc). Therefore, Problem 1 can be reduced to Problem 2.

Problem 2. Find a maximal subset X of E which is independent in both of the
matroids (E, pc) and (E, o-).

Let X* be a solution to Problem 2. If [X*[ 21V[-3, then X* is a solution to
Problem 1. If otherwise, Problem 1 does not have any solution.

A solution to Problem 2 is called a maximal common independent set, and an
efficient algorithm for finding one has already been established in a more general
framework by Iri and Tomizawa [10]. Moreover, a partially ordered structure called
a principal partition that accompanies this problem (Iri [9]) gives us much information
about the solutions; if the solutions to Problem 1 exist, it tells us a family of all the
solutions, and if they do not exist, it gives us information about the second best way
for constructing the rigid structure.
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A CLASS OF BALANCED MATRICES ARISING
FROM LOCATION PROBLEMS*

ARIE TAMIR+

Abstract. A (0, 1)-matrix is balanced if it contains no square submatrix of odd order whose row and
column sums are all two. Given two collections, S ={T1, , T,,} and Q ={T], ., T’}, of neighborhood
subtrees of a tree T, let A(S, Q)= (aii) be the incidence matrix with air if and only if Ti intersects T.
It is shown that A(S, Q) is balanced. This balancedness is then used to exhibit the existence of a polynomial
algorithm to certain location problems.

1. Introduction. In his paper [1], Berge defined a (0, 1)-matrix to be balanced
if it contains no square submatrix of odd order whose row and column sums are all
two. He then characterized a balanced matrix in terms of the existence of integral
solutions to certain linear programs whose constraints are defined by a balanced
matrix. Berge’s results were then refined and extended by Lovasz [8] and Fulkerson,
Hoffman and Oppenheim [5].

In this work a special class of balanced matrices is presented. This class arises
from location problems on tree networks.

Assume that an undirected tree T (N, E), with N and E denoting the sets of
nodes and edges respectively, is embedded in the Euclidean plane, so that the edges
are line segments whose endpoints are the nodes and the edges intersect one another
only at nodes. Moreover, each edge of T has a positive Euclidean length. This
embedding enables us to talk about points, not necessarily nodes, on the edges. For
any two points x, y on T let d(x, y) denote the distance between x and y, measured
along the edges of T. P(x, y) will denote the set of points on the simple path connecting
x and y. T will also be used to denote the (infinite) set of points on T.

A subtree of T is a connected subset of the set T. A subtree, Ti, is called a
neighborhood subtree if there exist a point xieT and ri>=O such that Ti=
{x Ix T, d (xi, x)<= ri}. xi is called the center of Ti.

Let S ={T1,’", Tk} be a finite collection of subtrees of T, and define the
intersection graph, G (S), as follows. G (5’) has k nodes, corresponding to the k subtrees
in S. Two nodes of G(S) are connected by an edge if and only if the respective subtrees
intersect. Defining a clique to be a maximal complete subgraph, let A ($) be the node
clique incidence matrix of G(S), where nodes correspond to rows and cliques appear
as the columns. The graph G(S) has been shown in [2] to be chordal, i.e., for any
circuit of order at least four there exists an edge, not of the circuit, which connects
two nodes of the circuit. It is also proved in [2] that any chordal graph is realizable
as the intersection graph of subtrees of a tree. Furthermore G(S) is known to be
perfect and its respective matrix Ar ($) is therefore perfect, [10]. Perfectness is weaker
than balancedness. In fact, even matrices A 7-($) arising from chordal graphs G($) are
not necessarily balanced. This is illustrated by the following chordal graph.

Example 1. Let T be as in Fig. (la) and define the collection of subtrees
S {T1, T2, T3, T4, Ts, T6} as follows.

* Received by the editors July 11, 1980, and in final revised form August 2, 1982.
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T4--{u2}, T5--{/23} and T6 {vl}. The respective intersection graph, G(S), is given in
Fig. 1 (b), and

AT(S)=

1 1 1 0 0 0

1 0 1 0 !1 1 0 1
0 1 0 0

Considering the submatrix of AT(S) defined by the first three columns and the last
three rows we observe that AT(s) is not balanced. (We note in passing that G(S) is
also realizable as the intersection of neighborhoods in R2.)

U3-- UI

U2

FIG.

In this paper we focus on collections of neighborhood subtrees and show that
they, unlike collections of arbitrary subtrees do give rise to balanced matrices.

Let S {T1,""", T,,} and O ={T,..., T’,} be two sets of neighborhood sub-
trees in T. Define the m n incidence matrix A(S, O)= (aij) by ao 1 if and only if
the intersection Ti f) T is nonempty and ao 0, otherwise. We will prove that A (S, O)
is balanced. (In particular, A (S) is balanced when S consists of neighborhood subtrees.)
This result is then applied to exhibit the existence of polynomial algorithms for certain
location models.

2. Balaneedness and intersection graphs.
LEMMA 1. Let {x 1, ", xk }, k >= 3, be a set ofdistinct points on T. Define xk / x 1.

There exist indices 1<=il <i2<i3<=k such that the paths P(x,,xil+), P(xi2, xi2+l) and
P(xi3, x3+l) of the tree T intersect at some point y T.

Proof. We define the indices il, i2, i3 and the point y T as follows. First let

xil xl and xi x2. Now y is chosen to be the closest point to x3 on the path P(Xx, x2).
It remains to define i3. If k 3 set i3 3 and the result clearly holds. Thus let k > 3.
Define

k 1 if y : P(xg, X3) for all 3 < -< k 1,
f

min {il3 -<- < k 1, y P(x+a, x3)} otherwise.

Suppose first thatj k 1.Ify P(xk, x3) then y P(x-l, x), since y :P(x-l, x3).
Set i3 "-k- 1 and then the paths P(Xl, X2), P(x2, x3) and P(Xk-1, Xk) intersect at y. If
yP(x,x3) then yP(x,xl) since yP(xl, x3). Set i3=k and the paths P(xl, x2),
P(x2, x3) and P(x, x l) intersect at y.

Now suppose j < k 1. Set i3 j. From the definition of j it follows that the paths
P(Xl, x2), P(x2, x3) and P(xi, xi/l) intersect at y. This completes the proof.

We are now ready to present the main result.
THEOREM 1. Let S {T1, ", T,,} and 0 {T’a, , T’n } be two sets ofneighbor-

hood subtrees in T. Let A(S, O) (aii) be the incidence matrix satisfying aii 1 if and
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only if Ti f’) T is nonempty. Then A (S, O) does not contain a square submatrix of size
k >-_ 3 which has no identical columns, and its row and column sums equal to two.

Proof. Let Ti={xld(xi, x)-<-ri}, i=l,...,m, and T={x]d(yi, x)<-_sj}, f=
1,..., n. Then a0 1 if and only if d(xi, y.)<-ri +st. Suppose that A(S, O) contains a
square submatrix B (bii) of size k -> 3 which has no identical columns and its row
and column sums are all equal to two. Without loss of generality suppose that this is
the submatrix defined by the first k columns and k rows of A (S, O). Also, suppose
that bgi 1 if and only if =f, j-1 or (i,/’) (1, k). First we note that Xi Xj for
1 =< /" -< k. Since, otherwise, we would have T

___
T. or T

_
T. which contradicts the

fact that no row vector of B is greater than or equal to another row vector of/3.
Considering {x 1,’’ ", xk}, let (xij, xij/), f 1, 2, 3, be the three pairs obtained from
the previous lemma, and let y be the point on the path connecting xi to x/, j 1,
2,3.

The matrix B expresses the intersection relations between {Ti}/k=a and {Tl}/k=l.
Each column of /3 contains exactly two l’s. Furthermore, these two l’s appear
consecutively (mod k), and one of them is a diagonal element. Therefore, for f 1,
2, 3 there exist T’ii intersecting Ti and Ti+ (exclusively). Without loss of generality
suppose that

si-d(y, yi)<si2-d(y, yi)<si3-d(y, Yi3).

Since y P(x, xi,/) it follows that y P(z, y) where z is either xi or x/l. Let z xi
then

O<=ril +si,-d(xi, Yil)=ri, +Sil-d(xi, y)-d(y, Yi)

ri, nt-si,-d(xi,, y)-d(y, yii)ri,-t-sii-d(xi,, yi), f-- 1, 2, 3.

Hence, we obtained the contradiction that the neighborhood subtree Til intersects
the three neighborhood subtrees TI,/’ 1, 2, 3. This contradicts the fact that row i
of/3 contains exactly two l’s. A similar contradiction is obtained if we take z x1/1.
Therefore the proof is now complete.

We note that since a point on T is a neighborhood subtree, Q for example may
be a collection of points on T. Indeed, this is the special case arising from the location
model considered in the next section.

COROLLARY 1. A (S, Q) defined as in Theorem 1 is balanced. In particular, the
node clique incidence matrix of the intersection graph corresponding to the collection of
neighborhood subtrees S is balanced.

Proof. The first part is obvious from Theorem 1. Let A(S) be the node clique
incidence matrix of the intersection graph G(S). It is shown in [3] that all the subtrees
corresponding to a clique of G(S) have a point in T contained in all of them. (The
maximality of the clique ensures that this point is contained in no other subtree of
the collection.) Thus there exists a set of points Y in T such that A(S)= A(S, Y),
and the result follows from Theorem 1.

Theorem 1 and Example 1 present one property which is satisfied by intersection
graphs realizable by collections of neighborhood subtrees but not by chordal graphs
which are known, [2], to be realized by collections of subtrees. Next, we demonstrate
another property which is met by our class of balanced matrices but not by matrices
arising from general chordal graphs.

Given that A(S, Q) is balanced, it then follows from [5] that all the extreme
points of the polyhedron {zlA(S, Q)z >-e, z >-0} are integral, (e is the vector of all
l’s). As noted in the introduction, the node clique incidence matrix of a general
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chordal graph, which is not an intersection graph of neighborhood subtrees, is not
necessarily balanced. Hence the results of [5] do not induce the above integrality
property of the respective polyhedron defined by a general chordal graph. Indeed,
the above integrality property, which is weaker than balancedness, is not shared by
a general chordal graph.

Example 2. Let G be the chordal graph in Fig. 2. Let A be the node clique
incidence matrix of G (with nodes corresponding to rows).

1
0
0
1

A= 1
0
0
0
0

The polyhedron {x lax ->_- e, x >-_

1/2, o,

0 0 0 1 0 0-
1 0 0 0 1 0
0 1 0 0 0 1
1 0 1 0 0 0
0 1 1 0 0 0
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

O} possesses the nonintegral extreme point, x

FIG. 2

Chordal graphs satisfy the following weaker integrality property.
THEOREM 2. Let G be a chordal graph and letA (ai) be its node clique incidence

matrix with nodes corresponding to rows. If the equality constrained set covering
polyhedron, {x lAx e, x 0}, is nonempty, it is a singleton consisting of a O-1 vector.

Proof. In fact we prove that for any integer vector f the system Ax- f has at
most one solution. Furthermore, if it exists, this solution is integer.

The proof is by induction on the number of nodes in G. The result is trivial for
a graph consisting of one or two nodes.

Now, let G be a chordal graph. Using the induction hypothesis we may assume
that G is connected. Then G contains a simplicial node, [2], i.e., a node, say i, that
belongs to exactly one clique. Therefore, is associated with a unit row of A, and if

aii--1 we must set xi =fi if Ax =f. We can then eliminate the ith equation of the
system Ax =f. Let N(i) be the set of neighbors of in G. N(i) is nonempty since G
is connected.

Let G’ be the induced subgraph obtained by omitting node and all edges
connecting it to members in N(i). The node clique incidence matrix of G’, A’, is a
submatrix of A, defined as follows. If the complete subgraph induced by the nodes
in N(i) is maximal in G’, then A’ is the submatrix obtained by deleting the ith row
of A. Otherwise, A’ is obtained by deleting the ith row and the fth column of A.

Suppose first that A’ is obtained by deleting only the ith row of A. Since G’ is
an induced subgraph it is chordal. By the induction hypothesis, the system (Ax)k fk,
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’q’k i, is either inconsistent or else it has a unique solution, x’, which is also integer.
Thus the original system Ax f is consistent if and only if x exists and x. fi. The
uniqueness of x’ as a solution to the subsystem implies its uniqueness with respect to
the system Ax

Next, suppose A’ has one less column than A. The system Ax f may be written
as (Ax)k =fk, /k # i, x. fi. Substituting fg for xi in each equation (Ax)k =fk, tk i,
we obtain exactly the subsystem corresponding to A’. Now we use the chordality of
G’, and apply the induction hypothesis on the subsystem to conclude the validity of
the result for the system Ax

3. The location model. Given the tree T defined in the introduction, suppose
that two finite subsets of T, E and A are specified. E { y 1, , yn} is called the supply
set and A {xl,." ", Xm} is the demand set. The demand points are to be served by
centers which can be located only at points of E. Each demand point, x, must have
at least a centers established at a distance not greater than ri-->0 from it. Due to
capacity constraints at most b. centers can be located at y]. The cost of establishing
any center at y. is v. =>0. The problem is to find the minimum budget required for
setting centers meeting the demand constraints.
We note that if T is replaced by a general (planar) network even a special case of

the above model is known to be NP-hard, [6]. Turning back to a tree network, the
demand constraints imply that for each xi, 1,. ., m, at least a centers should be
set at the neighborhood subtree T ={xld(x,x)<-ri}. Defining S ={T1,’’ ", T,,}, the
location problem is formulated as

Minimize

(1) s.t. Az >=a,

b -> z _-> 0 and integer,

where A=A(S,Y_,), a (al,’’’, a,), b (bl,’’’ ,bn) and e (1, , 1).
Certain instances of (1) have been considered in the literature. The special case

of equal setting costs, vj, for the centers and a 1, 1, , m, bj oo, f 1, ., n,
can be solved in linear time by a modified version of the algorithm in [6]. A generaliz-
ation of the latter special case, allowing arbitrary integer values for ai is solved in
[3]. There, the problem is reduced to finding a minimum cover of the nodes of G(S),
S ={T1,’’ ", T,}, by cliques, and observing the chordality of G(S). The cliques are
induced by the supply points. Applying the perfectness of G(S) a dispersion location
problem which is dual to this special case is also defined in [3]. Using only the
perfectness property of AT, the case considered in l-3] was maximal in the sense that
perfectness is equivalent to the existence of an integer solution to the linear program
min {E?=I zilAz >-__ a, z >= 0} for all nonnegative integers a, [4], [10].

The results of the previous sections, where the balancedness of A A ($, Y_.) is
proved, enable us to extend the class of "solvable" cases of (1).

We start with the special case of (1), where all the setting costs, vi, are equal.
This case is called the multiple coverage problem. Using 1 we note that the balanced-
ness of A is equivalent to the existence of an integer solution to the linear program
min {}’=1 zlAz >-a, b >=z >=0}, for all nonnegative integer vectors a, b. Thus, the
multiple coverage problem can be solved polynomially using Khachian’s algorithm,
[7], for linear programs. Also, we have constructed a direct algorithm for the multiple
coverage model. Since this algorithm is based on simple extensions of the main ideas
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embedded in the algorithms of [3], [6], we skip the description of our procedure. (The
interested reader can obtain the detailed scheme from the author.) We mention that
if, for example, the supply and demand sets consist only of nodes of the tree T, then
the complexity of our direct algorithm is O(n2), where n is the number of nodes of T.

Secondly we consider the special case of (1) where ai 1, 1,..., m. (The
constraints z-<b can be assumed to be redundant in this case.) The results in [5]
ensure that all the extreme points of {zlAz >e, z _->0} are integral. Thus, again the
problem can be solved polynomially using Khachian’s algorithm, provided the v. are
rational. (Khachian’s algorithm may find an optimal solution which is not extreme
and therefore may not be integer. However, an optimal extreme point to a linear
program can always be generated in polynomial time if some optimal solution is
available.) In the next section we will present a direct algorithm for solving this case.

We now summarize the results on the location model (1). To our knowledge no
efficient algorithms to solve (1) are available. Verifying whether this problem is
polynomially solvable will require a different approach than the one presented above
for the special cases. This is due to the fact that the integer solution to (1) may not
be optimal to the relaxed linear program. This is illustrated by the following.

Example 3. Let T be given by Fig. 3. Suppose that E A {Xl, x2, x3, xa} with
d(xi, x4) 1, 1, 2, 3. Also let r 1, 1, 2, 3, 4. Finally set b =e, ag v 1,
1, 2, 3, and a4 -/)4--2. We then have that the solution to (1) is 3 while the optimal
objective of the relaxed linear program is 2.5.

X2 X4 X1

X3

FIG. 3

Combining the results of the previous section with those of [1], [5], [7] our work
shows the existence of efficient algorithms when either a e, or the setting costs, v.,
are equal.

Finally we note another solvable case of (1), which is not implied by the above.
If the matrix A is totally unimodular the model can now be solved efficiently by [7],
if all data are rational. Total unimodularity is achieved, for example, by a tree which
is a simple path. In this case the resulting graph is an interval graph.

4. Solving the location problem. In this section we present a direct algorithm
for solving the location problem (1) described in the previous section, with a 1,

1, , m. To simplify the presentation we consider here the following special case.
Given the tree T (N, E) with N and E the sets of nodes and edges respectively,
suppose that E A N, i.e., demand and supply occur at the nodes only. Given r >= 0,
N we wish to minimize the budget for setting centers such that each demand point

is covered by a center, i.e., each N is at a distance of at most r from some center.
To present the algorithm we first assume that the tree is rooted at some distin-

guished node, say v. For each node/" N define B (/’) as the set of descendents of/’,
i.e., the entire set of nodes having j on the path connecting them with v. In particular
j B (j). Also define S(/’) to be the set of "sons" of/’, i.e., the nodes having/" as the
immediate predecessor on the path connecting them with v. T(f) will denote the
minimal subtree containing B (/’).
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Let ] e N. Suppose that a center already exists at some node in N-B (/’) whose
distance from/" is t. (If more than one center exists in N-B(]) consider only the
closest to/’.) This center may clearly cover some nodes of B (/’). Suppose, further, that
no centers exist in B (/’). Now define h (/’, t, s) to be the minimum budget required to
cover the nodes of T(j), given that new centers are set at B (f) only, with the closest
being at a distance s from ], and the closest existing center in N-B (/’) is at a distance
from/’.

Let D(/’)(F(/’)) be the set of distances from/" to the members in B(j)(N-B(j)).
Also the value s c(t o) indicates that no center is set at B (j)(N-B(j)). Define
D(f) D(/’) U {o} and F(j) F(/’) U {o}. Then h (j, t, s) is defined only for s D(]) and
e/(]). Furthermore, we compute h(], t, s) only for -<s since h(], t, s) h(f, s, s)

for all => s in j0(f). (s is the smallest element in P(/’) which is not smaller than s.)
Defining H(f, t,s)=minp>=sh(], t, p), we obtain H(], t,s)=H(j, t, [s]j), where

[s]j is the smallest element in D(j) which is not smaller than s. The answer to the
location problem is given by H(v, c, 0). Our algorithm is based on a recursive
computation of h(f, t, s) leading to H(v, o, 0).

Starting with the tips of the rooted tree we obtain the following recursion for
e F(f), s eD (f) and =< s.

If f is a tip, then h (/’, t, 0)= vi and

(j, t, c)= I 0h

Suppose j is not a tip; then

if <- r,
if t>r.

h(j,t, c)={ 0 if d (i, j) + _--< ri for all e B (/’),
otherwise,

h(j, t, O)= vi + Y. H(i, d(i, j), 0),
iS(])

and for 0 # s D (j)

o if > rj,

h (f, t, s l! iS()minand
I,.s-d(i,])D(i)

Simplifying the expression for =< rj we obtain

H(k, +d(k, j), s -d(k, /’))}
when --<_ ri.

h(f,t,s)= E H(k,t+d(k,f), [s-d(k,f)]k)
kS(j)

min
iS(j) and

s-d(i, i)D(i)

{h(i, + d(i, j), s -d(i, i))-H(i, + d(i, j), s -d(i, /’))}.

Having established the recursive relations leading to the optimal solution we next
demonstrate that the complexity of the suggested algorithm is O(n 3) when n is the
number of nodes of T.

In the initial phase we generate and sort each one of the sets D(f), F(]), feN.
This will consume O(n 2 log n) time.

Now, given f we show that the total effort needed to compute h(f, t, s) for all
P(f) and s /(/’), -_<s, is O(n2[S(j)l).
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First, for each k S(f) compute [s-d(k,/)] k, for all s D(f). This will enable
us to use previously computed values of the functions h(k, .,.) and H(k, .,.) for
k S(f). Since D(f) and D(k) are already sorted this step is done in O(n) time for
each k S (f), or in O(n IS (j)[) for all k S (j).

Next, for each s D(f) the set of indices with s-d(i,f)D(i) is found. Like the
preceding step this is performed in O(n [S(/’)I) time for all s D(j).

Finally we turn to a given pair (t,s) with F(i),s D(/). Using the recursive
relations and the information acquired in the previous steps h (f, t, s) is computed in
O(IS(j)I) time. Thus the effort for computing h(f, t, s) and H(f, t, s) for all pairs (t, s),
F(j), s D(f) is O(n2lS(f)[), and the bound for the entire algorithm becomes O(n 3).

It is easily verified that this bound is not affected if one also wishes to find the
optimal locations of the centers yielding the minimum budget. The space required for
implementing the algorithm is also O(n3).

We have provided an efficient procedure to solve the location problem where it
is required to minimize the budget for covering each demand point. This procedure
can now be used to solve the following related problem.

Suppose that the total budget available for setting centers at the supply points is
B > 0. Given this constraint one wishes to establish centers such that the maximum
distance from a demand point to its nearest center is minimized.

It is clear that the minimum of the maximum distance is an element in the set

R ={d(x, yi)[xi A, yi E}.

Hence the optimal value is the minimum element r R such that the minimum budget,
needed to ensure that each demand point is covered within a radius r does not exceed
B. The procedure described above will be used to determine for any given r whether
the respective budget exceeds B. To find the optimal value we can use the sophisticated
search on the set R which is used in [9] to find an optimal element in the case where
the setting costs, v are equal.

Note added in proof. We note that a special case of Theorem 1 is proved in
R. Giles, A balanced hypergraph defined by certain subtrees ofa tree, Ars Combinatoria,
6 (1978), pp. 179-183.
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ISOLATING ERROR EFFECTS IN SOLVING ILL-POSED PROBLEMS*

C. MARK AULICK+ AND THOMAS M. GALLIE$

Abstract. Many ill-posed problems are reduced to a matrix equation, usually very ill-conditioned,
which is then solved using the smoothing techniques of regularization. Any such smoothing will introduce
bias into the calculated solution in the sense that if the data were exact, the calculated solution will not
be the "exact" solution. Since this calculated solution is also affected by error in the data, we show how
these two error effects may be isolated and considered separately. Using a very general form of the
regularization technique, we derive exact formulas for each error component which illustrates the depen-
dence of each upon the different variables and parameters of the problem.

1. Introduction. When solving the matrix equation

(1.1) Ax =L
where A is a known m n ill-conditioned matrix of rank n, x is to be calculated, and
b b -e is an m-vector of data values subject to error (e is the vector of measurement
error), some sort of smoothing usually is performed in order to make the calculated
solution less sensitive to the error e. This smoothing action, however, will also
contribute to the total error of the solution by introducing "bias"; that is, as e tends
to 0, the calculated solution will not approach the true solution x0 (defined uniquely
by Axo b). This effect has been noted by many researchers (see, for example,
[JACK79] and [VARA73]), especially with regard to the smoothing technique of
regularization.

We would like to consider two different forms of regularizing functions and how
they affect the two different components of the total error e Xo-. We shall call
these error components regularization error (which we shall denote by en) and noise
amplification error (denoted by eN). The first of these components deals with the bias
introduced by smoothing; the second involves the effects of e on the calculated
solution .

We define these two components as follows" we assume that is given as a
linear function of the data vector /" C/+d. The total error of the solution
is x0-, where x0 is the unknown "true solution"; hence the total error e is equal
to Xo Cb d + Ce. To obtain the "bias" (en), we set e 0 and obtain en Xo- (Cb + d).
Then eN e --eR Ce.

Separate consideration of these error effects may be useful in trying to select a
method for a particular application or in comparing the behavior of methods when
varying certain problem or solution parameters. Since Ilell--<llell/ Ile,,ll, it is likely that
a method which "balances" the norms of the two error components will perform well
in terms of minimizing the total error of the method. It is also possible that insight
gained from this study will lead to ways of improving the performance of known
solution methods or to the development of new ones.
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Algebra, Raleigh, North Carolina, April 26-29, 1982.

t Department of Mathematics and Computer Science, Louisiana State University, Shreveport,
Louisiana 71115.

$ Department of Computer Science, Duke University, Durham, North Carolina 27706.

371



372 C. MARK AULICK AND THOMASM. GALLIE

The regularization methods we consider arise from reformulating the original
problem [1.1] into a constrained minimization:

(1.2) minimize Iltx kll2,
2(1.3) subject to IlAx -/llz <-/x

2where L, k and tz are "parameters"; A and/ are from the original problem [1.1].
The choices of L and k will determine the particular type of smoothing to be done,

2and/z will reflect something of the measurement error in/. Since the optimum of
2[1.2] gives inequality in [1.3] only if k is very close to Lxo or if/z is too large, we

assume that the minimum occurs when the constraint [1.3] is tight. (See [AULI81a, b]
and [TWOM65].)

Using the technique of Lagrange multipliers, it can be shown in the case of the
equality constraint that the desired solution is

(1.4) (A TA + tLTL)-I(A Tff + tLTk)

for some positive constant t. Since A is of full rank, the indicated matrix is invertible.
At this point we remark that we have assumed that b is in the range of A. This

means that in the absence of error the exact solution to [1.1] is xo=A/b, where A/

denotes the pseudo-inverse of A [PENR56]. Although in practice the assumption
that A is full-rank may not be valid, it will give a starting point from which we can
proceed in deriving our results.

Two tools which are central to our analysis are the singular value decomposition
(s.v.d.) [LAWS74] and the generalized singular value decomposition (g.s.v.d.)
[VANL74], [PAIG81]. To summarize these briefly, the s.v.d, of a matrix A allows
us to write

(1.5) A QSR T,
where O and R are orthogonal matrices, and S is a rn x n diagonal matrix of
nonnegative entries arranged in nonincreasing order. The diagonal elements of S are
called the singular values of A and are equal to the positive square roots of the
eigenvalues of A TA.

The g.s.v.d, allows us to relate two matrices in the following way" given A and
L, where A is m x n and L is p x n, we can write

(1.6) A XSIZ-,
(1.7) L YS2Z-1,
where X and Y are orthogonal, Z is nonsingular and has columns of unit length, and
$1 and $2 are diagonal matrices of nonnegative entries ($1 and $2 are m n and p n,
respectively). Furthermore, the diagonal elements of S are in nonincreasing order.
If L is the identity, then $2 is also the identity with Z Y and $1 =S; formulas [1.6]
and [1.7] reduce to [1.5] in this case.

Among other things, these decompositions may be used to calculate the pseudo-
inverses of A and L. From [1.5], we get

(1.8) A+=RS+OT"=R diag ()O,
where S diag [/i]; the 3,i’s are the nonzero singular values of A. Similarly, if we let
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Sl diag [ai] and S2 =diag [i], with the Oi’S and Bi’S nonzero, using [1.6] and [1.7]
we can write

(1.9) A+ Z diag [1/a,]XT,

(1.10) L+=Z diag[1/B,]Yr.
These formulas will be used widely in the derivations of our results.

2. Error expressions when k = 0. When the vector k is zero, we have the most
common form of regularization"

(2.1) CI= (ArA + tLrL)-IA r.
Our definitions of eR and eN yield the following:

e xo- Cb Xo- (ArA + tLTL)-A rb,

eN Ce (A TA + tLTL)-IA T

We first give results for the general case (L arbitrary) and consider separately the
case that L I (see [TIKH65]).

Although Theorem 1 is not new (see [BJOR79]), we shall need this result later
and so we include a proof, illustrating some of the techniques we use.

THEOREM 1. The inverse matrix C in [2.1] is equal to Z diag [ai/(a 2i +tfl)]XT,
where ai, i, Z andXare given from [1.9] and [1.10].

Proof. Let A =XS1Z-1 and L YSzZ- be the g.s.v.d, of A and L. Then the
inverse matrix C is

c +

Since S and $2 are diagonal matrices, the expression inside the square brackets is
also a diagonal matrix; namely diag [a 2

i+ tB2]. Since none of the diagonal elements
are zero, the matrix to be inverted is nonsingular and we have

C Z diag 2 2 ZrZ X Z diag 2 2
ol -[- t[J ol + t[

Since Sl is diagonal, this final expression reduces to

(2.2) C Z diag : X
ol + t[J

as desired.
This result gives a means for determining when the inversion of (ArA + tLrL)

may be accomplished "safely" even when A is rank-deficient. Furthermore, this
expression provides additional insight when we use it in our definitions of eR and eN.

THEOREM 2. The regularization error eR is equal to

]XTb.Z diag tB2
0i (o

2 +
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( ]XrbeR XO Cb Xo Z diag :z
Ol i--t

Xo- Z diag [1/oti]xTb -Z diag tfl2
i(2

(xo-A+b) +Z diag t
i(2+t)

Since we have assumed that b is in the range of A, the term xo-A+b is zero, and
the desired result follows.

CoroLlArY 2.1. IlL L then e R diag [t/(7(T + t))]O rb, where R, O and
are from (1.5).

This theorem and its corollary may give useful insight into how the calculated
solution behaves as a function of t. We note first that as approaches zero, we are
doing less and less smoothing and hence less bias appears in the answer. Also, as
approaches infinity, all information is "smoothed our’ of the data and will go to
zero; hence eg will approach x0 A+b.

We also see the effects of the fl’s in the formula. As previously noted, the a’s
are arranged in nonincreasing order down the diagonal of A. However, in practice
the fl’s are usually arranged in "approximately" nondecreasing order down the
diagonal of Sz; hence large ’s will tend to be associated with small a’s, and vice
versa. The further importance of this arrangement will be seen when we consider the
results of the following theorem and its corollary.

THEOREM 3. e noise amplification error e is equal to Ce =Zdiag
[,/(,+t)]x%.

Proof. This follows directly from the definition of e and Theorem 1.
CorollAry 3.1. IlL L then e R diag[7i/(T+t)]O v
We observe from Theorem 3 the damping effects of the generalized singular

values of L. Since the large fl’s will tend to be associated with the small a’s, the
noise-amplifying effects of the reciprocals of these small values will be lessened. Also,
since the small or zero ’s will usually be associated with the large a’s, the "signal-
carrying" effects of the large generalized singular values of A will not be impaired
too much.

One possible criticism of these results is that they require exact knowledge of b
or e, quantities usually unavailable. However, numerical experiments we have per-
formed [AULI81a] indicate that may be substituted for b in Theorem 2, and the
results are close to those calculated using the exact b if is not too small. Dealing
with the requirement of Theorem 3 (knowing e) is more difficult. If a bound for [Jell
is known, we can derive an upper bound for }]e[[, but typically such bounds are quite
loose.

Finally, we remark that the results from Theorems 1, 2 and 3 do not require any
matrix inversion to vary different "parameters"notably, the regularization parameter
t. Thus it would be a simple matter to find the value of for which the norms of e
and e are balanced.

3. Error expressions when k 0. Only a few solution methods have appeared
in the literature in which k is not zero (e.g., [TWOM65]). However, such methods
have an intuitive attraction since it is often the case that we have an idea of the shape
of the solution or its expected value. (Refer to [AULI81b] for further discussion.)



ERROR EFFECTS IN ILL-POSED PROBLEMS 375

We observe that the intuitive interpretation of the function in [1.2] is to constrain
L to be "close to" k. Thus as k is close to Lxo (where x0 is the "true" solution), we
would like to have the regularization error, or bias, of the solution be small. In this
case the definition of eR gives

eR Xo-(AA + tLrL)-X(Ab + tL a"k ).

The formula for e, however, remains the same as in the previous section; thus
Theorem 3 and Corollary 3.1 still apply.

Intuition suggests that as k improves as an approximation to Lxo, then eR should
decrease. This is true.

THEOREM 4. When k O, eR is a homogeneous linear]unction Of xo-L+k:
2

Proof. Using the generalized singular-value decomposition, we have

(ATA +tLTL)-’=Z diag [1/(c 2

Using this expression, we have

e xo- Z diag Xrb + tZ diag Y

=xo-Z diag[1/a]Xb +Z diag

-Z diag Y

Since Z diag [1/a]X A+, the first two terms cancel and we are left with

[ ]Xrb-Zdiag[ ]Yrk(3.1) eR Z diag tfl2
i(2 2 2+ tfl#)

=Z diag - (Z diag[1/]Xrb-Z diag[1/]Yrk)

=Zdiag Z- (A k)
+t

(3.2) =Z diag Z- (xo-L+k).
+t

The value of k which minimizes the norm of xo-L+k is k =Lxo. Thus our intuition,
which tells us that if k is a good estimate of Lxo, then e should be small, is borne
out. However, it is not necessarily true that k Lxo is the value of k which minimizes
e. If L has rank less than n, where n is the number of columns in L, then L+Lxo is
not equal to x0, although xo-L+k is of minimal norm when k =Lxo (in the sense
that there is no other value o k for which L+k is closer to xo). However, since Z is
not generally orthogonal, this value of k does not guarantee a minimal norm tor e.
It is possible that there is another k for which Z-(xo-L+k) is closer to zero.
CooA 4.1. I rank (L)= n and i k Lxo, then e O.
Pro@ It rank (L) n, then L+L I and xo-L+k Xo-L+Lxo xo-xo 0. The

result then follows from Theorem 4.
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This result may be especially important for the Twomey method in which L L
Thus as k improves as an approximation to x0, eR will decrease to zero. Also, for this
particular method, since L =/, Z is orthogonal and the result is even stronger since
an orthogonal linear transformation is norm-preserving.

Although the expression [3.2] in the proof of Theorem 4 appears to require
knowledge of x0, such is not the case. We could write x0 A/b and leave it at that;
however, estimating b by/; in this case will not work as well since the error in/; will
tend to be greatly magnified by A/. It might be better to use [3.1], since some
"smoothing" is being applied and replacement of b by/ will not have too severe an
effect (especially if is not too small).

Finally, we remark that the expression for eR derived in Theorem 4 reduces to
the formula for en in Theorem 2 if k 0. All that is needed to see this is the fact that
Z-1 1A+bxo=Z =diag[1/a]X’rb. This may be easily confirmed by considering the
generalized singular-value decomposition of A +.

4. Conclusion. We have derived some results which may be useful in analyzing
and comparing solution techniques for ill-conditioned linear systems. Although our
focus has been on regularization methods, we believe that our definitions and analysis
techniques may be profitably applied to other methods (e.g., the truncated singular-
value decomposition [HANS71], [VARA73]).
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MATRIX DIAGONAL STABILITY AND ITS IMPLICATIONS*

ABRAHAM BERMANS" AND DANIEL HERSHKOWITZ"

Abstract. Relations between diagonal stability, stability, positiveness of principal minors and semiposi-
tivity are described for several classes of matrices. In particular, it is shown that for matrices whose
nondirected graph is acyclic, positiveness of principal minors is equivalent to diagonal stability.

Key words. Diagonally stable, stable, P-matrix, semipositive, forest, tree, tridiagonal, totally nonnega-
tive, oscillation, o-matrices

Introduction. The matrices in this paper are real and square. Following [4] and
[3] we consider four classes of matrices:

{A; there exists a positive definite diagonal matrix D such that AD +DA 7-

is positive definite}--the diagonally stable matrices [1], also known as the
Volterra-Lyapunov stable matrices [5],

{A; there exists a positive definite matrix X such that AX +XA 7- is positive
definite}--the (positive) stable matrices,
{A; all the principal minors of A are positive}--the P-matrices,

6e {A; there exists a positive vector x such that Ax is positive}--the semipositive
matrices [7], [15].

Diagonally stable matrices play an important role in various applications, for
example, predator-prey systems and economic models (see for example [10], [14] and
the references in [1]). A useful characterization of such matrices is that A s if and
only if for every nonzero symmetric positive semidefinite matrix B, the matrix BA
has a positive diagonal element.

Usually, positive stable matrices are defined as matrices whose eigenvalues have
positive real part. Such a condition is of great importance in the study of equilibrium
states of physical systems. The definition of , used above to point out the relation
to 1, is the classical characterization of stable matrices due to Lyapunov [13]. Matrices
with positive principal minors appear in economics and mathematical programming,
e.g., [2], while semipositive matrices are of interest in numerical analysis, e.g., [15].

In this paper we study the inclusion relations between the four classes, continuing
the work begun in [4]. To facilitate the description of these relations we use the letters, , and 6 also to denote the properties of being a diagonally stable matrix, a
stable matrix, a P- matrix and a semipositive matrix, respectively. For example, ::>6
(e.g., [7]), means that a P-matrix is semipositive.

The main results of the paper deal with matrices whose graphs are acyclic, in
particular, tridiagonal matrices. They are given in 3. Section 2 contains introductory
results, mostly known. Some partial results and open questions on to-matrices (see
the definition in 4) and on matrices with real spectra are introduced in the last section.

2. Introductory results. The relations between the four properties will now be
described for several classes of matrices, using implication diagrams. The completeness
of the diagrams is demonstrated by examples.

* Received by the editors June 1, 1982, and in revised form September 20, 1982. This paper was
presented at the SIAM Conference on Applied Linear Algebra, Raleigh, North Carolina, April 26-29,
1982. This research was supported by the Fund for Promotion of Research at the Technion.

" Department of Mathematics, Technion-Israel Institute of Technology, Haifa 32000, Israel.
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THEOREM 1.
a. in general

b. For Z-matrices, i.e., matrices with nonpositive off-diagonal entries,

c. For symmetric matrices

d. For triangular matrices

e. for normal matrices

The absence ofan implication in the above relations means that a counterexample exists.

Proof. The implications are well known (e.g., [4], [3], [5] and the references
included there). The Z-matrices which satisfy any of the equivalent properties , ,

or 5e are the nonsingular M-matrices (e.g., [2]). The symmetric matrices which
satisfy any of the equivalent properties 4, or are the positive definite matrices.

Consider the following examples.
Example 1.

Example 2.

Example 3.

Example 4.

0
A=

0

3

spec (A) {-4,

spec (A) {1, 1}

A= 0 1
4 0

spec (A) {5, 1 + 2x/i},
17 4 4)AAT"=AT"A 4 17 4
4 4 17

Example 1 shows that 6’:g in (a), (c) and (e). Example 2 shows the same in (d).
Example 3 shows that 5 in (a) and Example 4 shows that :gL’ in (a) and (e). 71

3. Matrices whose graph is a forest. A class of matrices which appears in many
applications and has interesting properties is the one of tridiagonal matrices, also
called Jacobi matrices [9]; i.e., matrices A such that [i -/’l > 1 ==> a0 0. The main result
of this section is that in this case P-matrices are stable and even diagonally stable.
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This, in fact, is a property of the combinatorial structure of the matrix.
Recall that an acyclic graph is called a forest. A connected forest is a tree. The

nondirected graph G(A) of an n x n matrix A has n vertices 1,..., n and an edge
between and/’, /’, if and only if aj 0 or aji 0. The directed graph DG(A) of
such a matrix has n vertices 1,..., n and an arc from to/’ if and only if aii 0. A
matrix A is treediagonal [12] if G(A) is a tree. If G(A) is a linear path then A is
cogredient (equivalent via a simultaneous permutation of rows and columns) to a
tridiagonal matrix.

THEOREM 2. If all the principal minors of A are positive and if the nondirected
graph ofA is a forest, then A is diagonally stable. Thus, ]’or matrices whose nondirected
graph is a forest

Here too, the absence of an implication means the existence of a counterexample.
Proof. Example 1 shows that 5e: and Example 3 shows that Y.
The fact that :::> is proved by induction on the order of the matrix A.
The claim is trivial for n 1. Assume it holds for matrices of order less than n

and let A be of order n.
Case 1. A is a combinatorial symmetric, i.e., ai 0:>a. 0. In this case we show

that A is diagonally stable by constructing a positive definite diagonal matrix D such
that AD +DA 7- is positive definite. If G(A) is not connected then A is cogredient to
the direct sum A +A2, where A and A2 satisfy the induction assumption. Let D1
and D2 be positive definite diagonal matrices such that AID +DxA’( and A2D2 +
DEA are positive definite. Then (A 14-Az)(D +D2) + (D 14- DE)(A 14-A 2)" is positive
definite.

When G(A) is a tree, D can be constructed by the following algorithm which
assigns positive numbers to the vertices"

Initial step: Set dl 1, d2 dn= 0.
Step k + 1" If di became positive in step k, and/" are neighbors in G(A), (G(A)

contains an edge between and/’) and di -0, set

Final step: If d > O, 1, , n, set
D diag {d}, STOP.

The algorithm reaches the final step since G(A) is connected. Also the number
di is well defined as there is a unique path from 1 to/" since G(A) is a tree. (If
1 il, , ik +1 =/" is this unique path, then

di a2.__._ ak +_.x.
all i2 aikit,

The matrix C AD is also a P-matrix, and since G(A) is a tree, [cq[ [cjl for all
/’. If for all and/’, aiaig >-O, then C is symmetric and thus positive definite so A

is indeed diagonally stable. Otherwise, C + Cr is cogredient to a direct sum of principal
submatrices of 2C which are P-matrices, so C + C7" is positive definite and again A
is diagonally stable.
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Case 2. There exist two indices and/" such that aij 0 and a.i # 0. In this case
DG(A) contains no path from to/" since G(A) is acyclic. Thus A is reducible, i.e.,
cogredient to a matrix of the form

where the blocks A and A3 are square. Since diagonal stability is not affected by
simultaneous permutation of rows and columns we may assume that A is in the form
of ().

We now show that a reducible matrix in this form where A and A3 are diagonally
stable is also diagonally stable. To do it we use the criterion mentioned in the
introduction. Suppose B is a symmetric positive definite matrix such that (BA)ii <-_ O,
i- 1,..., n. Partition

(B1 B2)B= B B3

in conformity with (1). The main diagonal of B1A is nonpositive. Then B- 0 for
A is diagonally stable by the induction assumption. But then B2 0 and

(0 0 )BA-
0 B3A3"

Again, A3 is diagonally stable by the induction assumption, thus B3--0 SO B 0,
proving that A is diagonally stable. I1

Examples 1 and 2 used in Theorem 2 are of 2 2 treediagonal matrices. Thus
we have the following corollary.

COROLLARY. The inclusion diagram of Theorem 2 holds ]’or treediagonal matrices,
tridiagonal matrices and 2 2 matrices.

Remarks.
1) The equivalence M :> for 2 2 matrices is well known (e.g., [10]).
2) A special case of combinatorial symmetric matrices, where aa <-O, is studied

in [15]. Note that in this case AD +DAT is a diagonal matrix.

4. Matrices with real spectra and to-matrices. The triangular and the symmetric
matrices treated in Theorem 1 have real spectra. For matrices with real eigenvalues
in general we have the following diagram.

?=

Here :::> since every real eigenvalue of a P-matrix must be positive (e.g.
[11]). The matrices of Examples 1 and 3 have real spectra. Thus :g and Sf:),.

The question whether s]or matrices with real eigenvalues is open.
A special case of matrices with real spectra is the class of the totally nonnegative

matrices. A matrix is called totally nonnegative (totally positive) if all its minors are
nonnegative (positive) [9]. A totally nonnegative matrix is called an oscillation matrix
if some power of it is totally positive [9].
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It is known that the eigenvalues of a totally nonnegative matrix are nonnegative
and those of an oscillation matrix are positive. For totally nonnegative matrices we
have the following implications:

(2)
&?=

A stable totally nonnegative matrix A has positive spectrum since it has no zero
eigenvalue. This holds by [8] for every principal submatrix of A. Therefore S::>.
Example 2 demonstrates that Se.

The question whether for totally nonnegative matrices is open.
Oscillation matrices are P-matrices (e.g., [9]), thus semi-positive and stable, by

(2). The question whether they, or even totally positive matrices, are diagonally stable
is open.

A matrix is called an to-matrix if each of its principal submatrices has at least
one real eigenvalue and if/3 _c implies that (A [a ]) <= (A [[3 ]), where l(B) denotes
the minimal real eigenvalue of a matrix B. It is well known (see [6]) that Z-matrices
and totally nonnegative matrices are to-matrices.

The implications diagram for to-matrices is

The implication :::> follows from the definition of an to-matrix, while Se:g
by Example 1.

The question whether ::),5, for to-matrices, is suggested in [6]. The question
whether for such matrices is also open.

1Note added in proof. The question whether =:> for oscillation matrices (and
thus for totally nonnegative matrices, to-matrices and for matrices with real
spectra) is answered in the negative in [16] using as an example the matrix B given
in [17, p. 163].
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APPROXIMATION ALGORITHMS FOR MAXIMIZING THE NUMBER OF
SQUARES PACKED INTO A RECTANGLE*

B. S. BAKERt, A. R. CALDERBANK, E. G. COFFMAN, JR. AND J. C. LAGARIAS’

Abstract. We consider the NP-hard problem of packing into a specified rectangle a maximum number
of squares from a given set. We define two related approximation algorithms and derive bounds on the
worst case performance of the packings they produce.

1. Introduction. As described in a recent survey [10], the past decade has seen
many significant results in the combinatorial analysis of one- and two-dimensional
packing problems. Our interest focuses on the two-dimensional problems, which are
the less studied of the two. The basic versions of the two-dimensional problem that
bear on this paper involve packing a given collection or list L of squares ($1, $2, Sn)
into an enclosing rectangle, R, such that the sides of the enclosed squares are parallel
to the sides of R, and no two squares overlap. Three principal variations of this
problem are:

(1) For any given number A > 0 determine the width and length of R so that it
has the least area sufficient to pack all lists of squares whose cumulative area does
not exceed A 1-11]. Special cases of the more general problem in which rotations of
squares are allowed have also been studied [8], [9].

(2) The width of R is assumed fixed, and the object is to pack the squares so as
to minimize the other dimension. This problem, to be called the height problem, has
also been extended to the case of lists of rectangles [1], [3], [5], [12].

(3) Assuming R is fixed, pack into R the largest possible number of squares
from L. This we will term the subset problem.

An interesting, related problem is treated in [4], where an unbounded collection
of identical enclosing rectangles is given and the object is to pack a given but arbilrary
list of rectangles into as few of these enclosing rectangles as possible. This problem
differs from the subset problem in that the efficient packing of rectangles not packed
in R does not have to be considered in the subset problem.

Both the height and subset problems have a complexity at least that of their
NP-hard, one-dimensional counterparts. For this reason simple but effective approxi-
mation algorithms have been proposed and analyzed for the height problem; the
remaining sections of this paper will concern the description and analysis of two such
algorithms for the subset problem. As in the earlier studies we shall compare the
worst case performance of approximate packings relative to optimal packings.

The corresponding one-dimensional bin packing problem is studied in [6] and
[7]. Indeed, the algorithms that we analyze can be viewed as two-dimensional analogues
of the so-called Next-Fit-Increasing rule analyzed in [6].

From an engineering point of view the applications of two-dimensional packing
problems are many and quite varied. To name just a few, they include stock-cutting,
VLSI chip design, loading carriers in transportation systems, and multiprogram
scheduling in computer operating systems. For further discussion we refer the reader
to [7] and [10].

The remainder of the paper is organized as follows. In the next section we define
and illustrate two similar algorithms for the subset problem. In 3 we compare the

* Received by the editors March 5, 1982, and in revised form August 24, 1982.
f Bell Laboratories, Murray Hill, New Jersey 07974.
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worst case packings of one of these algorithms with an optimal packing. In 4 the
asymptotic results are shown to apply to the other algorithm. In 5, the worst case
performance of the two algorithms is analyzed with respect to the height problem. In
the final section some remarks are made concerning generalizations.

2. Approximation algorithms. The study of effective algorithms for the subset
problem focuses naturally on those rules which pack subsets of smallest squares; i.e.,
a square outside the packing is not smaller than a square in the packing. Thus, we
consider rules that pack in order of increasing square size.

Two basic classes of algorithms have been studied for the height problem:
"bottom-up" [3] and "level-oriented" [5] algorithms. Algorithms in each class pack
the squares in sequence as they are drawn from a given list L. When a square is
packed by a bottom-up algorithm it is placed, left-justified at the lowest possible level
in the current (partial) packing. For our purposes, we define the Bottom-Up-Increasing

S1 S2 S3 S4 S5 S6 S7 S8

R R
/ /

$8

(a) THE BUI PACKING

H=I H=I

$5 $6 $7

//7 /

Sl S2 S S4 /

///

(b) THE NFI PACKING
w=l

FIG. 1. Example packings.

(BUI) rule as that bottom-up rule which packs the squares in order of increasing
size. The BUI rule is applied to the subset problem as follows. The packing process
is terminated whenever: i) all squares are packed or, ii) the next square to be packed
is larger than any hole in the current packing.

An example is shown in Fig. l(a). Hereafter, the enclosing rectangle R will be
treated as a bin whose width is normalized to 1 and whose height is given by H.

As the name implies, level-oriented packings are arranged in levels, with the
bottom of the bin serving as the first level. The Next-Fit rule for the height problem
begins, as does the BUI rule, by packing squares left-justified across the first level
until a square S is encountered that will not fit in the space remaining at the right
end. A horizontal line is then drawn through the top of the largest square packed on
this level, thus forming the second level. Beginning with S, packing on level 2 proceeds
in an identical fashion, terminating when a square is encountered that will not fit in
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the remaining space on this level. Once again, the top of the largest square on level
2 defines level 3. This process continues until all squares are packed.

We shall be concerned with the Next-Fit-Increasing (NFI) rule, which packs the
squares in an order of increasing size. Again, the NFI rule is applied to the subset
problem by modifying the termination rule. The process terminates whenever: i) all
squares are packed or if) the height of the next square to be considered exceeds the
height available below H and above the level on which it would have to be packed.

Fig. l(b) shows the NFI rule at work on the same list given in Fig. l(a). The
structures of the packings in the figures suggest that the BUI and NFI rules are not
substantially different; they both appear to distribute the squares in rows containing
the same collections of squares, except possibly for the last row of the BUI packing.
Indeed, we shall prove subsequently that the two rules have the same asymptotic
performance relative to both the height and subset criteria. Also, for any finite list
the performance, in both senses, of the BUI rule is at least as good as that of the NFI
rule. Proofs of these results are delayed until after the next section, so that the analysis
of the NFI rule can be used to advantage.

3. Performance bounds for the NFI rule. Let L ($1, , Sn) be a list of squares
to be packed by the NFI rule into a bin of width 1 and height H. Let 0<s(i)<_-1 be
the width of Si, 1 _-< <_- n, and for indexing convenience assume s (1) _-< s (2) -<_.. -<_ s (n.).
For given H and L let NNFI(L, H) be the number of squares packed by the NFI rule,
and let NOPT(L, H) be the number packed by an optimal rule. L and H may be
suppressed from this notation when they are clear from context. Define the asymptotic
bound

assuming that the limit exists.
THEOREM 1 We have QNFI- 4_

Remark. If H is small then it is possible to find lists that NFI packs less efficiently
than indicated in the above bound. For example, in Fig. 2 we have NOPT(L, H)=
7NNF(L, H). Indeed, if H 2/M and s (1) s (M 1) 1/M e, s (M) 1/M,
and s (M + 1) s (2M 1) 1/M + e, then Nop:(L, H) (2 1/M)NNF(L, H).
We see from Theorem 1 that the effect of this errant behavior does not persist as the
size of the problem increases.

Proof. We begin with a proof that the asymptotic bound cannot be less than ).
LEMMA 1. We have QNFI ’ .

1/3+ 1/3- 1/3-

OPT

FG. 2. Example for small H.



386 B. S. BAKER, A. R, CALDERBANK, E. G. COFFMAN, JR. AND J. C. LAGARIAS

1/2+E

K- oJ

1/2+E

/

/2- 1/2-

/2- /:-

/2-

THE NFI PACKING

2K+1

1/2+

1/2+E

l/2--E

l/2-E

AN OPTIMAL PACKING

FIG. 3. Worst case example.

Proof. Given any height H we exhibit a list L of squares for which NopT(L, H)
NNFI(L,H). If H= (2K+ 1)/2+M, where 0<M<1/2, and K is an integer, then we
choose 0<e <M/(2K / 1), el > 2e, and the example given in Fig. 3, which yields

NOPT(L, H) 4K + 3 4
NNw(L, H) 3K+2 3

When H is not of the above form there are similar constructions. We leave these as
an exercise for the reader. !-]

The reverse inequality is proved at the end of a sequence of lemmas. In each
lemma the height H is fixed but arbitrary as is the list of squares. We label the levels
x(1),x(2),. of the NFI packing in order of increasing height. Let p(i) and q(i)
respectively denote the side of the largest and smallest squares in level x(i). Let U(i)
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be the unused area at the right-hand side of level x(i) and let U be the total unused
area in the NFI packing. LetL be the number of levels containing exactly N squares
and let L be the number of levels containing at least N squares. Let p be the side
of the smallest square that the NFI algorithm fails to pack and let A NOPT--NNFI.

LEMMA 2. LetN [1/p Then

NopT 2 1
=<1+ +,NNFI "where K is the number of levels in the NFI packing. IfH >= 6 and N >= 4 then K >= 24

and NOPT- NNFI.
Proof. The unused area at the top of the NFI packing is H-H _-<p, where H

is the height of the top of the largest square in the last level. The contribution from
level x(i) to the unused area in the region x-< l-p, y =<H is bounded above by
(1-p)(p(i)-q(i)). (See Fig. 4.) Since U(i)<=p 2 we have

U <- (p(i)-q(i))(1-p)+Kp2+p.
i=’1

H
H

1-p

FIG. 4. Illustrating wasted area.

x

Since q(i + 1) >-p(i) we have U _-< (1 -p)(p(K)-q(1))+Kp z + p. Now U _>-Ap , so

2
A<-+(K-1).

p

Since p > 1/(N + 1) we have A _< 2N + K. Using NNFI >= NK, the result follows. I-I
The remainder of the proof considers the cases for [1/p 1, 2, and 3. For each

case, we will need several bounds on the size of A. Ultimately, we will show that in
each case, the minimum of the bounds on A is always small enough to give the desired
result.

In order to obtain the first bounds on A, we need to bound the area of the unused
space at the right sides of the levels.

LEMMA 3. We have

(1) E U(i)<-(L’-I)+3p
i=1

and

(2)
L,]+

U(i) <--l(L3 -1) + 2p 2.
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Proof. If q(L])<--1/2 then U(i)<- for <L and we have

2U(i)<-U(L)+2(L-I)<-_p +(L-I).
i=1

If q(L) >, then let b be the greatest index for which q(b)<-1/2. If b <i <_-L then x(i)
contains exactly 4 squares and U(i)<-p(i) (1-3q(i)-p(i)). If i<b then U(i) <-
p(i)q(i + 1) and so U(i)<-q(b)2<-2. It follows that

L, L, L,
Y U(i)<=U(b)+(b-1)+ Y (p(i)-4p(i)2)+3 Y p(i)(p(i)-q(i)).
i=1 i=b+l i=b+l

If >b then p(i)=1/2+ei, where ei >0, and we have p(i)-4p(i)2<=. Hence

L
U(i)<=p(b)q(b + 1) +5(L]-b +(b 1))+ 3p (L])(p (L ]) q (b + 1))

i=1

_-<2(L*-1)+3p 2.
The proof of (2) is similar and we omit the details.
LEMMA 4. If < p <--1/2 then

(3) A 11 +L2 +(L3-1) +(L*- 1).

If 1/4 < 0 -<-1/2 then
(4) A 11 -t-L3 -t- 4 1).

2Pro@ If >L then x(i) contains exactly 2 squares and U(i)<-p By the proof
of Lemma 2 the unused area above and in the interior of the packing is bounded
above by 20. Combining these facts with inequalities (1) and (2), we have

2U<-L2o +(L-1)+302+(L3-1)+202+20.
Since Ap 2 =< U and since p > we have

z11+L2+(L3-1)+(L-1).
The proof of (4) is similar and we omit the details.
Lemmas 2, 3, and 4 rest only on area arguments. For the height arguments of

subsequent lemmas, we need a little more notation. Let HN be the height of those
levels containing exactly N squares and letH be the height of those levels containing
at least N squares.

LEMMA 5. H*N+X ----<p(L*N+I) + 1/(N + 1)(L*N+X- 1).
Proof. The level x (L+a) contains at least (N + 1) squares and so q (L’N+

1/(N + 1). If <L+ then p(i)<=q(L*N+a) < 1/(N + 1). The result follows.
The levels x(i), L*N+ + 1 <= <=Lfv, all contain exactly N squares. Let T(i) be the

sum of the sides of the squares in level x(i) and let TN T(L*N+ + 1)+...+ T(L*N).
LEMMA 6. TN T(L*N+a + 1)>:NUN -(N- 1)p(L*N)--p(L*N+X + 1).
Proof. Since T(i)>-p(i)+(N-1)p(i-1), for L*N+ +2=<i ----<L’N, we have

L
TN-T(L*N++I) >- (p(i)+(X-1)p(i-1))

i=L*N+I+2

>=N( p(i)) -(N- 1)p(L)-p(L+I + 1).
i=L+I+I

Since Hu i=L,+,+l p(i), the result follows.
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LEMMA 7. If 1/2 < O <- 1/2 then

(5)

and

(6)

A--< 10+L2+(L- 1)

A _< 8 + 2(L3 1)+(L- 1).

Proof. Consider the 3 vertical lines x , x 1/2, x , drawn parallel to the sides
of the bin. The combined length of the lines is 3H and H -< O +H2 +H3 +H. Every
square of side greater than 1/4 covers at least one line. If i->L + 2 then every square
in x(i) has side greater than 1/4. By Lemma 6 we have

(7)

and

T2 >-2H2-p(L)-p(L + 1)+ T(L’ + 1)

>- 2H. p (L’ ),

T3- T(L + 1)>-3H3-2p(L)-p(L + 1).

If Z is the length of the 3 lines not covered by squares in the NFI packing then

Z -<3(0 +H2 +H3 +H4*)- Tz-(T3- T(L’ + 1)) _-< 7p +H2 + 3HI.
Since Z => Ap, it follows from Lemma 5 that

Ap <= 7 +L2O + 3(p(L 4") + 1/4(L ] 1)).
Since > we have

A <= 10+L2+-](L- 1).

We prove (6) by considering the two vertical lines x 1/2, x drawn parallel to
the sides of the bin. If _-> L + 2 then every square in x (i) has side greater than 1/2 and
covers at least one line. If Z’ is the length of the 2 lines not covered by squares in
the NFI packing then

Z’ =<2(p +H2+H+H)- (T2- T(L’ + 1)).

By Lemma 5 and by (’7) above we have

Z’ -< 4p + 2(p (L) + 1/2(L 1))+ 2(p (L) + (L4* 1)).

Since p > 1/2 and since Z’-> Ap we have

A 8 + 2(L- 1)+(L]- 1). [3

LEMMA 8. If 1/4 < p <= 1/2 theft
(8)

If p > 1/2 then
(9)

and

(o)

A<_--9+3(L]- 1).

A =< 3 +L2+(L3*- 1),

A_<-6+L1 +(L- 1).

Proof. The proofs of (8), (9), and (10) are similar to those given in Lemma 7 and
we shall not give the details. Equation (8) is proved by considering the lines x z,
x , and x =-. Equation (10) is proved by considering the lines x and x }. In
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the proof of (9) we consider the two vertical lines x =p(L’ + 1), and x 1-p(L’ + 1),
and we observe that if i>L’+ 1 then the square in level x(i) covers both vertical
lines.

LEMMA 9. If 1/4 < p <-1/2 then
14(11) NOPT <NNF+ 11.

Proof. By (4) and (8) we have

NOPT NNFI (3L] L3+16L]/25 +.
NNFI NNF’I + min \NI’ NNFI NNFI

If L4*- 0 then we are done. Suppose L] # 0 and set L3 -oL]. Then since NNFI ->

3L3 "+- 4L] we have

NOPT 11

NNFI NNFI

where fl(a)= 3/(3a +4) and fE(a)= (a +5)/(3a +4). We observe that fl is a decreas-

ing function of a and f2 is an increasing function of a. Setting fl(a)=f2(a) gives
59 Since fl( ) < we ha e

14NOPT < Yi-NNFI + 11.

LEMMA 10. If p > 1/2 then
4(12) NOPT =< NNFI + 5.

Proof. By (9) and (10) we have

Nopw NNI 5 /L2+2L’/3 L,+4L3*/3\
-< +’ + min [ -/.
NNFI- NNFI NNFI NNF, r’F; ]

Note that NNFI L + 2L2 + 3L. If L2 0 then NOPT --< (!9)NNFI 4- 5 and we are done.
Suppose L2 0, let L =aL2 and let L =ilL2. Then

NOPT 5
<_- 1++min (h(a, [3), h2(a, ))
NNF NNFI

where

1 +2fl/3 a +4fl/3
h (a, fl) and h2(a,

a+2+3fl +2+3/3

Now hi is a decreasing function of a and h2 is an increasing function of a. Setting
hi(a, fl)-- h2(c, fl) we obtain a 1-2/3/3, and so

1+2fl/3 1
min (hx(a,/), h2(a,/))< -<-

=3+7fl/3-3
The result follows.

LEMMA 11. If 1/2 < p <= 1/2 then
74(13) Nopv < (1 + -x)NNr + 11.

Proof. By (3), (5) and (6) we have

NOPT NNFI 11 (L2+9L3/16+9L]/25 2L3+3L]/2 L2+9L]/4]<- + + min
NNFI-NNFI NNFI NNFI "’FI
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If L3 0 then

11 (LE+9L’/25 3L’/2NOPT < 1 + + min
NNFI NNFI NNFI FI ]’

and NNF ----> 2L2 + 4L’4. If L 0 then we are done. If L # 0 then set L2 aL. By an
argument similar to Lemma 9 we have

No,x II (a+9/25 .<+ 11
NF

N 1 +NF+min ’2a +4] NF"
We may suppose that L3 0. Setting L aL3 and L L3 we have

No 11
N1 + +min (g(a, ), g(, ), g3(a, )),
NNFI NNFI

where

c +9/16+9B/25 2 +3B/2 c +9B/4
gl(c’fl)=

2c+3+4B g2(’B)=2ot+3+4fl’ g3(c’fl)=2ot+3+4fl"
Now g is an increasing function of c and g2 is a decreasing function of a. Setting

23 57g (Ct, fl) g2(o, fl) gives a + N/3. Thus

2+3B/2
min (g(c, B), g2(a, B))-<- m(B)

94/16 + 314B/50"
If B => 6 then rn(B)<. If B < 6 then g3(a,/) is an increasing function of a. Setting
g2(c,/) g3(o, fl) gives c 2 3B/4. Thus if B < 6 then

2+3B/2
rain (g2(a,/), g3(a,/3)) -< m2(/)

7 + 5fl/2"

Now m2 is an increasing function of/3; m is a decreasing function of/3; and equality
occurs at/3 900/(16 x 189). Since m2(900/(16 x 189)) 7398/23418 <74/234 the
result follows, l-I

Theorem 3.1 now follows directly from Lemma 1 and Lemmas 9, 10 and 11.

4. Comparison of the NFI and BUI rules. In this section we shall verify that
asymptotic results for the NFI rule in both the height and subset problems carry over
to the BUI rule. It is convenient to consider the height problem first. Consistent with
the literature we shall use NFI (L) and OPT (L) as the respective heights of the NFI
and an optimum packing of list L.

THEOREM 2. For any listL (Sl,"’" ,Sn), with s(i)<-s(i + 1), 1-<i <n,

(14) BUI (L)_-< NFI (L)_-< BUI (L)+s(n).

Proof. A subsequence Sj,..., Sk in L constitutes a row in the BUI packing of L
if:

1. Sj rests against the left side of the bin; for each ]_-< < k, the left side of Si
touches the right side of Si-1, but if k <n, the left side of ,-,k+l does not touch the
right side of Sk on the right;

2. The top heights (levels of the top edges) of S,..., Sk form a nondecreasing
sequence such that the top heights of Sj and Sk differ by less than s(k).
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The following preliminary result establishes the close correspondence between
BUI and NFI packings.

LEMMA 12. Let x(1), , x(K) be the sets of squares in the K >= 1 levels of an
NFI packing of list L. The BUI packing ofL consists ofK rows, where row i, 1 <- <= K,
consists of lust those squares in x(i), all squares in row 1 rest on the bottom of the bin,
and each square in row i, > 1, touches a square below it in row i- 1.

Proof (by induction). The result follows easily for x(1), since this set of squares
must also rest on the bottom of the bin in the BUI packing, in a left-to-right increasing
order by size.

Thus, suppose the result holds for x(1),. ., x (i 1) and consider the first square
Sj in x(i). Since x(i- 1) is a row, S. cannot fit to the right of S.-1. S cannot fit in any
hole below any square in row i- 1, because it is at least as large as S-1 which the
BUI rule could not pack into any such hole. Thus, S must be packed above and/or
to the left of Sj-1. Since the top heights of squares in row i- 1 are nondecreasing,
the BUI rule must pack S. against the left side of the bin so that it touches one or
more squares in row i- 1.

Since the total variation in the nondecreasing top heights in row i- 1 is less than
p(i- 1) s(/’- 1), which is no greater than s(f) q(i), the top height of S must exceed
the greatest top height in row i- 1. It follows readily that squares S., , Sk must be
packed contiguously, left-to-right, and touching squares in row i- 1 until a square
Sk/l is encountered not fitting in the space remaining at the right of this bin, or until
there are no squares left to pack. From the NFI packing we know that if k < n the
cumulative width of squares in x(i) is in (1-s(k + 1), 1]. Thus, x(i)= {S.,..., Sk} and
property 1 of a row is established.

Next, since the top heights in row i- 1 are nondecreasing, and the squares in
x (i) are packed in an order of increasing size, the top heights of the squares S., ,
in the BUI packing are also nondecreasing. Finally, since the top height of S exceeds
the greatest top height in row i- 1, it must exceed the bottom height of Sk. Thus, the
top heights of S and Sk differ by less than s(k) and property 2 of a row is established
for {S, , Sk} x (i).

From the monotonicity property in Lemma 12, it is clear that the height of the
last square Sn defines BUI (L), and that the bottom of Sn must be at a height at least
that of the top of the left most square in x(K- 1). Thus, using p(K)= s(n), Lemma
12 implies

K-1

(15) BUI(L) -> Y. q(i)+p(g).
i=1

Since q(i)>=p(i 1), i> 1, we can write

K-2

(16) BUI(L)=q(1)+ p(i)+p(K).
i=1

By definition of the NFI rule NFI (L)=Y.ilp(i). Substituting from (16), we have
NFI (L)-<BUI (L)-q(1)+p(K-1)-<BUI (L)+s(n), thus proving the upper bound
in (14). The lower bound in (14) can be obtained readily from Lemma 12. l1

We turn now to a comparison of BUI and NFI for the subset problem.
THEOREM 3. Let the NFI packing of a sublist of L in a bin of height H have

K >= 1 levels. Then

NBtn(L, H) <K + 1
(17) 1_-<

NN(L, H) K
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Proof. From Lemma 12 it is readily verified that NBuI(L, H)>--NNFI(L, H). Let
x* denote the set of squares in L packed by the BUI rule but not by the NFI rule.
We analyze two cases.

Case 1. x(K) is a row in the BUI packing. In this case all squares in x* have
bottom edges at a height at least that of the top of the first square in row K, and this
height in turn is at least "/K__ q(i). We now verify that H-Y’./K=I q(i)<2p, where p is
the width of the smallest square not packed by the NFI rule; i.e. a smallest square in
X *

First, using q(i)>-_p(i-1), i> 1, we have NFI (L)=Y.r=p(i) <-

p(K)+_,.K,=q(i)-q(1), and hence NFI(L)-_,=q(i)<p. Next, by definition,
H NFI (L) < 0, so that

H- Y q(i)=H-NFI (L)+ NFI(L)- q(i) <20.
i=1

It follows immediately that the BUI rule packs at most one extra row of squares.
Therefore,

(18)
BUI (L, H)

<
NFI (L, H) + r

NFI (L, H) NFI (L, H)

where r is the number of squares in x*. Since the number of squares per level is
nonincreasing, we have NFI (L, H)>-rK. Maximization of (18) thus yields (17).

Case 2. x (K) is not a row in the BUI packing. In this case the first square in x*
must be narrow enough to fit on level K in the NFI packing, but it is too tall. Thus,

K-1
tt-i_= p(i)<p. Again using q(i)>-p(i-1), i>1, we have H-i__Eq(i)< p and
hence H--K q(i) <p +q(K) < 2p Clearly, from Lemma 12 all squares in x* must

K-1
have bottom heights at least Y’.i=-i q(k). Thus, x consists of at most one extra row
of squares and (17) follows as before. 71

5. The height prolflem. We obtain a tight asymptotic bound for the worst case
performance of the NFI rule for the height problem. The bound will be calculated
from the following infinite series. For any positive integer r, let

tl(r) r + 1, tE(r) r + 2,

ti+(r) ti(r)[t,(r)- 1]+ 1, _->2.

For example, the first two sequences begin with

2, 3, 7, 43, 1807 and 3, 4, 13, 157, 24493.

Let
1 r-1

yr=Y and /* +yr.
i=1 ti(r)- 1 r

The first few values of y* are approximately y* 1.691..., 3’2* 1.423..., y3*
1.302

THEOREM 4. For any list L=(Sa,...,S,), with s(i)<-_s(i+l) (l_-<i<n), if r=
1 /s (n)J, then

BUI (L)-<_NFI (L)<-y* OPT (L)+S.4s(n).

Moreover, the multiplicative constant y* is the smallest possible.
Proof. From Theorem 2, BUI (L)_-< NFI (L). The bound on NFI (L) follows from

a modification of the analysis of the Next-Fit-Decreasing algorithm in [2]. Define a



394 B. S. BAKER, A. R. CALDERBANK, E. G. COFFMAN, JR. AND J. Co LAGARIAS

weighting function Wr as follows. For x (1/(k + 1), 1/k), k -> r,

We claim that

1

Wr(x)
k+l
k

if k ti(r)- 1 for some => 1,

x otherwise.

y* OPT (L) _-> Y’, s(i) Wr(s(i)) >-_ NFI (L)- 8.4 s(n).
i=1

The first inequality follows from the proof in [2] that for any set S of real numbers
in the interval (0, I/r) summing to at most 1, Yxs W(x)<=Y* Divide an optimal
packing of L into horizontal strips by drawing a horizontal line through the top and
bottom of each square. Within a strip of height h, the sum of hs(i) over all s(i)
intersecting the strip is at most hy*, and summing over all such strips we have

s(i) Wr(s(i)) <-_ y* OPT (L).
i=1

To prove the second inequality, we begin with some notation.
If k ti(r)- 1 for some/’=>1, we say that (1/(k +1), Ilk)is a y-interval, and a

square whose size is in such an interval is a y-square.
If there are K _>- 1 levels in the NFI packing of L, let x (i) denote the set of squares

packed in level i, 1-<i_-<K. Define p(i) to be the size of the largest square in x(i),
1 _-< _-<K, and define p(0)= 0. For 1 <_-i -<K, define A(i)= p(i) E$(i)x(i) Wr(S(j)),
Note that for 1 <_-i -< K,

Wr(S (i))A,(i)<= Y. s(j)W,(s(j))+[p(i)-p(i-1)] max

r+l<- E s(f)W(s(]))+- [p(i)-p(i- 1)]
S(j)x(i) r

and

K r+l K. Ar(i) <- . s(f)W,.(s(j))+ E [p(i)-p(i-1)]
i=1 j=l r i=1

r+l<= s(/lWr(s(jl)+s(n).
/=1 r

Thus, it will be sufficient to show that

s(n)Y, A,(i) <- NFI (L)- 7.4s (n)4-
i=1 r

Equivalently, if we define the shortfall in level to be p(i)-Ar(i), then it will be
sufficient to show that the total shortfall over all levels is at most

s(n)
7.4s(n)-
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For 1 =< i-<K, let m(i) be an integer such that the size of the smallest square in
x(i) lies in the interval (1/(m(i)+ 1), lira(i)).

In order to bound the total shortfall, we partition the levels other than level K
into three groups. Level is in Group 1 if re(i) m(i + 1), Group 2 if m(i) > m(i + 1)
and x(i) contains at least one yr-square, and Group 3 if m(i)>m(i + 1) and x(i)
contains no yr-squares.

Note that if level is in Group 1, it contains re(i) squares in the interval
(1/(m(i)+ 1), lira(i)) and

At(i) >- mi(--) p (i) p (i).

Thus, the total shortfall of levels in Group 1 is 0.
Suppose level is in Group 2. Since the smallest square in x (i + 1) did not fit in

level i,
1

S(j)x(i) m (i + 1)
and

m(i + l) 1i_<_. s(/’) m(i + l)

If the smallest %-square (if any) packed in a Group 2 level after level is in the
interval (1/ti(r), 1/(ti(r)-l)), then the shortfall for level is at most p(i)/m(i + 1) -<

p(i)/(ti(r)- 1). Since at most two levels in Group 2 can contain yr-squares in the same
y-interval, and only the last Group 2 level has no y-square packed in a later Group
2 level, the cumulative shortfall for all Group 2 levels is at most

s(n)+2s(n) Y’.
1

-<s(n)[1 +2y]<4.4s(n).
i= ti(r)- 1

Suppose level is in Group 3. Since x(i) contains no y-squares,

m(i)+ 1W(s(/)) >_ for s(f)x(i).
s(i) m(i)

Also, as before,

Thus,

1
E s(i)>--.

S(])x(i) m (i + 1)

m(i)+l[Ar(i)>-_ 1-
m(i)

1 ]m(i + 1)
p(i)>--p(i)

m(i)-m(i+l)+l
m(i)m(i+l)

Thus, the shortfall for level is at most

m(i)-m(i+l)+l
m(i)m(i+l)

s(n)

p(i).
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and the cumulative shortfall for all levels in Group 3 is at most

:-l m(i)-m(i + l)+ l
s(n) ’.

i= m(i)m(i+l) 1][m(1)-m(K-1)

_
2

Combining the shortfall for Groups 1-3 and the shortfall of at most p(K)-
s(n)Wr(s(n))= s(n)-s(n)/r for level K, we have a total shortfall over all levels of
at most 8.4s(n)-s(n)/r as desired.

To show tightness, consider the following packing of a list L. Given r, k, and
suitably small e, let N be divisible by each ti(r)-1, 1 <=i <=k, and by r. Pack r-1
columns of N(r + 1) squares of size 1/(r + 1) + e for a total height of N +N(r + 1)e.
Next to these columns, pack one column each of Nti(r) squares of size 1/ti(r)+e, for
a total height of N +Nti(r)e, 1 <=i <-k. Thus, for this list L, OPT (L)<-N +O(e). The
NFI rule, on the other hand, packs Nti(r)/(ti(r)-1) levels of squares of size 1/ti(r)+ e
for a total height of at least N/(ti(r)- 1) for 1 <-i <-k. Then it packs N(r + 1)(r- 1)/r
levels of squares of size 1/(r + 1)+ e. Thus,

1 N(r- 1)
NFI (L) =>N Y +

i=1 ti(r)-- 1 r

By appropriate choice of N, k, and e, we can make NFI (L)/OPT (i) as close as desired
to y*. Since BUI (L) ->NFI (L)-s(n), y* is also a tight asymptotic bound for BUI. l

6. Concluding remarks. Our approach to square-packing algorithms has been to
devise and analyze easily implemented approximation algorithms having very simple
structures. At some sacrifice in simplicity other algorithms can be designed which can
be expected to produce better packings. For example, a first-fit-decreasing rule could
be applied iteratively, as described in [6] for the one-dimensional case. Unfortunately,
because of the added complication, the prospects of tight asymptotic bounds appear
to be considerably worse.

It has been noted that the guaranteed efficiency of the NFI algorithm improves
as the height increases relative to the width. Therefore, a natural algorithm, NFI*
say, for packing squares into an arbitrary rectangle would be the following:

(1) Rotate the rectangle until the larger dimension is vertical.
(2) Pack the squares using the NFI algorithm.
We conjecture that a worst case example for NFI* is given by the squares-into-a-

square problem of Fig. 2, where the ratio NNFI*/NoPT is given by .
Finally, packing rectangles into a rectangle is a natural generalization of our

problem deserving further study. Unfortunately, effective algorithms with a simplicity
comparable to NFI and BUI do not appear possible. Specifically, level-oriented or
bottom-up algorithms with lists ordered by either dimension do not have finite worst
case bounds.
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Abstract. A combinatorial construction for perfect binary single error correcting codes is presented.
Several results are derived from this construction. In particular, we establish that there are a large number
of nonisomorphic perfect codes of length 15.
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1. Introduction. A binary code of length n is a subset of Vn, a vector space of
dimension n over GF(2). Alternately one can consider a binary code as a collection
of subsets of an n-set, since for every subset of an n-set there is a corresponding
(characteristic) vector in Vn. Many of the more interesting codes have the property
that the nonempty subsets of minimal size (i.e., vectors of minimal weight) form a
t-design. There are various combinatorial constructions for t-designs and it is natural
to investigate similar constructions for the corresponding codes. This is precisely the
motivation behind the combinatorial construction for perfect binary codes presented
here.

A perfect binary single error correcting code of length n, which we will henceforth
refer to as a perfect 1-code of length n, exists when n 2 1, for m _-> 3. The linear
perfect 1-codes are uniqueuthey are simply the well-known Hamming codes. Non-
linear perfect 1-codes of length n have been constructed by Vasil’ev [9] for all
(admissible) n. More recently Bauer, Ganter and Hergert 1] presented some algebraic
techniques for constructing nonlinear codes which enabled them to construct nonlinear
perfect 1-codes of length 15 which are "non-Vasil’ev," i.e., nonequivalent to the
Vasil’ev codes.

Two codes C, D c V are isomorphic if there is a permutation, r, of the coordi-
nates which maps the vectors of one code into the other (e.g. D- {r(x)lx C}. If
D C / a -{x + a lx C} then D is a translation (or coset or affine subspace as tlhe
case may be) of C. Two codes are equivalent if they are isomorphic or if one code is
isomorphic to the translate of another. Unless otherwise stated, we will always assume
that the code has the zero vector. Establishing that two codes (designs, graphs, etc.)
are nonisomorphic is in general a problematical issue. Using results and techniques
from block designs we are able to establish a (probably weak) lower bound on the
number of nonisomorphic perfect 1-codes of length 15.

The problem of nonequivalence of codes is more difficult and is only briefly
discussed here. A thorough computational study would be needed to establish a
reasonable lower bound--on the number of nonequivalent perfect 1-codes of length
15.

For any perfect 1-code of length n, the words of weight 3 (i.e., the minimal
nonempty subsets) form a Steiner triple system of order n, (briefly STS (n)). Any
perfect 1-code of length n can be extended to a code of length n / 1 by adding an
overall parity check bit. This is equivalent to adding a new element, oo, to every subset
of odd cardinality in the code. In this extended perfect 1-code, every word has even
weight and the words of minimal weight (i.e., weight 4) form a Steiner quadruple

* Received by the editors June 11, 1982, and in revised form October 25, 1982.
t School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332.
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system of order n + 1 (briefly SQS (n + 1)). Thus for a STS (n) to be contained in a
perfect 1-code of length n it is necessary for it to be a derived triple systemmi.e.,
that it can be extended to an SQS (n + 1). Which Steiner triple systems (of order n)
are contained in a perfect 1-code (of length n)? (i.e., which STS (n)are "perfect"?).
This is a difficult question even when n 15.

There are only 80 nonisomorphic STS (15) ([4], cf. [2], [3]) of which 43 are
known to be derived (Phelps [8]). We will show that at least 23 of these derived triple
systems are "perfect," i.e. belong to perfect 1-codes of length 15. If we consider the
extended perfect 1-codes of length 16 and ask a similar question for SQS (16), we
can say more. There are at least 31,021 nonisomorphic SQS (16) [6] and each of
these belongs to some extended perfect 1-code of length 16. Our combinatorial
construction produces many different extended 1-codes of length 16. However, com-
pletely determining the isomorphism classes of these codes is tedious, time consuming,
and costly, so we have not attempted such a classification. We remark that for two
perfect 1-codes of length n to be isomorphic it is necessary that the words of weight
3 (STS (n)) and weight 4 be isomorphic.

MacWilliams and Sloane [5, p. 180, problem 6.6] give the following research
problem: Find all perfect nonlinear single-error-correcting codes over GF(q). The
results of this paper suggest that answering this question even for q 2 will be
impossible.

2. Construction. Given a perfect 1-code of length n we construct a perfect 1-code
of length 2n + 1 containing the given code as a "subcode." Let C c V be a perfect
1-code of length n, n 2’- 1 and C Co, C1, Ca,"’, Cn be a partition of the V
with ICI ICil 2 and such that the minimum distance between any 2 words in C
is 3. For any code Ci, let C* denote the extended code of length n + 1 constructed
by adding an overall parity check bit. The vectors in C/* each have even weight and
the minimum distance for any C* is now 4.

Let C, B be two perfect 1-codes of length n and {C=C0, C1,’", Cn} and
{B Bo, B1,..., Bn} be any two partitions of V" having the properties described in
the preceding paragraph. Let B*, C* denote the extended codes and let c be any
permutation of {0, 1, , n }. Define E* c V2"+2 as follows"

(b, d) E* if and only if b C*, d Bf and a (i)=/’.

THEOREM 2.1. The code, E*, constructed above is an extended perfect 1-code of
length 2n + 2.

Proof. E* has (n + 1)(2"-")2 codewords of length 2(n + 1)=2"+1, which is
the correct number of codewords. The distance between any 2 codewords is 4. If
x,yE,x=(b,d),y=(b’,d’), then the distance between x and y is d(x,y)=
d(b,b’)+d(d,d’). If b=b’, and bC then d,d’B where a(i)=]. Thus by
definition of the Bf, d (d, d’) _-> 4 and d (x, y) => 4. Similarly if d d’, then d (b, b’) =>.. 4.
Suppose b b’ and d d’; then since each of b, b’, d, d’ has even weight d(b, b’)>-_ 2
and d (d, d’) -_> 2 and thus d (x, y) -> 4.

If we assume that a (0)= 0, then the 0-vector will be in E* and both C* and B*
will be subcodes of E*. Puncturing E*, i.e., deleting a coordinate, gives a perfect
1-code, E, of length 2n + 1. (Considering E* as a collection of subsets this is equivalent
to deleting the element from all subsets of E* to which it belongs.) By choosing the
appropriate coordinate we will have C as a subcode of E.

LEMMA 2.2. For every perfect 1-code C V, there exists a partition C
Co, CI, C, of V with ICI--Icl for O, 1,..., n, and the minimum distance for
Ciis 3.
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Proof. Let x a, X2,’’’, Xn E V be the n vectors of weight 1. Choose the Ci to be
translates of C, that is, Ci C +x, 1, 2,..., n. Since C is perfect, every vector,
y C, has distance 1 from some codeword and hence y E C +x for some i.

We see that for every perfect 1-code C we can construct at least one partition
of V having the required properties. For a given code, C, are there other, nonisomor-
phic, partitions? Given a code C and partition C =Co, Ca,’", C, consider its
extension C*= Co*, C*,..., C*. Let us consider the codewords as subsets, and let
F c C* be the set of 2-element subsets of C*, 1, 2,. ., n. Since each C* has
minimal distance 4 and every 2-subset is in some C*, we conclude that Fa, F2, , F,
is a 1-factorization of the complete graph, K,+I. If the partition Co, Ca,"’, C, was
formed by taking translates of C, then the 1-factorization is a Steiner 1-factorization
and is in effect constructed from the Steiner triple system contained in C. There are
of course many other 1-factorizations and it would be interesting to know which of
these arise from such partitions of V". Since there are on the order of n n2/2 nonisomor-
phic 1-factorizations of K,, this suggests that the number of nonisomorphic partitions
of V" for a given code, C, could be large indeed. While we cannot prove this, we do
show how one can construct a new partition from a given one.

Let C* C, C*,.. , C* be such a partition of V. For i,/" -> 1 we form a "graph"
on the codewords of C*, C, where the codewords are the vertices and two codewords
x, y are adjacent if and only if their distance d(x, y)= 2. This gives us a bipartite
graph. If it is not connected, then for any component G UG where G c C* and
G2 C we can "switch" the codewords so that (C* \Ga) U G2 and (C’ \G2) I,.J G1
are now classes. Replacing C* and C by these new classes gives us a different
partition of V" which still has the required properties. This "switching" process is a
common approach used in the construction of nonisomorphic designs, Latin squares
and other combinatorial configurations. (For example, compare the extended partitions
I, II in the following section).

3. Perfect 1-codes of length 15. In this section, we apply the ideas of the previous
section to the construction of perfect 1-codes of length 15. This involves finding
nonisomorphic partitions of V7. Fortunately the perfect 1-code of length 7 is unique
so we only need to construct nonisomorphic partitions for this code. As we remarked
previously, each such partition of V induces a 1-factorization of K8. As is well-known,
there are exactly 6 nonisomorphic 1-factorizations of K8 (cf. Wallis [10], Brouwer
[2]). It is an easy matter to test whether two such lofactorizations are isomorphic.
Using various approaches we construct 6 nonisomorphic (and nonequivalent) partitions
(listed below) which contain each of the nonisomorphic 1-factorizations I, II, III, IV,
V, VI respectively (cf. Brouwer’s listing [2]). Applying Theorem 2.1 to these 6
nonisomorphic partitions of V7 gives us at least 31,021 different’extended perfect
1-codes of length 16. If we consider the effect of this construction on the words of
weight 4--i.e., the Steiner quadruple systems, we see that it is nothing more than
the well-known doubling construction for such designs (cf. Phelps [7]). Puncturing
these extended codes will produce perfect 1-codes of length 15. The words of weight
3 will be one of 23 nonisomorphic STS (15) (# 1-22, 61 in Bussemaker and Seidel’s
listing [3]). By an appropriate choice of the partitions and the permutation a one can
insure that each of these STS (15) are contained in at least one perfect 1-code. (Cf.
Brouwer [2] p. 11.)

COROLLARY 3.1. There are at least 31,021 perfect 1-codes of length 15.
Proof. Lindner and Rosa [6] constructed 31,021 nonisomorphic SQS (16). Each

one of these will be contained in one of the perfect extended codes constructed above.
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TABLE

C* ={0,1,2,3} {0,2,5,7} {1,2,5,6}
{0, 1, 4, 5} (0, 3, 4, 7} {1, 3, 4, 6}
{0, 1, 6, 7} {0, 3, 5, 6} {1, 3, 5, 7}
{0, 2, 4, 6} -{1, 2, 4, 7} {2, 3, 4, 5}

,[0, 1,..., 7}

I. Ca* C C C4" C5" C C7"

0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,3 1,3 1,2 1,5 1,4 1,7 1,6
4,5 4,6 4,7 2,6 2,7 2,4 2,5
6,7 5,7 5,6 3,7 3,6 3,5 3,4

0,2,4,7 0,1,4,7 0,1,4,6 0,1,2,7 0,1,2,6 0,1,2,5 0,1,2,4
0,2,5,6 0,1,5,6 0,1,5,7 0,1,3,6 0,1,3,7 0,1,3,4 0,1,3,5
0,3,4,6 0,3,4,5 0,2,4,5 0,2,3,5 0,2,3,4 0,2,3,7 0,2,3,,6
0,3,5,7 0,3,6,7 0,2,6,7 0,5,6,7 0,4,6,7 0,4,5,7 0,4,5,6

(plus complements of these codewords)

II. Ca* Ca* C3" C C5" C C

0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,3 1,3 1,2 1,5 1,4 1,7 1,6
4,5 4,6 4,7 2,6 2,7 2,4
6,7 5,7 5,6 3,7 3,6 3,5

0,2,4,7 0,1,4,7 0,1,4,6 0,1,2,7 0,1,2,6 0,1,24 0,1,2,5
0,2,5,6 0,1,5,6 0,1,5,7 0,1,3,6 0,1,3,7 0,1,3,5 0,1,3,4
0,3,4,6 0,3,4,5 0,2,4,5 0,2,3,5 0,2,3,4 0,2,3,7 0,2,3,6
0,3,5,7 0,3,6,7 0,2,6,7 0,5,6,7 0,4,6,7 0,4,5,7 0,4,5,6

(plus the complements of these codewords)

III. (isomorphic)
c* c c’ c c c
0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,3 1,3 1,2 1,6 1,7 1,4 1,5
4,5 4,6 4,7 2,7 2,6 2,5 2,4
6,7 5,7 5,6 3,5 3,4 3,7 3,6

0,2,4,7 0,1,4,7 0,1,4,6 0,1,2,5 0,1,2,4 0,1,2,7 0,1,3,4
0,3,4,6 0,1,5,6 0,1,5,7 0,1,3,7 0,1,3,6 0,1,3,5 0,1,2,6
0,2,5,6 0,3,4,5 0,2,4,5 0,2,3,6 0,2,3,7 0,2,3,4 0,2,3,5
0,3,5,7 0,3,6,7 0,2,6,7 0,5,6,7 0,4,6,7 0,4,5,7 0,4,5,6

(plus the complements of these codewords)

0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,3 1,3 2,1 1,6 1,4 1,7 1,5
4,5 4,6 4,7 2,7 2,6 2,5 2,4
6,7 5,7 5,6 3,5 3,7 3,4 3,6

0,2,4,7 0,1,4,7 0,2,4,5 0,1,2,5 0,1,2,7 0,1,2,4 0,1,2,6
0,2,5,6 0,1,5,6 0,2,6,7 0,1,3,7 0,1,3,6 0,1,3,5 0,1,3,4
0,3,4,6 0,3,4,5 0,1,4,6 0,2,3,6 0,2,3,4 0,2,3,7 0,2,3,5
0,3,5,7 0,3,6,7 0,1,5,7 0,5,6,7 0,4,6,7 0,4,5,7 0,4,5,6

(plus complements)
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TABLE 1--continued

Wo C*=C=0,1,2,3 0,1,5,7 0,2,6,7
0,1,4,6 0,2,4,5 0,3,4,7

(plus complements)
c c* c
0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,3 1,3 1,4 1,7 1,6 1,2 1,5
4,5 4,6 2,7 2,5 2,4 3,5 2,6
6,7 5,7 5,6 3,6 3,7 4,7 3,4

0,2,4,7 0,1,4,7 0,1,2,5 0,1,2,6 0,1,2,7 0,1,3,7 0,1,2,4
0,2,5,6 0,1,5,6 0,1,6,7 0,1,3,5 0,1,3,4 0,1,4,5 0,1,3,6
0,3,4,6 0,3,4,5 0,2,4,6 0,2,3,7 0,2,3,6 0,2,3,4 0,2,3,5
0,3,5,7 0,3,6,7 0,4,5,7 0,5,6,7 0,4,6,7 0,2,5,7 0,4,5,6

(plus complements)

VI. C*=C =0,2,3,5 0, 1,5, 6 0,4,5, 7
0,2,6,7 0,3,4,6 0,1,3,7

(plus complements)
c* c* c* c* c6" c*

0,1 0,2 0,3 0,4 0,5 0,6 0,7
2,7 1,3 1,5 1,7 1,2 1,4 1,6
3,6 4,7 2,4 2,6 3,7 2,3 2,5
4,5 5,6 6,7 3,5 4,6 5,7 3,4

0,2,5,6 0,1,4,6 0,1,4,7 0,1,2,5 0,1,6,7 0,1,2,7 0,1,2,3
0,2,3,4 0,1,5,7 0,1,2,6 0,1,3,6 0,1,3,4 0,1,3,5 0,1,4,5
0,3,5,7 0,3,4,5 0,2,5,7 0,5,6,7 0,2,3,6 0,2,4,5 0,2,4,6
0,4,6,7 0,3,6,7 0,4,5,6 0,2,3,7 0,2,4,7 0,3,4,7 0,3,5,6

(plus complements)

Hence there must be at least this many perfect 1-codes of length 15. We remark ttlat
there are other (possibly nonisomorphic) partitions than those listed below.

In Table 1 below the codewords are listed as subsets. Whenever a codeword is
in some C* so is its complement. Hence to save space we do not include complements.

4. Equivalence. Although there are a large number of nonisomorphic extended
perfect 1-codes of length 16, the number of nonequivalent codes can be realized by
the previous combinatorial construction could be drastically smaller. However, it
appears that here should be several thousand at least.

In support of this statement we point out that the six partitions, I-VI, listed above
are all nonequivalent, not just.nonisomorphic, even though each of the sets C* is
equivalent to the (linear) extended Hamming code of length 8. We use the "distance
graphs" mentioned earlier to establish this claim.

Given a partition Co*, C*,..., C,*, where each C* is an extended perfect 1-code,
define a graph Gij on C* LI C for each #-j, i, j 0, 1,..., n. The codewords are
the vertices and two codewords are adjacent if and only if their Hamming distance
is two. Since distance is invariant under equivalence, equivalence partitions must have
isomorphic collections of graphs G0..

In the case at hand, each Gii is a 4-regular bipartite graph on 32 vertices. The
subgraph F induced by the codewords of weight two in C* U Cf (i,/" -> 1) is 2-regular
and will be either an 8-cycle or two disjoint 4-cycles. If it is an 8-cycle then it is easy
to see that the containing graph G0. must consist of one component. If Fi consists of
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tWO 4-cycles then Gij can have two components. Since the subgraphs Fij characterize
the nonisomorphic 1-factorizations of K8 and have been well studied (cf. Brouwer [2,
pp. 5-10]) we can use this information to quickly determine that the sets of graphs
G# for the different partitions, are not isomorphic and hence the partitions are not
equivalent.

Establishing the existence of nonequivalent partitions, unfortunately, is only a
first step to establishing a lower bound on the number of nonequivalent perfect 1-codes
of length 16. However it does lend support to the conjecture that there are at least
several thousand such codes.

5. Conclusion. Finding all partitions of V7 associated with the Hamming codes
is a computationally tractable problem. From these reasonable lower bounds on the
number of nonequivalent perfect codes of length 15 could be computed. For the
vector space over GF(2) of dimension 15 (i.e., the next case), the problem will not
be tractable.

Recent work (unpublished, F. Hergert) has established that some previously
known perfect 1-codes of length 15 (cf. Vasil’ev [9], Bauer, Ganter, and Hergert [1])
cannot be realized by the combinatorial construction presented above. It would be
interesting to see how the algebraic techniques of Bauer, Ganter and Hergert relate
to the combinatorial techniques discussed above.
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ESTIMATION OF SPARSE JACOBIAN MATRICES*

GARRY N. NEWSAMt AND JOHN D. RAMSDELL

Abstract. When finding a numerical solution to a system of nonlinear equations, one often estimates
the Jacobian by finite differences. Curtis, Powell and Reid [J. Inst. Math. Applics., 13 (1974), pp. 117-119]
presented an algorithm that reduces the number of function evaluations required to estimate the Jacobian
by taking advantage of sparsity. We show that the problem of finding the best of the Curtis, Powell and
Reid type algorithms is NP-complete, and then propose two procedures for estimating the Jacobian that
may use fewer function evaluations.

Key words, sparse nonlinear equations, sparse Jacobian estimation, raoh colorin

1. Notation.
Z is the integers modulo n.
x is a vector in R with components x0, Xl, , xn-1.
X is an n m matrix.

X. is the/’th column of X.
Xij is the th component of the column vector X.
xk is one of a collection of vectors in R.
g(x) is a function g" R" R.
f(x) is a function f R-R.
c3/c3xi will be abbreviated by 0i.
0g(x) is the row vector whose components are 0ig(x).
J(x) is the Jacobian matrix, i.e. Jij (x) 0fi (x).

2. Introduction. When solving a system of n nonlinear equations

() f(x) 0,

many algorithms require the estimation of the Jacobian matrix. The most straightfor-
ward estimate, requiring n + 1 function evaluations and n vector differences, is

f(x + h/,.) f(x)
J,.(x)-- 0;f(x)

h

where I is the identity matrix and h is a small parameter.
In many large systems J(x) is sparse; if a particular element Ji(x) is known to be

zero, then obviously f(x + hI) need not be calculated. However in many applications
the components of f cannot be calculated independently, e.g. in a program in which
the evaluation of all components of f is done using a single call to a procedure. For
such a system it is no longer obvious how to take advantage of sparsity to reduce the
number of function evaluations needed to approximate J(x).

Nevertheless Curtis, Powell and Reid, henceforth abbreviated to CPR, have
shown in [3] how to approximate the Jacobian using fewer than n + 1 function
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evaluations. They realized that if the sparsity of J(x) is such that for two columns J.(x)
and Jk (x), Jij(X) 0 or Jik (X) 0 for every i, then

Jij (x) or J/k (X) Jij (x) + Jik (x) fi (x + hI. + hIk f(x)

Thus the evaluation of f at x and x + hI + hIk gives one difference from which two
columns of J(x) may be estimated. In [3], CPR use the above principle to construct
m -< n vectors Xk from the given zero-nonzero structure of J(x). X has the property
that every column of J (x) may be estimated from some difference f(x +Xk) f(x), and,
where possible, several columns are estimated simultaneously from the same
difference.

CPR left unanswered the question of whether the m + 1 function evaluations
used to estimate J(x) were minimal. We therefore address the general problem of
estimating a sparse Jacobian in a minimum number of function evaluations under the
constraint that the components of f cannot be evaluated independently. The thrust
of the paper is the use of precise definitions of admissible estimates to solve this
problem. In the next section we formalize the CPR principle and define admissible
estimates based on the principle. We give a complete account of the complexity of
finding admissible CPR estimates using a minimum number of function evaluations;
we show in general that such estimates are hard to construct, but give an example in
which they can be found with ease. In 4 we propose a broader definition of admissible
estimations and show that under this definition, the Jacobian can be estimated with
m + 1 function evaluations, where m is the maximum of the number of nonzero
elements in any row of the Jacobian. This estimate requires the same number or fewer
function evaluations than the CPR estimate, but in general to find this approximation
an additional n small linear systems must be solved. By comparison in CPR estimates
the elements J0.(x) may be read off directly from a matrix of differences. Finally, in
the Appendix, we consider an extension of the CPR principle.

For clarity J(x) has been presented as a square matrix, but a trivial padding
construction extends the results below to the estimation of rectangular J(x) (i.e. the
system in (1) is either under or over determined). We leave such constructions to the
reader and where it is convenient to work with rectangular Jacobians we shall do so,
with the implicit assumption that such a padding will be used to render the Jacobian
square.

It follows that the algorithms described will efficiently estimate J(x) when f(x)
may be partitioned into two or more subvectors fi (x) such that fi (x) can be calculated
independently of i (x) for , but the components of f (x) must be calculated together.
Such a partition of f(x) induces a corresponding partition of J(x) into rectangular
submatrices, e.g.

f(x)- Lf=(x)j =>J(x)-

Efficient estimation of J(x) now reduces to the independent problems of efficient
estimation of each Ji (x) from differences of the form f (x +X f (x).

3. The CPR principle and Jacobian estimation. CPR reduce the number of
function evaluations required to estimate the Jacobian by taking advantage of
the zero-nonzero structure of the Jacobian matrix. Actually CPR take advantage
of the known-unknown structure of the Jacobian matrix. Without loss of generality,
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the known elements can be replaced by zeros by defining M(x) and J(x) as

(x)
0

if Jij(x) is known,
otherwise,

and J(x)-- J(x)-M(x). Then J(x) has the required zero-nonzero structure for the
application of the CPR principle. The CPR approach is best described using the
concept of isolated variables in (1).

DEFINITION 1. xi is isolated from xj iff ’q’x Vk Z, (gifk (X) c3ifk (X) 0.
This concept allows a formal statement of the CPR principle outlined in the

introduction and an associated definition of an m-CPR-estimable Jacobian.
DEFINITION 2. The CPR principle. Let {Ck } ’_50 be a partition of Z,. For all Ck

the columns Ji(x) may be estimated from one difference

f(x +Xk f(x) with Xk h E I
iC

if Vi, Ck, -- or x is isolated from x..
DEFINITION 3. The Jacobian J(x) is m-CPR-estimable iff there exists an n m

matrix X, as in Definition 2, such that every column of J(x) may be estimated from
one column of the matrix B (x) where

B" R" - Rn", Bk (X) f(x + Xt, f(x),

and columns estimated by the same difference correspond to isolated variables.
To establish the complexity of deciding whether an arbitrary Jacobian is m-CPR-

estimable, we first show that the problem is equivalent to deciding if a special graph
is m-colorable, thus showing that the problem is no harder than graph coloring. We
next show that if we could decide whether any Jacobian is m-CPR-estimable then we
could decide if an arbitrary graph is m-colorable. This shows graph coloring is no
harder than finding a CPR estimation. Therefore they have the same complexity and
finding an m-CPR-estimation with the smallest m is equivalent to finding a minimum
graph coloring, an NP-complete problem [4], [5].

3.1. Graph coloring. A graph G (V, E) is a set V of vertices and a set E of
edges which are unordered pairs of vertices. An edge e is denoted by (u, v) and
connects vertex u to vertex v. An m-coloring of the graph is an assignment of one of
rn colors to each vertex such that no two vertices in the graph have the same color
if they are connected by an edge. A minimum coloring is a coloring of the graph such
that there exists no coloring of the graph using a smaller number of colors.

3.2. The variable isolation graph. To reduce CPR estimation to graph coloring
we construct for every Jacobian J(x) an associated graph G such that an m-CPR-
estimation of J(x) is equivalent to an m-coloring of G.

DEFINITION 4. The variable isolation graph G (V, E) associated with (1) is

V=(x0, x,""", x_}

E ((xi, x’)lxi is not isolated from x}.

THEOREM 1. The variable isolation graph is m-colorable iff J(x) is m-CPR-
estimable.

Proof. Given an m-CPR-estimation, we can color the variable isolation graph
with rn colors by assigning the same color to vertices corresponding to columns
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evaluated together. Variables of the same color will not be connected because they
must be isolated for the associated columns to be estimated simultaneously. Given
an m-coloring of the variable isolation graph, one constructs an m-CPR-estimation
of the Jacobian by estimating columns associated with vertices of the same color in
the same vector difference.

3.3. The incidence matrix. We now show that every graph G is the variable
isolation graph of some Jacobian J(x).

DEFINITION 5. The incidence matrix DRIEllvl associated with an arbitrary
graph G (V, E) has entries Dii Dig 1 iff ei (vi, Vk) with the remaining elements
being zero.

THEOREM 2. G is m-colorable iff the incidence matrix D is m-CPR-estimable.
Proof. The incidence matrix D of G is the Jacobian of the function f" RIvI RIEI

defined by

fi(X) Xj + Xk iff ei (vj,

G is the variable isolation graph of f and from Theorem 1 G is m-colorable iff
Jacobian is m-CPR-estimable.

We have shown that an arbitrary n n Jacobian is m-CPR-estimable iff the
associated isolation graph on n vertices is m-colorable, and that an arbitrary graph
on n vertices is m-colorable iff the associated incidence matrix of dimension at most
n2/2 n2/2 is m-CPR-estimable. This shows that the complexities of graph coloring
and CPR estimation are the same.

3.4. Minimum CPR algorithms. A minimum CPR algorithm is an algorithm
which takes the structure of an arbitrary Jacobian J(x) as input and outputs the smallest
m such that J(x) is m-CPR-estimable together with an X that achieves this estimate.
Since deciding if an arbitrary Jacobian is m-CPR-estimable is NP-complete, one cannot
construct an efficient minimum CPR algorithm for arbitrary Jacobians in the same
sense that one cannot construct an efficient algorithm for minimum graph coloring of
arbitrary graphs. Therefore one must use some approximate algorithm [3], or, by
Theorem 1, an approximate algorithm for minimum graph coloring [2].

For particular problems with regular structure exact minima may be easily found.
A practical example arises in the solution of nonlinear partial differential equations

(Pu)(s, t) 0

on square domains. If the differential operator is replaced by a finite difference operator
using function values on an m m grid of points (si, ti) (giving a new operator P) the
problem is now a system of n m nonlinear equations in m z variables;

Xi] ll (Si, ti), fii(x) (Pu)(Si, ti)

where the double index i/" represents the single index + m].
If the finite difference scheme gives a 5 point stencil, two stencils centered at

and Xkl overlap iff I](i, ’)-(k, l)llx =< 2. Overlapping stencils indicate nonisolated vari-
ables. The variable isolation graph for a 5 point stencil is

V {xi; i, j Z,,},

E {(xi, x/) [l(i,/’) -(k,/)[Ix -<- 2}.
A minimum coloring of this graph is given by

color (x/i)-= (i + 3/’) mod 5.
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The matrix X with 5 columns is given by

XsRn5, Xk=h .,
peCk

Ck {i + m/" color (xq) k }.

If the finite difference scheme leads to a 9 point stencil, then stencils overlap iff
II(e, f)-(k, Z)llo-<-2 and a minimum coloring is given by

color (x/i) (i -4- 3/’) mod 9.

4. More general Jacobian estimation. In the previous section we addressed the
question of whether a Jacobian is m-estimable under the restriction that estimates be
made using the CPR principle only. The principle gives an intuitive but limited insight
into possibilities of efficient estimation. Since each difference is processed indepen-
dently of all others, information about an element that appears in more than one
difference is not pooled. Furthermore differences are restricted to essentially the
standard coordinate directions. The following simple example illustrates these limita-
tions and indicates how more efficient estimates are possible.

Example. If J(x) has the zero-nonzero structure

](x)

x x 0 x
X X X 0
0 X X <0 0 x

then the associated variable isolation graph is the complete graph on four vertices.
Therefore a minimum coloring requires four colors and a CPR estimate requires five
function evaluations. However with the choice of

1 0 1

X=h
0
0

and the matrix B defined in Definition 3,

B JX=h

Oofo+a3fo al[O Oofo
O0[1 Olfl aOfl + a2fl
a3f2 0112 a2[2
c33f3 0 a2f3

and J(x) may be read off from B using two subtractions. This estimate requires only
four function evaluations.

This section presents a more general definition of a Jacobian estimate, based on
local approximations by affine functions, that includes estimates such as that in the
example. With this estimate and a careful choice of matrix X, a Jacobian with known
zero-nonzero structure may be estimated using m + 1 function evaluations, where m
is the greatest number of nonzero elements in any row of J(x). Moreover this is the
minimum possible number with which J(x) may be estimated. The matrix X is chosen
so that the estimate J is the unique matrix with the same sparsity as J(x) that minimizes
IIxrJr--Brl[F, where [1" IIF is the Frobenius norm and B is defined in Definition 3.
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4.1. A general gradient estimate. The ith row of the Jacobian J(x) is the gradient
of the ith component function of the vector f(x). Therefore a definition of a Jacobian
estimate may be decomposed to give a definition of a gradient estimate, and conversely
a Jacobian estimate definition may be constructed from a gradient estimate definition.
For a scalar function g(x) with gradient Og(x), reasonable conditions that an estimate
z to Og(x)T at x, constructed from the function values g(xk) at the points xk, k Zm/l,
should satisfy are

(i) z is unique.
(ii) z is a linear function of the data g(x); i.e. if z and z’ are estimates to c3g(x)

and gg’(x) constructed from data over the same points x then/z+yz’ will be the
estimate to (flg + 3,g’)(x) constructed from data on the points x.

(iii) zT is the gradient of an affine function which is a best approximation to g(x)
on the points x in some norm.

An affine function h (x) with gradient zT may be written as

h (x) + z (x- x")

where ce R is undetermined. Condition (iii) requires that for each estimate there
exists a scalar d such that the pair (d, ) minimize IIr( , z)l[ where

rR"+1, rk=g(x)----zT(x--x’n), kZm+l.
After definition of the vectors

c R"+1, c g(x),
(2) e R", ek 1,

and the matrices
XRnm, Xk =Xk--Xm,

(3)
A e R("+I("+ A 0T

the condition is equivalent to requiring that , [] minimize ]lAy-eli. The only p for
which the solution to this minimization problem with a norm [1. 1[. l[p depends linearly
on the data e is p 2. Therefore from here on we assume [. [. [[. Conditions (i-iii)
now give the following definition of a gradient estimate.

DEFINITION 6. is the best affine estimate of Og(x)r at x with respect to the
points x and function values g(x) iff there exists a scalar 5 such that the vector

[] is the unique vector that minimizes [[Ay-e[[, where A and e are defined in (2)
and (3).

Before estimates using a minimum number of function evaluations may be
constructed, necessary and sufficient conditions for their existence are needed. There
is always at least one vector that minimizes [lAy-e[[; estimates are distinguished by
the requirement that they be the unique minimizer. This uniqueness criterion, together
with the form of A, immediately gives the following results on existence of estimates.

PROPOSITION I. A gradient 0g(x) is m-estimable from the m + 1 function values
g (x) ig m n and the matrix X of (3) has full rank.

Definition 6 does not require that x e {x, x, ., x}. If it is then we shall assume
x x and the gradient approximation so formed corresponds to a one-sided difference
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approximation to a derivative. If x is in the interior of the convex hull of {x, x1,
then the estimate corresponds to a centered difference.

4.2. Estimates using a priori knowledge. The estimate of Definition 6 used no
knowledge of g(x) apart from the function values g(xk). In the presence of a priori
knowledge of g (x), such as the zero-nonzero structure of Og (x), we change the definition
to take advantage of such knowledge, giving an estimate that is the solution of a
constrained least squares minimization.

The knowledge that p elements of 0g(x) are zero is a special case of a priori
knowledge that 0g(x) satisfies p linearly independent constraints, i.e.

(4) W 0g
7" d, W s R"", d s R".

With such predetermined conditions on 0g(x) the definition of a gradient estimate
becomes:

DEFINITION 7. Z is the best affine estimate for 0g(x)T at x with respect to the
points xk, function values g(x) and constraints of (4) iff there exists a scalar d such
that i satisfies Wi=d and the vector =[] is the unique vector that minimizes
Ilay-cl[.

This definition implicitly rates a priori knowledge higher than knowledge of
function values to give a constrained linear least squares problem. The next proposition
gives necessary and sufficient conditions for the existence of a unique solution to such
a problem, deduced from the solution characterization given in [1]; the proof is left
to the reader.

PROPOSITION 2. A gradient 0g(x) satisfying (4) is m-estimable from the m + 1
function values g (x) iff m >-_ n -p and the matrix Ixw’] has full rank.

In the special case of sparsity Proposition 2 reduces to
PROPOSITION 3. If 0/g(x)= 0,/’ C, [C[ p, 0g(x) is m-estimable from the m + 1

function values g(x) iff m >-n-p and the matrix ," formed by deletion of the p
columns X, f Cfrom X7" has full rank.

In gradient estimation at a point x g (x) is usually already available so for efficiency
x is included among the points x, i.e. x x’. Since the gradient is to be estimated at
x, the affine approximation is usually required to be exact at x, i.e. 6-= g(x’)=-g(x).
Under these restrictions the minimizations in the above definitions reduce to minimiz-
ation of [Ixrz-bll where b g(xk) g(x). However the conditions under which these
restricted estimates exist are still given by Propositions 1-3.

4.3. A Jacobian estimate using a priori knowledge. We now generate a definition
of an estimate of a sparse Jacobian J(x) from the above definition of a gradient
estimate by use of the following construction principle.

Principle. J is an estimate of J(x) iff the ith row of J is an estimate of 0fi (x).
DErINTION 8. The matrix J is the best affine estimate of J(x) at x with respect

to the m + 1 points x and function values f(x) iff there exists a vector ff _R" such
that for each/" Z,, ff has the same sparsity as J(x) and the vector . [a] is the
unique vector that minimizes IIA c tl, where

Y s R(m+l)(n+l) C R"(re+l) C f(x).
If the restrictions outlined in the last paragraph of 4.2 are applied to each component
function, Definition 8 takes on the form:

DEFINITION 9. J is the best affine estimate if J(x) at x with respect to the m + 1
points x

g
and function values f(xk) iff ] is the unique matrix having the same sparsity

as J(x) that minimizes [[xTjT--BT[IF, where B is the matrix of Definition 3.
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The reduction to the Frobenius norm is made possible by the independence of
the least squares problems of estimating each row of J.

Proposition 3 may be expanded using the construction principle to provide
necessary and sufficient conditions for the existence of the estimates of Definition 8.

PROPOSITION 4. J(x) is m-estimable from the m + 1 function values f(xg) iff
m =>maxiz, (n-pi), where p. is the number of zero elements in the/’th row of J(x),
and every matrix 7- formed by deletion of columns in X corresponding to
zeros in the/’th row of J(x) has full rank.

We now prove the main result of this section; that it is always possible to construct
a matrix X so that a Jacobian with given sparsity may be estimated in the minimum
number of function evaluations required by Proposition 4.

THEOREM 3. J(x) is m-estimable iff m _->maxiz, (n-pi).
Proof. For the proof it suffices to construct a matrix X of size m n such that

deletion of any P miniz, p. or more columns leaves a submatrix9 with full rank.
One such matrix is the rectangular Vandermonde matrix

where Aj Ak if j : k. Suppose P or more columns are deleted, leaving only columns
X.k, k ZK, K =< n-P m forming the m K matrix ,7-. Then the upper K K
submatrix ., 7-, of ,7- is a square Vandermonde matrix

with

--TtXik i j., i, k ZK

det (.r,)= I-[ (Ai A.,) # 0.

Therefore ,r’ is nonsingular and 37" has full rank.

4.4. The choice of matrix X. Theorem 3 gives a minimum size for the linear
equations that must be solved in efficient Jacobian estimation. It remains to choose
the matrix X so that these systems may be solved with minimum effort and maximum
accuracy. Two issues that arise are scaling and conditioning.

In the examples aboveX involved a small parameter h. It is convenient to separate
the small parameter from the direction of the differences. This is done by writing X
as D1XID2 where the De are diagonal matrices and X1 is normalized so that each
new row has Euclidean norm 1. Then Dlkk represents scaling done on each variable
Xk and D2kk represents scaling done on each directional difference Xk, e.g. D2kk
hllgkll-. Further scaling on B may be necessary, but this does not affect X. From
here on we shall not distinguish between X and X.

The Vandermonde matrices used in the proof of Theorem 3 are notoriously
ill-conditioned. However we know of no class of matrices with provably good condition
numbers and the requisite rank properties that might serve in their place. The next
proposition indicates that for a fixed choice of A. an improvement in conditioning, as
measured by the determinant, is gained with

T(5) Xii ciTi(Ai)

where Ti is a th Chebyshev polynomial and c. is the appropriate normalizing constant.

When is complex analytic some improvement results with the use of the roots of unity as elements
of the Vandermonde matrix.
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PROPOSITION 5. If hj [--1, 1], f Zp and

Wij cjTi(hi), Xi, aih ,
where cj and di are chosen so that

y. y =1,
iZp iZp

then det (W) and det (X) satisfy

(6)

jZp

1 >-[det (W)l >--Idet (X)[,

2(2-p)/ldet (X)I >- Idet (W)I->- ,,--- Idet (X) I.

Pro@ By Hadamard’s inequality for determinants

det2(W) <= n (z W’) --<1;
jZp

likewise Idet (X)] <- 1. Since determinants are homogeneous of degree 1 under multipli-
cation of rows or columns by scalars and invariant under addition of rows to other rows

det (W)=det (c.T/(h,))= c det 2’h, + /3ikh
k=l

(7)

where ao 0 and ai 1 for ->_ 1

--( [I Ci 2’’) det (h)
i@Zp

=det (W) det (X).
di

Since T (h)]-< 1 for h e [- 1, 1], and h 1,

-1

_-<1

2p-3]
p/2

[det (W)[ _-> 2 [----j Idet (X)l.

The upper bound follows similarly from (7), since T0(,)--1 implies c =< 1 and , e
[-1, 1] implies I,1_-< 1 so that d>=p -1/2.

The bounds of Proposition 5 show that W is better conditioned than X, but also
that W may still be quite ill-conditioned. For instance if the p points hi are uniformly
distributed over [- 1, 1],

PI-I1i-1 i711 fi 2f (/9 2 i)
t(t-l)/2 p-1

det (X) I-I (hi h/’) H i’
i=1 ]=0 i=1 ]=1 p 1 i=1

Since

p-1

i1
p

y’. In/__<
i=2

ln x dx p lnp-p +1,
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we may show that

In2 3
det (X) <= ep2+p t" p

c = .4,
2 4

3
det (W) =< ep2+nfl In 2 -- --.05.

Because fl is less than zero det (W) will rapidly approach zero as p grows large.
Nevertheless numerical experiments suggest this more general Jacobian estima-

tion may have practical value. As a test, five 100 100 random matrices were gener-
ated, each with approximately 90% of its elements zero. For each matrix the maximum
number, m, of nonzero elements in any row was found and the m 100 matrix

X =c. cos ((2/" + 1)i’rr/2n) of (5) was formed. Trials indicated that this choice of the
points A. performed better than an even distribution. Finally the condition numbers
of each of the one hundred m (100-pi) submatrices were calculated using singular
value decomposition. Table 1 gives the distribution of these condition numbers.

TABLE

Number of submatrices in each interval

Condition number 1-103 103-105 105-10 107-1010
Number of instances 471 25 3

The results show that almost all submatrices are well conditioned. The few large
condition numbers correspond to rows with a large number of adjacent or nearly
adjacent nonzero elements; such condition numbers can be reduced by simply permut-
ing the rows ofX so that in each3, the differences IAjk Ah [, k are reasonably large.

Some reduction in the cost of using the more general Jacobian estimation is
possible by noting that the problem of determining the points A. may be reduced from
a specification of n variables to one of k variables, if the isolation graph is k-colorable.

PROPOSITION 6. Given a coloring of the variable isolation graph of J(x), rows in
X corresponding to variables with the same color may be identical.

Proof. It suffices to show that two such columns XT and X" corresponding to
variables xi and x with the same color never appear in the same submatrix -T. If
they did, then for some column f2, --T --T T TJik and J.k (therefore Jik (x) and Jik (x)) would be
nonzero. But this implies columns and / of J(x) are not isolated, a contradiction.

Proposition 6 implies that we need only construct an m k matrix XT. If k and
m differ only slightly then a computationally efficient and tolerably ill-conditioned
choice for XT would be the m x m identity matrix with k-m appended columns of
the form c.A. For any submatrix 2T of size rn rn formed from XT expansion of
det (3r) about columns of the identity gives

det (Yr) det

where p<=k-m. Remes I-7] has
ilx

I()

shown that when kl then
{e ix, e , e i"-} satisfies the Haar condition on any finite interval. Therefore the
transformation A.k e" establishes that if Ai s (0, 1] then det (3T) 0 and X satisfies
Proposition 4.
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5. Concluding remarks. We have attempted to provide a clear idea of efficient
Jacobian estimation by careful definition of admissible estimates. In doing so we have
shown that the finding of most efficient estimates may be reduced to well studied
problems in graph theory or to constrained least squares problems. Furthermore the
approaches outlined here for Jacobians whose sole known property is their zero-
nonzero structure may be modified to produce characterizations of efficient estimates
for Jacobians with other constraints, such as symmetry as in [6].

The best estimate of the two estimates presented above and the third described
in the Appendix is obviously problem dependent, but some general comments may
be made. The computation of Jacobian estimates in an iterative solution to (1) divides
into fixed and repeated costs. Fixed costs include the graph colorings used by all three
estimates; they are computations that may be done independently of the values at
any iteration. A further fixed cost for the estimates of 4 would be the OR factoriz-
ations of matrices appearing in the linear least squares problems set up there. Repeated
costs are the computations necessary at each iteration and consist almost exclusively
of function evaluations. For CPR estimates and the EI estimates defined in the
Appendix the remaining repeated costs are trivial, consisting only of reading off J(x)
from B. Additional costs for the other estimate consist of at most 2n m rn matrix
multiplications, assuming the OR factorizations are already available, so are also
comparatively small.

For systems requiring a large number of iterations to solution fixed costs are
negligible. If a well conditioned matrix X can be obtained either from (5) or by the
method outlined after Proposition 6, then the estimates of 4 appear to be the best
choice for such systems. Otherwise EI estimates would be preferable to CPR estimates,
although the fixed cost of an EI estimate is the cost of an approximate solution of a
much larger graph coloring problem than for a CPR estimate.

In a report that came to the authors’ attention after this paper was submitted for
publication, Coleman and Mot6 [2] present a detailed study of CPR estimation. Using
a different proof, they demonstrate the equivalence of CPR estimation and graph
coloring, give some fast algorithms for generating approximate minimum colorings
and consider their performance on a wide range of problems. In the data appearing
there, only for randomly generated matrices does the number k of function evaluations
differ from rn by more than 50%, the usual difference being considerably less. These
results suggest that for many practical problems the most efficient estimation algorithm
would be construction of a k-CPR-estimation for a minimal k with the option of
using this to construct an estimate of 4, based on the matrix X described after
Proposition 6.

6. Appendix. The element isolation principle and Jacobian estimation. Efficient
CPR estimates of the Jacobian are constructed column by column. Two or more
columns are estimated from one difference, i.e. one column of the matrix B of
Definition 3, if and only if the columns correspond to isolated variables. In this section
the construction of estimates element by element is considered. With an extended
concept of isolation we show that two or more elements may be estimated from one
difference iff they are isolated. We link element isolation with graph theory to
determine the complexity of construction of estimations requiring a minimum number
of function evaluations. The discussion is terse as the analysis and results are very
similar to those on efficient CPR estimates.

DEFINITION 10. Ji] is isolated from J.q iff

Jiq=Jp=O or !"=q.
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The corresponding principle for efficient Jacobian estimation is the following.
DEFINITION 11. The EI (Element Isolation) principle. Let Ck be a set of double

subscripts. The ICk[ elements Jij(x), if Ck, may be estimated in one difference

f(x +Xk) f(x) where Xk h E Ii
i[=lj ijfk

if Vif, pq CkJii is isolated from J. Concepts of m-EI-estimability and the element
isolation graph are defined analogous to those of m-CPR-estimability and the variable
isolation graph.

It is obvious that any coloring of the variable isolation graph induces a coloring
of the element isolation graph, so estimation of a Jacobian by the EI principle requires
at most as many function evaluations as estimation by the CPR principle. The following
example, due to Eisenstadt [2], shows that a minimum EI estimate may use strictly
fewer function evaluations:

(8) 7(x)

-x 0 0 x 0 0-
0 x 0 0 x 0
0 0 x 0 0 x
x x x 0 0 0
x 0 0 0 x x
0 x 0 x 0 x
0 0 x x x 0

The variable isolation graph of the Jacobian in (8) is the complete graph on 6 vertices
so 7 function evaluations are needed for a minimum CPR estimate. This generalization
of CPR estimation allows estimates of nonzero elements in one column of the Jacobian
to be obtained from more than one difference. The choice of sets C

Co {00, **, 22},
Cl {03, 14, 25},
C2 {30, 40, 53, 63},
C3 {31, 51, 44, 64},
C4 {32, 62, 45, 55},

1 0 1 0 0
1 0 0 1 0
1 0 0 0 1
0 1 1 0 0
0 1 0 1 0
_0 1 0 0 1

shows that an E1 estimate is possible with only 6 function evaluations.
We now show that deciding if a Jacobian is m-EI-estimable is still an NP-complete

problem.
THEOREM 4. The element isolation graph is m-colorable iffJ (x) is m-EI-estimable.
Proof. The proof is that of Theorem 1 with the words "element" and "m-EI-

estimable replacing "variable" and m-CPR-estimable
A proof of the direct converse of Theorem 4, that every graph is the element

isolation graph of some Jacobian, is not possible. The graph in Fig. 1 is a counter
example; enumeration of all possible Jacobians with only four nonzero elements shows
that it cannot be an element isolation graph. Therefore we construct a graph G,, that
is a polynomial extension of G such that G,, is m-colorable iff G is m-colorable and
show that G,, is the element isolation of a particular Jacobian J(x).

DEFINITION 12. Given a graph G (V, E), the expansion graph G,(V, E) of G
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is defined by

s {jl(v, v) tz},

v= v u v2u v,
9"1 {1i Zlvl, j s,},

2 {vilvlli Zlvl},

3 (o+v.li Zv, k Z_},

E=EUE2UE3,

g {(i, Opo)[f P Si or q Sp},

3 {(O+lvl+l, fik+lVl+)[] k and f, k e Z-l}.

FIG.

Fig. 2 shows the expansion G3 Of the graph G in Fig. 1. In words, each vertex vi V
is replaced by a cluster of vertices t3ij V1 U V2. Each edge (v, Vp) E is replaced by a
collection of edges (Tij, pq) E1 such that every vertex in the ith cluster is connected
to a common vertex in the pth cluster and one vertex in the th cluster is connected
to every vertex in the pth cluster. V3 and E3 indicate that associated with each cluster
is a clique of size m- 1, E2 connects every vertex in the cluster to every vertex in
this clique and V2 contains a special vertex in the cluster that serves as a link between
cluster and clique.

cluster

clique

\

FIG. 2

THEOREM 5. A graph G is m-colorable iff the expansion graph G, is m-colorable.
Proof. If G has an m-coloring then assigning to each vertex in the th cluster the

color of vi and coloring the associated clique in the remaining m- 1 colors gives an



ESTIMATION OF SPARSE JACOBIAN MATRICES 417

m-coloring of Gin. If G,, has an m-coloring then the clique attached to the th cluster
forces all the vertices in the cluster to have the same color; so coloring vi with this
color produces an m-coloring of G.

THEOREM 6. An expansion graph Gm is also the element isolation graph of a
particular Jacobian J(x).

Proof. Let D be the incidence matrix of the original graph G. We expand D to
a matrix E3 of dimensions (IEI /lvl) m vl by adding to D IvI more rows in which

DILl+i, 1,

D[E[+i,]+[V[+i(m_l) 1,

and whose remaining entries are zero. The construction of a function f(x) for which
D is the Jacobian matrix is trivial; to establish the theorem it suffices to identify the
nonzero elements in D with the vertices in G,. If (vj, Vk) is the ith edge in G then D0
and Dik are nonzero and correspond to the vertices t3k and Tk V1 respectively. The
elements DiEt+i,i correspond to the vertices ilvI V2 and the remaining m 1 elements
in row IEI+i to the vertices in Q3 of the clique attached to the ith cluster. A
straightforward check shows that edges in E correspond to connections between
nonisolated elements in D. Equation (9) gives as an example the D for the graph of

(9) J(x)

x x 0 0

0 x x 0
0 X 0 X

0 0 x x
x 0 0 0 {x

0 X 0 0 0
0 0 x 0 {0

_0 0 0 x I0

x 0 0 0 0 0 0
0 x- x 0 0 0 0
0 0 0 x x 0 0
0 0 0 0 0 x x_

Theorem 4 shows that deciding whether a Jacobian is m-EI-estimable is no harder
than deciding whether a graph is m-colorable. Theorems 5 and 6 show that deciding
whether a Jacobian is m-EI-estimable is at least as hard as deciding whether an
arbitrary graph is m-colorable. We therefore conclude that the decision problem for
m-EI-estimability is NP-complete.

The concept of isolated elements and associated ideas such as element isolation
graphs provide a setting in which efficient estimation with other element by element
constraints, as well as sparsity, can be recast as well defined graph problems. In
particular they should provide a good starting point for further study of efficient
estimation of sparse Hessians, a topic considered in [6], since symmetry is one such
constraint.
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ERDIS-KO-RADO THEOREM--22 YEARS LATER*

M. DEZA" AND P. FRANKL

Abstract. In 1961 Erd6s, Ko, and Rado proved that, if a family : of k-subsets of an n-set is such
rt--lthat any 2 sets have at least elements in common, then for n large enough Irl =< (k-t). This result had

great impact on combinatorics. Here we give a survey of known and of some new generalizations and
analogues of this theorem. We consider mostly problems which were not included or were touched very
briefly in the survey papers [17], [46], [51], [61].

1. The Erd6s-Ko-Rado theorem. Let X ={x 1,". ,x,} be a finite set of
cardinality IxI n. 2x denotes the power set of X, while () stands for the set of all
k-subsets of X.

THEOREM 1.1 (Erd6s, Ko, Rado [15]). Let n, k, be integers, with n > k > > 0
and suppose is a family of k-subsets of X, i.e.

_
(). Suppose further that any two

members of intersect in at least elements. Then, for n > no(k, l),

b) (;,--’,) ifffor some Xo () we have {F (>D" Xo c F}.
Remark 1.2. Actually, in [15] the theorem was formulated for antichains with

IFI--< k, i.e. c (() kJ... L ()) and there are no F, F’ such that F F’ holds.
However, this version is an easy consequence of Theorem 1.1.

We say that a family,
_
2x is l-intersecting if for any F, F’ -, IF t3 F’I--> holds.

We define now a special class of/-intersecting families.
Let Xg be a subset of X of cardinality + 2i. Define {F (:): IF (3XI _-> + i}.

It is easy to see that for F, F’ one has IF (3 F’I--> l, i.e. is/-intersecting. Note that

max I[iff n >-(k-l+l)(l+l).
O<_i<_k-I

Thus Theorem 1.1 does not hold for n < (k + 1)(/+ 1).
THEOREM 1.3 [27]. Suppose >= 15, () and is l-intersecting.
a) If n > (k + 1)(l + 1), then

[[ <- (-tl), and equality holds iff is of the form @o.
b) If n (k -l + 1)(l + 1), then

and equality holds iff is of the form o or 1.
c) There exists an absolute constant c, c < 1, such that ]:or

c (k + 1)(1 + 1) <= n < (k + 1)(l + 1)
we have

(t / and equality holds iff is of the form 1.
Remark 1.4. In the case 1, Erd6s, Ko, and Rado proved that I-[ -< (-) itt

n =>2k. For 2<=I =< 14, in [27] 1-I _-< (-tt) is established for n =>2(k -l + 1)(/+ 1). The
original bound of Erd6s, Ko, and Rado was n -> + (k-/)(t)3. Hsieh [44] improved
this to n => + (k -l + 1)(! + 1)(k -l). In the case 1, n 2k each maximal (i.e. non-
extendable) family has maximum size (_-1).

* Received by the editors January 29, 1982, and in revised form July 15, 1982.
t Centre National de laRecherche Scientifique, 15 Quai Anatole France, 75007 Paris, France.
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The general case would be settled by the following
Conjecture 1.5 [27]. Suppose c (:) and is/-intersecting. Then

max
O<_i<_k-I

The case 2, n 2k, k even of the above conjecture was already conjectured
by Erd6s, Ko, and Rado.

The original proof of Theorem 1.1 and that of Theorem 1.3 use the so-called
exchange operation.

DEFINITION 1.6. Let - be a family of subsets of the ordered set X {x 1," ", xn},
1 <_-i </" _-< n. The exchange operation Ei.j is defined by

E..(F) F
if xC:F, xF, ({x}UF-{x}):,
otherwise,

Eid(;) {E,d(F): F 9;}.
This operation is called also compression or pushing. The main importance of

this operation lies in the followi.g easy lemma.
PROPOSITION 1.7. If 2 is l-intersecting, then Ei,I(.) is l-intersecting as well.
Iterating the exchange operation Ei.i for every pair 1 <-i <j -< n, at last we obtain

a family * which is stable i.e. Eid(;*) ’* for every 1 -< <j <-n.
For the case 1 of Theorem 1.1, Katona [45] gave a nice, simple proof,

Daykin [6] showed that this case is a consequence of the Kruskal-Katona theorem
(cf. [52], [48], [5]).

Remark 1.8. Let us define the graph G(n, k, l) whose vertex set is () and in
which (F, F’) is an edge iff IF fqF’[ < 1. Then Theorem 1.1 gives that for n > no(k, l)
the independence number a(G(n, k, l)) (,--l). Using the linear programming bound
for association schemes of Delsarte [7], in [59] Schrijver strengthened the Erd6s-Ko-
Rado theorem by proving that the capacity (cf. Shannon [60]) of G(n, k, l) is equal
to (-t) for n > n’(k, l). Brouwer and Frankl [3] showed that it holds for n > k:/2. It
would be interesting to know whether the same holds already for n => (k -l + 1)(/+ 1).

There is an exciting conjecture of Chvfital that is connected with the case 1.
To state it we need a definition.

A family r is said to be a simplicial complex (ideal, hereditary system, down-set)
if G cF " implies G .

For x eX let (x) denote {F e ’: x e F}.
Conjecture 1.9 (Chvfital [4]). Suppose r is a simplicial complex, 2x,

and any two elements of have nonempty intersection. Then I 1-<-maxx x ](x)l.
Remark 1.10. Chvital [4] proved that the conjecture is true for stable families

(with respect to the exchange operation). He also showed that the corresponding
statement fails for > 1. Kleitman [51] proposes an interesting new approach to this
conjecture.

2. Close relatives: stability of the extremal families, degree conditions, nonuni-
form case. One of the most natural questions to ask with respect to Theorem 1.1 is"
what happens if we exclude the optimal families, i.e. if we suppose there is no/-set

contained in all the members of the family. This problem was solved for the case
IF OF’[ _-> 1 i.e. 1 by Hilton and Milner [43] and for the general case in [25]:

THEOREM 2.1. Suppose ;c (), ; is 1-intersecting, but ItqFFl < l; moreover
is maximal with respect to these constraints. Then for n > no(k, l) (no(k, 1)= 2k):
a) k > 2l + 1 or k 3, 1. There exist D1, D2 c X, D1 (3D2 , IDol-- l, [D[-
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k + 1 such that

xb) k _-< 2l + 1. There is a D (l+) such that

Another natural question was asked by Erd6s, Rothschild, and Szemerdi (cf.
Erd6s [16]). Let c be an absolute constant, 0 <c < 1, and suppose along with the
conditions of Theorem 1.1, that every element x eX is contained in at most c] sets,
i.e. the degree ol every point is Ncll. What is the maximum of I and which are
the extremal systems as functions of c ? This question was completely answered for
several choices of c (c e or > c e in [25], c < by Ffiredi [35])"

THEOREM 2.2. Suppose (), F F’ and for every x X, [(x )l c.
Moreover, suppose is maximal subject to these constraints. Then for n > no(k, c),
c > , one of the following possibilities holds"

a) < c < 1. There exists D () such that

b) c ]. There exists D e () such that

c) 53- < c < . There exists an c (:), I[ 1 O, A A’ ]:or all A, A’ s, and
ILJAA[ <- 6 (there are 6 nonisomorph possibilities), such that

={F ()" A,AF}.
d) < c . Leto be the family among those in c) which has IXo UA]= 6 and

every point ofXo has degree 5.

= {F ()" ao,aF}.
e) c . The family o and Xo is as in d),

f) < c < . There exists V (), () such that {P, P, a
projective plane o order 2 on V (i.e. IP 3, IP P 1, 1 ] 7) such that

={F ()" P,P=F}.
Ffiredi [35] proved the following general theorem, too.
THEOREM 2.3. With the conditions of Theorem 2.2, there exists a sequence 1 c >

c2 >"" >c >... of positive constants tending to 0 as s such that for ci c <
hoMs. Moreover, g a projective plane of order i-1 exists, then
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ci i/(i2-i + 1). (Note that I :l fl(n) means thatforfixed k and c there exist constants
do, dl such that for every n we have don <-IST] <-dn.)

If we do not make restrictions on IF[ for F , we have
THEOREM 2.4 (Katona [47], Kleitman [49]). Suppose o 2x, IF F’[ 2 for

F, F’ , and is maximal. Then
a) n + 2t.

={F=X: IFlt}.
b) n + 2t + 1. There exists an x X such that

{F = X: IF (X {x})l t}.

Remark 2.5. In the case l= 1, one trivially has ][2"-1 (if Fs then
(X-F) ) and, as in the case n 2k of Theorem 1.1, every nonextendable family

has I 2"-.
Let us also mention
THZOEM 2.6 (Milner [56]). Suppose 2x is an l-intersecting antichain. Then

+ + Moreover, or n + even equality holds iff=
2

Remark 2.7. It is shown in [24] that for n +l 2t + 1 there is only one more
possibility for equality, namely

={F (tl)’ YF}U{F ()" Y cF}, where Y ()is fixed.

TOM 2.8 (Hilton [42]). Suppose c 2x, g N IF h VF , where
0 < h N n, g N min (h, n h). Moreover, is l-intersecting. Then

gNiNh

TOM 2.9 (Green, Katona, Kleitman [36]). Suppose c 2x is an antichain
with IFI n/2 and F F’ [or F, F’ e . Then

<1
F F

3. Families with prescribed eardinalifies [or pairwise intersection. In this section
we consider the following general problem.

LetL {l, 12, , Is} be a set of integers with 0 l <.. < l < k. A family = ()
is called an (n, k, L)-system if for all F F’ we have IF F’I L. What is the
maximum cardinality of an (n, k, l)-system, which are the optimal families?

THEOREM 3.1 (Deza, Erd6s, Frankl [I 0]). Suppose is an (n, k, L)-system. Then
a) For n > no(k, L)

n I
==sk -li

b) There exists a constant c c(k, L) such that

n-l 
k-l

implies (l- l)[(l- l). .[(k l) and Xoe () such that Xo F,
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Remark 3.2. Theorem 1.1 is the case L {/, + 1,. , k 1}. The case of equality
in a) corresponds to perfect matroid designs, i.e. matroids in which any two fiats of
the same rank have the same size (for survey see Deza and Singhi [11]).

Remark 3.3. The case s 1 of the above theorem was earlier proved in [8],
where for c c(k, L) the best possible bound k2_ k + 2 is established. The case s 2
was settled by Deza, Erd6s and Singhi [9].

The following theorem combines results of Frankl and Wilson [33], and Frankl
and Rosenberg [32]:

THEOREM 3.4. Suppose is an (n,k,L)-system, r>-2, integer, such that
kli(mod r) for 1,..., s. Suppose the li’s lie in altogether different congruence
class mod r.

a) If r is a prime, then

b) If r is a prime power, then

n

c) If t 1, then

Remark 3.5. If we choose r to be a prime with r > k, then k lg (mod r) and s,
thus we obtain (7), which was proved by Ray-Chaudhuri and Wilson [58]. The
case c) improves earlier results by Babai and Frankl [1] and Deza and Rosenberg [14].

Remark 3.6. Theorem 3.4 has important applications. Here we sketch one of
them. Let Gn be the graph whose vertices are the points in En, the Euclidean space
of dimension n, and the edges those pairs of points whose Euclidean distance is 1.
Suppose this graph has chromatic number m, and let E"= B1 t.J B2 I,.J... I,.J B, be a
corresponding coloration. Let p be a prime (we shall fix it later) and let X denote the
set of points x (xl,... ,x,) in E" which satisfy xi =0 for n -2p+ 1 and xi 1/x/p
for 2p-1 values of i. For x X define F(x)={i" xi 1/x/p}. Then F(x) is a (2p-
1)-subset of {1,..., n}, and x,x’ are at distance 1 if and only if [F(x)fqF(x’)l=p 1
holds. Applying Theorem 3.4 with k 2p 1, r p, L {0, 1,. ., p 2, p,. ., 2p 2}
we obtain [X f’lBil<-(p"_) for i-1,..., m. Thus m _->(2pL1)/(p) holds. Choosing
p---(2-x/-)n/4 we infer m_->(1.2)" i.e. the chromatic number of Gn is growing
exponentially.

Both Theorem 3.1 and Theorem 3.4 deal with general L; they can be improved
for particular choices of k and L. Let us denote by re(n, k, L) max I-[, is an
(n, k, L)-system.

In [30] and [19] the correct order of magnitude of re(n, k, L) (i.e. upper and lower
bounds which are only a constant factor apart) is determined for k -< 7 and k 8, 9 and
L is arbitrary.

In [19] the case ILl- 3 is considered. Necessary and sufficient conditions are given
for m (n, k, L) O(n) and m (n, k, L) _-> O(n 2).

As a curiosity let us mention that re(n, 12543, {0, 112, 1233})- O(n) itt there is
no projective plane of order 10.

A conjecture of Erd6s and S6s (cf. Erd6s [16]) was proved in [26]:
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THEOREM 3.7. For n >--no(k), k _-> 4,

m(n,k,{O, 2,3,..., k- 1}) (-)
and ;attains this bound ifffor some x, y X we have " {F (:): {x, y } c F}.

Erd6s and Frankl have the following general conjecture.
Conjecture 3.8. Suppose n > no(k, l), k > >- O.
a) If k > 2l + 1, then

m(n,k,{0,1,...,k}-{/})=
k-l-

and for -c (:) equality holds if and only if for some Y (l+X) we have -=
{F (): Y

_
F}.

b) If k _<-21 + 1, then

m(n,k,{O, 1 ..., k}-{l})<(7)(2k-l-1)/(2k-l-1)= k

and equality holds for r c (7) iff them exists an (l, 2k 1, n)-Steiner system, ’, and-{F s (c): there exists an S " with F
_

S}.
(A (t, s, n)-Steiner system is a family of s-subsets of an n-set, such that each

t-subset is contained in exactly one member of the family.)
Using Theorem 3.4b, it was proved in [33] that the inequality of Conjecture 3.8b

is true if k =< 2l + 1, and k -l is a prime power.
Combining a result of [29] and part b) of Theorem 3.4, we have
THEOREM 3.9. If k >- 3l + 2 or if k > 21 + 1 and k is a prime power, then

((n-l-ll))m(n,k,{O, 1,...,k-1}-{/})= 1+o(1)
k-l-

The determination of the correct order of magnitude of re(n, k, L) seems to be
hopeless. We cannot even decide whether there exists some integer k which is not of
the form 2 1 or 3b but m (n, k, {0, 1, 3}) > cn3for some positive constant c (any such
k should satisfy k -= 1 or 3 (mod 6)).

4. More generalizations of the Erd6s-Ko-Rado theorem for systems o| finite sets.
THEOREM 4.1 (Erd6s [18]). Let s >=2 be an integer, -= (c), and suppose ;does

not contain F1, ", Fs such that Fi f’)F. f for all <- <f <- k. Then for n > no(k, s)

].1<()_(n -s+l)k

and equality holds ifffor some Y (sx_). r= {F ()" F fq Y }.
Remark 4.2. The case s 2 corresponds to the case 1 of Theorem 1.1. As to

the bound no(k,s) we conjecture no(k,r)<ckr but only no(k,s)<-2k3s (Bollobas,
Daykin, Erd6s [2]) and no(k,s)<-c’ks 2 ([19]) are known. In [31] under much more
general conditions a weaker estimate [[ < ken k- is proved.

Remark 4.3. For the case > 1 of Theorem 1.1., Hajnal and Rothschild [41] gave
the corresponding generalization. In Deza, Erd6s, Frankl [10] asymptotic bounds, were
obtained for the more general case: if among any s members F, ., F of there are
two with [F fq F.[ L.
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Kleitman [50] considered the problem of maximizing Il such that ’c 2x, "contains no s pairwise disjoint sets, i.e. the nonuniform case. He obtained best possible
bounds for n -= 0,-1 (mod s).

There are several generalizations of Theorem 1.1 to multiple intersections. We
list some of them below.

THEOREM 4.4 [23]. Suppose (), any members of have nonempty
intersection and n >-(t/(t- 1))k. Then

Remark 4.5. The restriction n >= (t/ (t -1))k is best possible, since for k >
((t-1)/t)n any sets of cardinality k have nonempty intersection. It would be very
interesting to obtain best possible bounds also for the case > 1, analogously with
Theorem 1.3. The case " is an antichain was solved for n > 1.000, 3 in [23] and for
-> 4 by Gronau [38], who also settled most of the remaining cases for 3 (cf. Gronau

[39], [40]).
XLet X (+a) and define , {F ()" IF f’l XI-> + (t- 1)i}.

Confecture 4.6. Suppose "c (:), /F1, ", Ft , IF fq’ Cl F,I --> holds. Then

<-- max
Oik

This conjecture would generalize Conjecture 1.. With the above notation, define
{A X: [AfqX[>-_l+(t-1)i}. Then2x and for every A1,... ,A, of

course, [A (3.. f3 At[ _-> holds.
Conjecture 4.7 [28]. Suppose 4 c 2x and A1, ,A , [A (q" "Atl->-

holds. Then

lai <-- max
O<--<_i_(n-l)/t

In [28], this conjecture is proved for _<-t2t/150. Theorem 2.4 shows that it holds
for 2. In [20], it is proved for 2, 3(lag[ <_-I,1 2-=).

Most of the theorems could have been formulated for unions instead of intersec-
tions-it suffices to take the complement of the sets. However, if we make restrictions
on both unions and intersections at the same time, interesting new problems arise.
The following result was conjectured by Katona in [46].

THEOREM 4.8 [22]. Let n > >= 1 and suppose c 2x such that tF1, F2 ,
F f"l F2 # , IF1 tAF2l<-n -l.

a) If n 1 + 2t, then

b) If n l + 2t + l, then

Here we give a new and short proof of Theorem 4.8 using a result of Chvital
(mentioned in Remark 1.10) and Theorem 2.4 (Katona, Kleitman).

Let be as in the theorem. Define , {G" :IF , G c_c_ F}. Then c. and, is an ideal, the ideal generated by r. Moreover for F, F’ e ,, IF CI F’I-< n holds.
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Let us apply repeatedly the exchange operation (cf. Definition 1.6) to ,. At
last we obtain a family which is stable under this operation. Let it be M, and let

’ M, the family corresponding to . Of course I1 Il, satisfies the assumptions
of the theorem, and for all A, A’ .., IA LI A’] -< n holds.

As . is hereditary, stable, and any two elements of ’ have nonempty intersec-
tion, we may apply the above cited result of Chvfital: there exists x e X, such that
I,,(x) {,A e,," x

Set {A-{x}" A e,,(x)},
For A, A’ e ,, IA [-J A’] _-< n 1 I. Thus for B, B’ e , IB fq B’I => holds. We may

apply Theorem 2.4 to

For the general case we have
Conjecture 4.9 [21]. Let l, r >-2 be integers. Suppose 2x satisfies IF LIF’I -<

n l, IF f’l F’I => r for all F, F’ e . Assume, moreover, that ]1 is maximal. Then there
exist integers s, => 0 and disjoint sets A, B X2 such that ]A] 2s + 1, ]BI 2t + r and

--{F 2x. IFAl<-s, lFf3nl>-t+r).
Let us note that Winkler has recently stated the same conjecture (cf. [61]).

5. Algebraic generalizations. The subsets ofX {x 1, , x,} can be represented
by 0-1 sequences, their characteristic functions:

Let A be a subset of X, and define [: {1, 2, n}-> {0, 1} by [A(i) 1 iff Xi
Then ]A fq A’] is the number of nonzero positions in which the two sequences agree.
For fixed integers k, s, >- 1, it is natural to ask what is the maximum number of

functions f: {1, 2,. ., n}-> {0, 1, .., s} such that for any two functions [, f’
(*) I{i:f(i) 0}1- k,

(**) I{i: f(i) f’(i) 0}[ >_- 1.
We shall denote by Tn.s the set of all functions f: {1,..., n}->{0,..., s}.
The ErdSs-Ko-Rado theorem gives the answer for s 1, n >-no(k, l).
Let us define the pushing-up operation in the ith position Pi for a family - of

functions by

e(f)(/)=f(/) for/" i,

s if f(i) 0 and the function defined by setting f(i)- s is not in ,
Pi(f)(i)

f(i) otherwise.

Saying it with words, we replace f in f(i) 0 by a function which differs from it
only in the ith position, where its value is s, if this new function was not yet in the system.

We set, of course, Pi (,) {Pi (f)"
It is easy to check that the number of nonzero positions of f is the same as that

of P(f). If satisfies (,) and (**), then so does P(’). Repeated application of these
operations, for 1 -< _<-n yields a family which is stable under the application of Pi
i.e. Pi(’) " for 1 =<i --< n.

For f " define B (f) {i" f(i) s},
PROPOSITION 5.1. If satisfies (.) and (**), then
a) IB (f)l <= k for f e :r,
b) [B (f) n B (f’)l >- for f, f’
Proof. Let us define the function g by g(i) =f(i) if f(i) 0 or f’(i) s and g(i) s

otherwise. As is stable, g . The two functions g and f’ agree in a nonzero position
] if g(f)=f’(f)=s, thus f(])=s, which means ]e(B(f)fqB(f’)), proving b), a) is
trivial.
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Let h be any function in Tn,s such that h has k nonzero values and B(h)= B(f)
for some f. Then, in view of Proposition 5.1 h has at least nonzero common
values with every f’ . Thus if was maximal then h . This means that can
be defined via {B (f)’ f o} in the following way

T={f e T,,s" B (f)el}.

On the other hand, let Yd be a subset of 2{x’’"}, and suppose Y3 is/-intersecting
with IBl<-k for B eYd. Let (Ya)= {fe T,,," B(f)e ; I{i’f(i)#O}l=k}.

Then () satisfies (.) and (**). Moreover set br I{B" B @, IBI r}l. Then it
follows that

(***)
I()l- . b (s- 1)-O<__r<=k k

THEOREM 5.2. If 1 and ;satisfies (,) and (**), then

s -a ---I{f r,,s. I{i" f(i) # 0}l k, f(1) s}l.

Proof. In view of the above preparations, we may assume =() for a
c2{x’2,’"} with [B[<-k and IB B’I_-> 1 for all B,B’e. If k >n/2 and/" is some

integer with n/2 <f <=k. Then bj+b,_j<=(’}) (since from any set and its complement
at most 1 is in ). Also bn-. <= (n"--]-x) (from Theorem 1.1). Together this yields:

() (n --(n --J))(s--1)k-(-i)b. n-/’k_/. (s- 1)k-+b"-’
k (n-f)

_<( -)()nn-j (s_l)k_+( n-1 )(n-(n-j))(s_l),__,,
n-1Using these inequalities and br -<_ (-1) for r <-n/2, we obtain

o<=<= j 1 k-i k
s

Remark 5.3. This theorem was first stated by Meyer [54]. However his proof
was incomplete. Hence, we included this proof, which was given by the second author
in 1976, but was never published. One can also prove the uniqueness of the extremal
systems unless s 1, k n. The case > 1 is more complicated. The above proof yields

THEOREM 5.4. Suppose n > no(k, I), and satisfies (*) and (**). Then,
(,-_l)s -l, and equality holds ifffor pairs ofintegers (i, ), 1 <-ix <" < il <- n, 1 <- f, <- s,
1 <= <- we have

; {f T,,s: ]:(it) for 1 <-_ <= l, f satisfies (.)}.

Frankl and Fiiredi [34] proved
THEOREM 5.5. Suppose k n, satisfies (.) and (**), and has maximal

cardinality. Then for >-_ 15

Il-s-’ ill l/<=s.

Remark 5.6. The proof gives an interesting application of Theorem 1.3. As a
matter of fact Theorem 1.3 implies via (***) that I l/s _-<(1+o(1))s-’ from which

<- s is deduced quite easily for every n, i.e. we deduce an exact result from an
asymptotic one. Recently Moon [59] gave a nice proof for Theorem 5.5. However
her proof works only in the case s => + 2.
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Remark 5.7. It is relatively easy to determine the maximal number of
(1, 2,..., s) sequences ot length n such that they agree in at least one out of any r
consecutive positions. This maximum is attained by the sequences which have 1 in
the r’th, 2rth, , [n/r] rth positions.

An analogous problem ot coding type was considered by Miczo [55].
A special type of functions are permutations. Let us denote by R(n, >=l) the

maximum number of permutations of {1, 2,..., n} such that any two permutations
r(i), p(i) agree in at least positions (i.e. 7rp

-1 has at least fixed-points). Let S,
denote the symmetric group on n elements. For zr E $, define F(zr) {i E {1, ., n}:
zr(i) 1}. Define further P(k, s) {zr S,: IF(zr) tq {1,. ., k}l--> s}. We use the notation
7rP {p: p e e}.

THEOREM 5.8 [13]. Suppose n > no(n -1) and P is a set ofpermutations such that
any two members ofP agree in at least positions. Assume moreover, that IPI is maximal.

a) If n + 2t. Then there exists a 7r S, such that

P 7rP(n, t).

b) If n + 2t + 1. Then them exists a z: e S, such that

P 7rP(n 1, t).

For the case n > n0(l), we made in [13] the following conjecture.
Conjecture 5.9. If n > no(l), then

R (n, >_-l) (n -/)!

Remark 5.10. In [13] we proved that the above conjecture is true if in $, there
exists a sharply/-transitive set Q of permutations, i.e. for any two ordered/-subsets
of $, there is exactly one permutation in Q, mapping the first on the second. In
particular for 1, n arbitrary; 2, n a prime power; 3, n a prime power plus
one. At the time being we can only prove the following result.

THEOREM 5.11. Suppose P S, and any three elements ofPhave at least positions
in common. Then for n >- no(l) we have [P[ _-< (n l)!

Of course, this theorem yields the same bound if we replace 3 by t, >_-3.

The determination of R (n, -_>l) would be settled by the following conjecture.
Conjecture 5.12 [12]. There exists a family of subsets of {1, 2,..., n} such

that IF f’)F’[ _>- for F, F’ r and

R (n, =>l) ]P {r E S.: F(rr) E -}1.

Taking into consideration that every permutation is a function 7r: (1, 2," , n)
{1,..., n} Theorem 5.5 yields, for l=> 15, R(n, >-l)<-n "-l--- (n-l)! e"-.x/Trn.

S, can be made to a metric space by defining d(Tr, p)= n-IF(Trp-)l. With this
terminology we are concerned with anticodes i.e. sets with given maximal distance d.
Theorem 5.8 states that for n > no(d) any maximal sized anticode is a sphere or near
sphere. Note the analogy between Theorem 5.8 and Theorem 2.4.

Let us denote by R (n, L) the maximum cardinality of a set of permutations P
___
S,

such that for every r#pEP we have IF(zrp-1)[EL (L ={/1,""",/s}_{0,""", n-2}).
Kyota [49] gave a very elegant argument showing that if P is a group, then IPI--<
IIi=x (n -li). For L {0, 1, ., l- 1} equality corresponds to sharply/-transitive per-
mutation groups.

Intersection problems can be considered for vector spaces as well. Hsieh [44]
proved the following



ERDOS-KO-RADO THEOREM 429

THEOREM 5.13. Let be a family of k-dimensional subspaces of V(n, q), an
n-dimensional vector space over the finite field of q elements. Suppose for all A, B ;
we have dim (A f’)B)>_-/>0. Assume k <-_(n -1)/2, or k <(n -1)/2 in the case q =2,
> 1. Then

Il < tin-’,]=thelq number of (k l)-dimensional subspaces of V(n l, q).
tk taq

Greene and Kleitman [37] showed, employing a method of Katona [45], that
Theorem 5.13 remains true for !- 1 and n 2k. Hsieh’s proof is long and involves
a lot of calculation. Here we sketch how the case 1 can be deduced quickly using
the special case n 2k.

We apply induction on n, starting from 2k. Let n be the smallest value for which
the statement is not proved yet. Let vl,/32,’’’, On form a basis for V(n,q). Set
V (vl,..., vi), the subspace generated by va,..., vi. For u V, v e V,- V/, we
define an exchange operation.

Let A e ’, such that u A, v e A, then choose an arbitrary k-subspace of (A, v)
containing u but not v, and which is not yet in " (if such a subspace exists), replace
A by this subspace (simultaneously for all such A ’). We ke.ep on a.pplying this
operation for all possible pairs (u, v) until we obtain a stable set " (i.e. " is invariant
under the exchange operation). We claim that has the property A fib {0}, and
even that any A,B have nontrivial intersection in V,_a. In fact, suppose the
contrary, and let Ao A f’) V,_x, Bo B f’) Vn-x, 0 # w A fq B. As dim Ao+ dim Bo
2k-2 <n- 1 there exists a k-dimensional subspace B’ of V,_I such that BocB’,
Aof’)B’ ={0}. Let u B’-Bo. Then the application of the exchange operation u, v
could exchange B for B’. But is stable, thus B’. Moreover, B’ f’IA ={0}, a
contradiction. Now the result follows by induction.
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ON THE MATRIX EQUATION AX+X’A* =C

P. LANCASTER AND P. ROZSA

Abstract. The structure of the solution set of the matrix equation AX +X’A* C is described when
all (possibly rectangular) matrices involved are complex, and when they are all real.

1. Introduction. Let C"" and gr., denote the set of all m x n matrices with
complex and real entries, respectively. If A C"" then a function GA: C"" --> C
is defined by

(1) GA(X) AX +X’A*,

where the asterisk denotes conjugate transpose. O. Taussky and H. Wielandt in [3]
investigated properties of this function, as well as the linear function GA defined by

(2) (X) =AX +xTAT,
where the T denotes the transpose, but only when matrix A is square. Our main
concern in this note is with solutions of the equation

(3) G(X) AX +X’A* C,

where, of course, C*= C. We do not use the major results of Taussky and Wielandt
but will take advantage of some of their observations. We return to the function
in 3. The first observation is that G is linear on the space C"" over the real field
and with this understanding the solution set of (3) can, as usual, be described in terms
of a particular solution and the kernel of GA, (written Ker G).

Now the equation AX+X’A*= 0 is equivalent to the relation AX S where
S is an arbitrary rn m skew-hermitian matrix. Consequently, when A is rn m and
invertible, X Ker G if and only if X A-1S for some skew-hermitian S, and the
dimension of Ker Ga is just rn 2, the number of real parameters in S.

In contrast, one sees immediately that the dimension of Ker GA (whenA is m m,
real, and invertible) is 1/2m (m 1).

Equations of the form (3) arise in a number of applications. For example, the
solutions of a time-invariant Hamiltonian system of the general form H(t)= iKx(t)
with det H # 0, H* H, K* K, are determined by the eigenvalues and eigenvectors
of the H-selfadjoint matrix A H-IK. It is shown in 4 that examination of the
relationship between the eigenvectors of A associated with eigenvalues in the open
upper and lower halves of the complex plane leads to an equation of the form (3).

2. The general case. Proceed now to the case of a singular matrix A C"" and
first perform a rank factorization of A. Thus, if the rank of A is r _-< min (m, n) then
there is a U Cr"r and V Cr", both of full rank, for which

(4) A UV*.

In addition, it may be assumed without loss of generality that the rows of V* are
orthonormal, i.e. that V*V L (Note also that r is the rank of A in the usual sense,
not as a transformation on C over .) Then equation (3) implies that

(5) Gu(Y) UY + Y’U* C

t Received by the editors August 2, 1982, and in revised form November 10, 1982. This paper was
presented at the SIAM Conference on Applied Linear Algebra, Raleigh, North Carolina, April 26-29, 1982.

t Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada, T2N 1N4.
Technical University, Miiegyetem rkp. 3, Budapest, XI, Hungary.
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where

(6) V*X Y.

It may also be assumed that U has the partitioned form

where U is invertible and U,_ e C(-.
All solutions of (3) (when such exist) will be described by first obtaining the

solution set of (5) and combining these with the general solution of (6). We introduce
some more notation: for any matrix M, M-* denotes (M-)*. Let the hermitian matrix
C of (3) be partitioned in the form

(8) c=[C C2 C3J’
where C is r x r, Ca is m r x m r, and let

(9) W E- u,,_,u-1 Im-r],

an (m-r) m matrix. Note that W is independent of the choice of factors U and V
in (4), and WU WA 0 so that WCW*= 0 is an obvious necessary condition for
the existence of a solution of (3).

LEMMA 1. (a) There exist solutions Y of (5)/f and only if WCW* O.
(b) dim (Ker Gu)= ru.
(c) When WCW* 0 the general solution of (5) has the form

(10) Y=U-’[1/2C+S C’2-( I-S)U *U_,],
where S is an arbitrary skew-hermitian r r matrix.

Proof. With the partition Y Y Y,,_] equation (5) is equivalent to the three
equations

Ur + Y*U* C1,

(11) Um-rYr + Y,-rUr C2,

* U*U.-rY.-+Y.-r C3.
Since Ur is nonsingular the first of these equations has a particular solution given

by UrYr C and (as noted above) the general solution is Yr U- (3C +S) where
S is an arbitrary skew-hermitian r x r matrix. The second of equations (11) now
associates a unique Y,,_ (and hence Y) with each choice of S and leads to the formula
(10). Since S has r undetermined real parameters, part (b) of the lemma is established,
(given the existence of solutions).

Now it is clear that the consistency of (5) is equivalent to the third equation in
(11). Using the representation for Y,,_ implicit in (10) some calculation shows that
the third equation of (11) is equivalent to WCW* 0 and the lemma is established.

LEMMA 2. The general solution of (6) is given by

(12) X VY + (I, VV*)R

where R is an arbitrary n x m matrix.

Proof. See [1, p. 40], for example. El
We remark that, in (12), I,- VV* is the orthogonal projector onto Ker V*=

Ker A along ImV and, consequently, the last term of the equation is just an arbitrary
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n x m matrix all of whose columns lie in Ker A. Introduce the fixed n x (n- r) matrix
N whose columns form a basis for Ker A, and an alternate representation of the
general solution (12) is

(13) x vv+Nt
where/ is an arbitrary (n-r) m matrix. But now it is clear that for each Y there
is a 2m (n r) real parameter family of solutions Xfor (6).

Combining this statement with Lemma 1 suggests the following:
THEorzM 3. Let A UV* be a rank factorization of A C"" with V*V L

Then

(14)

where

Furthermore,

(15)

Ker Ga V Ker Get g"

{m C""IM NI andt

(16) AX-X*A*=
when " is skew-hermitian. Thus, in effect, analysis of (16) is included in the results
above.

3. The cases of AX +XrAr = C. Consider now the function A"F’" ->F"
defined by

(17) A(X)=AX+XrA
where A is a fixed m n matrix with elements from a field F(not of characteristic 2)
and T denotes the conjugate transpose. The distinction between tA and GA is that
tA is a linear transformation on F’" over F. However the arguments of the previous
section can be repeated with only minor variations. For example, the matrix $ of
formula (10) becomes an arbitrary r r skew-symmetric matrix over F, which therefore

Proof. We have seen that dim A; 2m (n r) and, from Lemma 1, dim (Ker Get)
re. Since V has full rank we also have dim (V Ker Gt:)= re. Now (13) shows that
Ker GA =(V Ker Gt)+ so to establish (14) and (15) it is only necessary to see that
the sum is direct. But this is clear since X V Ker Get implies the columns of X are
in ImV and X .A/" implies the columns of X are in Ker A Ker V*, while ImV and
Ker V* are orthogonal complements. [3

As an immediate consequence of the theorem and the first lemma we have"
CoroILa’v 4. For any A C"" there exist solutions of the equation AX +

X’A* C if and only if WCW* O, and all solutions are described by combining (1 O)
with (12) or (13).

Example. Consider the matrix A diag [i, 1, 0]. We have m n 3 and r 2 so
that (15) gives dim (Ker Ga)= 10. It is instructive to verify this directly.

According to [3, Thm. 2] the transformation GA (over R) has eigenvalues 0, 1 + i,
i, 1- i, 2, 1, -i, 1, 0 and another 9 zeros. Thus, the algebraic multiplicity of the zero
eigenvalue is 11 and so these eigenvalues have nine associated linear elementary
divisors and one elementary divisor of second degree, l-]

Note that in (3) A can be replaced by eiOA where 0 R, and then V by e-iV,
and Theorem 3 will still hold. In particular, taking 0 zr/2 the resulting equation is
iAX iX*A* C or

dim (Ker GA) re + 2m (n r).
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contains r(r- 1) parameters and, in part (b) of Lemma 1, one obtains dim (Ker (t)
1/2r(r- 1).

THEOREM 5. Let A UVT be a rank factorization of AF"n with vTv L
Then Ker (A V Ker fi-rtrN where

(18) f {M F IM Nt andI F -r) }.

Furthermore,

dim (Ker ,) 1/2r(r 1) + m (n r),

and there exist solution(s) of G,(X) C (where C C) if and only if WCW 0 and
all solutions are described by

-T TY-- W-l [1/2Cl.nt-S C-(1/2CI-S)U Um-r]

where S is an arbitrary r r skew-symmetric matrix overFand, as in (13),X VY +NR.
Example. Let F and A diag [1, -1, 0]. Then m n 3 and r 2, so that

dim (Ker G)=4, which is easily verified directly. According to Theorem 2* of [3]
the eigenvalues of G are 2, -2, 1, -1, and zero with multiplicity five. It follows that
the zero eigenvalue of Oa has one nonlinear elementary divisor.

Finally, consider the function J"F""-->F"" defined by

JA(X) AX XTAT

for a fixed A s F"n. The trick used at the end of 2 will no longer work for us.
However, repetition of the same line of argument leads to:

THEOREM 6. Let A UVT be a rank factorization of AF" with vTv L
Then Ker JA V Ker Jt where is defined by (18). Furthermore,

dim (Ker JA) =r(r + 1) + m (n -r)

and there exist solutions ofJ(X) C (where CT -C) if and only if WCWT 0 and
all solutions are described by

Y=U-[I[1/2CI+S Cf--(1/2C--S)u-TuT

where S is an arbitrary r x r symmetric matrix over F and, as in (13),

X VY+NR.

4. E|genvectors of H-selfadjo|nt matrices. In this last section a problem will be
outlined which was really the starting point of the authors’ investigations, but serves
here to illustrate one situation in which (3) arises with a rectangular coefficient matrix
A. Let A, HeC"n, H* =H, detH #0, and HA =A*H. In this situation A is said
to be H-selfadjoint (and is, of course, hermitian if H I).

It is clear that in this case A and A* are similar so that all nonreal eigenvalues
appear in conjugate pairs and each eigenvalue of such a pair has the same partial
multiplicities. However, there seems to be no simple connection between the right
eigenvectors associated with h tr(A), (h # ) and those of . We consider the situation
in which complete sets of right Jordan chains are known for’ (a) the real eigenvalues
of A, and are written as the columns of a matrix V where A Vr VrJr and Jr is a
Jordan matrix with real eigenvalues; and (b) the eigenvalues of A in the open upper
half plane, and are written as the columns of matrix V1 where A VI VJ and J is
a Jordan matrix.

Now J diag [Jr, J, J is a Jordan form for A and there is a matrix V2 such that

A[VrV V] VrV, V=JJ
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and V VrV:t V2] is nonsingular. The problem is to express V2 as simply as possible
in terms of Vr, and V1.

First recall a canonical reduction for A and H ([2, Thm. $5.1], for example).
There is a T [TrT. T2], the partition being the same as that of V, such that

(19) T*HT P:r and T-AT J,

where

P= 0

Pr is a block diagonal partitioned matrix like Jr but with each diagonal block of
Jr replaced by a matrix like

O 0 11+ 0 1 0
1 0 0

(and adjusted for size), and Pc bears the same relation to Jc but with all positive signs.
It is easily seen that P* Pj and p2 pj and then that the first of equations (19)

implies

(20) TPcT: + T:PcT* H- TrP,.T*

Furthermore, Tr and T1 are related to Vr, V by transformations of the form

Tr EE, T1 VY,

where Yr, Y are nonsingular matrices commuting with Jr, Jc, respectively (see [2,
Thm. $2.2], for example).

Assume first that a Yr is found so that (ref. (19)) T*HTr Y* (V*HV,.)Yr P,’.
Then (20) gives V:tY:tPcT’ +T2PcYV =H-’-(VrYr)P,.(V,.Yr)*. But it can be
verified that Y.Pc=PcY so that PcY=:tPc and (V.Pc)(T2’.)*+(T2f%.)
(V.Pc)* =H-’-(VrYr)Pr(V,.Yr)*. But now V2 T2171 defines another complete set of
Jordan chains for the eigenvalues of A in the lower half plane and (V:tPc)V’ +
V2(VIPc)* =H--(VrYr)P,.(VrYr)*, an equation of type (3). Furthermore, the condi-
tion WCW*= 0 of Corollary 4 is guaranteed by the orthogonality properties of the
root subspaces of A. Note that if A has no real eigenvalues the problem simplifies
considerably; the last term of the equation goes away and the problems of finding Pr
and Yr are avoided.
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SIGNS OF TERMS IN A COMBINATORIAL RECURSION*

STEPHEN M. TANNYt AND MICHAEL ZUKER:

Abstract. The sequence {a,},__o defined by the recursion

an+l+l an+l-an, ? 0,

with ao a a can be written explicitly as

an=Y (-1)(n jl )i>-O f
where the usual conventions regarding binomial coefficients are assumed to hold. For the sequence
comprises alternating pairs of l’s and -l’s separated by a 0, while in the case 2 it has been shown via
fundamental units that a, 0 precisely for n 3 and n 12.

In the present paper we show that for any the sequence {an} can be decomposed into essentially
equal-sized "blocks" of nonnegative and nonpositive integers containing at most one zero at the end. More
precisely, we show that for fixed the length of the blocks eventually alternates between two consecutive
integers; further, we derive an asymptotic formula for the block length as a function of I.

1. Introduction. The sequence {an},=o defined by the recursion

(1.1) an+t+1 =an+t-an, n >=0,

with a0 a at 1 can be written explicitly as

(1.2) an (-1)’(n -jl )
j_->O f

where the usual conventions regarding binomial coefficients are assumed to hold. For
1 the sequence comprises alternating pairs of l’s and -l’s separated by a 0. The

case 2 has recently received some attention [1], [3], [4]. In particular, Bernstein
[1] has shown that in this case an =0 precisely for n 3 and n 12. Bernstein’s
algebraic approach via fundamental units leads to two remarkable combinatorial
identities [1, p. 269] which have subsequently been extended by Carlitz [3], [4] using
strictly combinatorial methods.

For > 2 nothing appears to be known in general concerning the number of zeros
in the sequence {an}. We have accumulated considerable empirical evidence which
suggests that apart from the trivial zero occurring at n + 1, at most one other zero
occurs. These initial investigations suggested certain further interesting properties
regarding {an} which are the subject of the present paper. In particular the sequence
{an} can be decomposed into essentially equal-sized "blocks" of nonnegative and
nonpositive integers containing at most one zero at the end. More precisely, we show
that for fixed the length of the blocks eventually alternates between two consecutive
integers; further, we derive an asymptotic formula for the block length as a function
of l.

2. Basic formulation. The characteristic polynomial f(z) of the recursion (1.1)
is given by

(2.1) f(z)=zt+-zt+l,

* Received by the editors March 5, 1982.
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where we assume ->2. Since f’(z) zt-l[(1 + 1)z -l], f and f’ have no common roots
and thus f has + 1 distinct (complex) roots z 1, z2, , Zl+l. The following facts are
easily shown:

-/+1Fact 1 a, z=l bz where the b. are determined from the initial conditions of
the recursion (1.1). The b satisfy the matrix equation Zb= 1 where Z (Z.) is an

i-1(l + 1) (l + 1) matrix withZ z b is the column vector of the b., j 1, 2, , + 1
and 1 is an (l + 1)-vector of ones. The matrix Z is of Vandermonde type [2, p. 284]
so that

Fact 2. Writing the (l + 1) roots z. tie
ij with r. >0 and 0 < 01 _<- 02 -<" =< 0t < 27r,

(2.2) r/ cos (l + 1)0i r cos lO- 1,

(2.3) r. sin (1 + 1)0i sin 10,

(2.4) r ((r cos 0. 1)2 + r sin2 0.) 1.

Fact 3. From (2.3) it is immediate that the 0’s are distinct. Rewriting (2.4) we
obtain cos 0. =1/2r. + 1/2r-1/2r1/1, which can be used to show that for 0<01 <.." <
0t <zr we have rl >r2>’’’ >r >0, where I=[(/+ 1)/2].

Fact 4. From the preceding we can write a. Cr7 cos (nO1 + 4) + O(r) where C
is real and nonzero and b is a phase angle, and both depend upon b l.

3. Block decomposition. For an arbitrary sequence {s.} define a block of length
n + 1 as a segment {s.,, s,. +1, , s., +. } such that

(i) s,, 0;
(ii) s,,/l,’’’, s,+, all have the same sign as s,, or are zero;
(iii) s,-i 0 or sgn s,,-1 -sgn Sm;

(iv) Sin+,+1 0 and sgn s,+,+l -sgn
Obviously any real sequence can be decomposed into blocks in a unique way. It is
easy to verify that the recursion (1.1) with the given initial conditions has a block
decomposition in which all blocks have length at least + 1. In fact, we now show that
the blocks eventually all have length either [7r/01] or [7r/01] + 1, where 01 is defined
in 2 as the smallest argument associated with a root of (2.1).

Recall that

(3.1) a,=Cr’ cos(nOl+C)+O(r’).

Since rl > r2, the first term dominates in determining the sign of a,, at least for n large
enough and n01+O not too close to -7r/2 or zr/2 modulo 7r. To make this precise,
suppose 7r/01 is not an integer. Then we can choose d small enough so that [(r +
d)/O1]=[(Tr-d)/01]. Thus, if nOl+c(-Tr/2+d/2, Tr/2-d/2) modulo r then
cos [nO1 +bl]_->sin d/2 >0. If we choose n so large that IO(rz)l < (1/2 sin d/2)(rl)", then
it follows that the sign of a, is dominated by the first term in (3.1), so long as
nO1 +c (-r/2+d/2, zr/2-d/2) (modulo 7r). For convenience, in what follows we
drop the qualifier "(modulo r)".

Since at most [(Tr+d)/01]+ 1 consecutive values of n can occur so that
remains inside the interval (-Tr/2-d/2, 7r/2+d/2), it follows that the lengths of
blocks containing no negative terms in the block decomposition of (a,} are eventually
no more than [(Tr+d)/01]+ 1=[7r/01]+ 1. On the other hand, there are at least

l-I/(1-z,) #0 forall/’.b. l-I’ (zi z)

we have
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[(rr-d)/01] consecutive values of n such that nO1 +4 is in the interval (-7r/2 + d/2,
rr/2-d/2) so that the block lengths are eventually at least [(rr-d)/01] [r/01]. Thus,
for n sufficiently large, all the blocks of positive an have lengths either [rr/01] or
[rr/01] + 1. It is clear that the analogous argument holds for blocks containing negative
an. On the other hand, suppose that rr/01 P an integer. Then it is a straightforward
counting argument to verify that if d <01 then it is not possible to have p + 2
consecutive values of n such that nO1 +4 is always in (-rr/2-d/2, ’/2 + d/2) or in
(rr/2-d/2, rr)U(-rr,-Tr/2+d/2) but not in both. Thus once again we find that the
block lengths can only be [r/01] or [r/01] + 1.

THEOREM 3.1. The sequence {an} defined by (1.1) and the initial conditions
following has a block decomposition in which all but a finite number of the blocks have
length [r/01] or [r/01]+ 1, where 01 is defined in 2. Further, at least the first
elements in each such block are nonzero.

Table 1 gives the block lengths for -2, , 19.

TABLE

L Block lengths

2 4,5
3 5,6
4 7,8
5 8,9
6 10,11
7 11,12
8 12,13
9 14,15
10 15,16
11 16,17
12 17,18
13 19,20
14 20,21
15 21,22
16 23,24
17 24,25
18 25,26
19 27,28

4. Asymptotic estimate of block length. In order to derive an asymptotic estimate
of r/01 we first find a simpler equation which generates the arguments 0, 1, 2, ,
as roots. We then approximate 01 from this equation.

Since ri 0 for any root of (2.1), (2.3) shows that sin (1 + 1)0. 0 if and only if
sin 10 O. But sin (1 + 1)0i sin 10 cos 0i + cos 10 sin 0i, so sin 10 0 means that
cos 10 sin 0 0. In such a case, since 0 < 0 < r, sin 0 > 0 while cos2 10 1 -sin2 10 1
so that we have a contradiction. Hence both sin 10 and sin (1 + 1)0 are never zero for
any root 0. Thus we can replace r in (2.2):

(sinl0j)/+1 (sinlOj)l cos 10- 1,(4.1)
sin (l + 1)Oi cos (l + 1)Oi \sinO)Oi

which can be simplified to

(4.2) [sin (l + 1)0j]t+l =sin 0(sin lO).
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Note that (2.3) implies that sin lOj and sin (l + 1)8j have the same sign for any root 0,
while (4.2) shows that both cannot be negative (since sin O >0). Hence sin lO and
sin (l + 1)0i are positive for all/’.

Now, consider the function

(4.3) H(O) [sin (1 + 1)O]+-sin O(sin 10).
We want to find all the roots aj of H(O) which satisfy the additional requirement that

(4.4) min (sin la, sin (l + 1)ai) > 0.

Define Jk [27r(k 1)/l, r(2k 1)/(/+ 1)] [Xk, Yk], k 1, 2,’" ", [(/+ 1)/2]. Then
H(x 1) 0 and H(Xk) > 0 for k > 1 while H(yk) < 0 for all k, so it follows that for k -> 2
there is at least one root Ck of H(O) in (Xk, Yk) and further, a satisfies (4.4). For k 1
a root a satisfying (4.4) can be found in (0, bl) since near 0=0, H(O)--.
[(/+ 1)t+l-ll]o t+l which is positive. Thus there are at least [(/+ 1)/2] roots of (4.3)
satisfying (4.4), with at least one root in each interval Jk. But any such root satisfies
(2.2)-(2.4) and hence is a root of (2.1), and we know that there can only be [(/+ 1)/2]
such roots. Thus, the pigeonhole principle implies that the ak are just the roots 0
identified in 2.

The root 01 is the smallest and hence is identified with al, so 01 s J1 [0, .rr/(l + 1)].
It is easy to show that .rr/2(1 + 1) < 01 < rr/(l + 1); in fact, only slightly more work yields
rr/(1 +e)(l + 1)<01 < rr/(1 + 1) for e e(l)< 1, and e(l)-->O as --> oo. This can be seen
by substituting 0 r/(1 +e)(1 +l) in (4.3) and showing H(0)>0. Thus we can write
01 (rr -a)/(l + 1), where a =-a(l)-->O as ->c. Substituting 01 in (4.3) gives

(4.5) (sin a)/l= sin (f)[sin (a +)]
For a small enough, (4.5) can be approximated as

/+1 77" -a
a a+

or

(4.6) 1 1 + b "tr- 1.
a

But b c as , and (4.6) implies that b/(l + 1) 0 as c, so we conclude from
(4.6) that

(4.7) b e b.

Now b e b is a monotone function of b, so that it has an inverse. Clearly log log log <
b < log for large l, so we have that 7r/(log + 1) < a < -/(log log log + 1). Thus,
substituting for a we obtain that, for big enough,

(4.8)

and

(4.9)

01 1 1-g+ o

ll:l 1+log/ + i0g/
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THE BANZHAF INDEX FOR MULTICANDIDATE
PRESIDENTIAL ELECTIONS*

EDWARD M. BOLGER"

Abstract. John Banzhaf III [Villanova Law Rev., 13 (1968), pp. 304-332] introduced a measure of
voting power for a two-candidate United States presidential election conducted under an electoral college
system. This measure indicated that an individual voter in a large state has more voting power than an
individual in a small state. In this paper we generalize the Banzhaf index of voting power to voting situations
in which there are more than two candidates with one to be elected. We then measure the voting power
of an individual voter in a three-candidate and in a four-candidate presidential election under an electoral
college system. It is found that there is slightly more bias in favor of an individual in a large state. In the
last section, we conjecture what the results will be for an r-candidate United States presidential election.

Key words, voting games, Banzhaf index, electoral college, pivot

1. Introduction. The Banzhaf power index [1] assigns a "value" to each player
in a simple game. This value measures the voting power of the players. Simple games
serve as models for elections in which a group of voters is to elect one of two candidates
to an office. We shall consider elections in which a group of voters is to elect
one of several candidates. We shall model such elections by "voting games among
r candidates".

DEFINITION 1. Let N be a finite set. Let $1,$2,’" ,St be subsets of N.
{Sl, S2,’"", St} is called a partition of N into r subsets if S LJ S2 J U Sr--N and
Si (’]S] for ].

If precisely one of r candidates is to be elected, then the voters must partition
themselves among the r candidates. The voting rules may be specified by stating, for
each partition {S, Sa,..., S} of the voters, whether each S is a winning or losing
coalition with respect to this partition. We formalize this in the following definition.

DEFINITION 2. Let N be a finite set. A voting game on N among r candidates is
a listing of all the partitions of N which consist of r or fewer subsets together with a
rule which specifies for each subset in such a partition whether that subset is winning
or losing with respect to the given partition. The elements of N are called the voters;
subsets of N are called coalitions of voters.

For example, if N {1, 2,..., n}, then the simple plurality game on N among r
candidates is determined by the rule which specifies that a subset T of N is winning
with respect to a partition of which T is a member if and only if T contains more
voters than any other member of .

We now generalize the concept of pivot set to voting games among r candidates.
Recall that for a simple game on N, a subset T of N is said to be a pivot set for voter

if T wins and T-{i} loses.
DEFINITION 3. Let iN. Let ={S,$2,.." ,So} be a partition of the voters

into r or fewer subsets, one of which may be empty. Suppose S.. Consider a partition

’ obtained by removing player from Si and placing player in some other member
Sk of . The mapping Olik:) -’> ’ defined by

Otik(Si)-- S]-{i},

Olik (Sk) Sk (-J {i},

Olik(St) St for /’, k

* Received by the editors September 28, 1981, and in final form December 7, 1982.
t Department of Mathematics and Statistics, Miami University, Oxford, Ohio 45056.
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is called a move for player i. Such a move is called a pivot move if Si wins with respect
to and Sj-{i} loses with respect to ’.

For example, if N {1, 2, 3, 4} and if r 3, then the pivot moves for player 1 in
the simple plurality game are:

{{1, 2, 3}, {4}} {{2, 3}, {1, 4}}
{{1, 2, 4}, {3}} {{2, 4}, {1, 3}}
{{1, 3, 4}, {2}}-+ {{3, 4}, {1, 2}}

{{2}, {1, 3}, {4}}
{{1, 2}, {3}, {4}} ,,a {{2}, {3}, {1, 4}}

{{1 3}, {2}, {4}} {{3}, {1, 2}, {4}}
{{3}, {2}, {1, 4}}

{{1 4}, {2}, {3}}
{{4}, {1, 2}, {3}}
{{4}, {2}, {1, 3}}

DEIINITION 4. Let v be a voting game on N among r candidates. We let p(i, v)
denote the number of pivot moves for player in the game v.

DErINITION 5. If p(i, V)= 0, we call player a dummy in the game v.
DZFINITION 6. If there are no dummies in the game v, then we define the

(normalized) Banzhaf value for player in the game v to be the ratio

p(i,v)
p(1, v)+p(2, v)+ +p(n, v)

where n is the cardinality of N. On the other hand, if there are dummies in v, we
assign each of them Banzhaf value equal to 0 and "remove" all of them from the
game before assigning Banzhaf values to the other players. (Formally, if
{$1,$2,’",&} is a partition of N and if D is the set of dummies in v, then
{S1-D,..., &-D} is a partition of N-D. We define an induced game on N-D
by saying that Sj-D is winning with respect to the above partition of N-D if and
only if S. is winning with respect to . Then, for e N-D, we define the Banzhaf
value of player for the game v to be the Banzhaf value of player for the induced
game on N-D.)

Remark. The above (somewhat cumbersome) definition assures that the addition
(or removal) of dummies to a game will not affect the Banzhaf values of the other
players. If there are only two candidates, it is not necessary to remove the dummies
since the removal of each dummy reduces each p(i, v) by a factor of 0.5, thus leaving
the ratio unchanged. However, there are examples of voting games among 4 candidates
in which the ratio would be affected by the removal of a dummy.

Example. For the example on the previous page, p(i, v)= 9 for all and thus the
Banzhaf value for each voter is 0.25.

In the remaining sections, we shall be primarily concerned with presidential
elections conducted under an electoral college system. If we take N to be the set of
eligible voters, there will not be any dummies.

2. The number of pivot moves for a voter in a plurality election. In order to
determine the number of pivot moves for a voter in a presidential election conducted
under an electoral college system, it will be necessary to calculate the number of pivot
moves for a voter in a simple plurality (i.e., the candidate, if any, with the most votes
wins the election--a tie produces no winner) game. Let p(1; n,r) be the number of
pivot moves for voter 1 in the simple plurality game with n voters and r candidates.
We consider first the case where r 3 and n 6m + 3. (It turns out that there are
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slightly different formulas for p (1; n, 3) for n 6m, 6m + 1, 6m + 2, 6m + 3, 6m + 4,
6m +5.)

LEMMA 1.

p(1; 6m +3, 3)

X(6m+2)(4m+2-,)+ ( 6m+2 )(4re+l-f)-2i=x 2m+/" 2m+/" =x\2m+l+i \ 2m+/"

Proof. Voter 1 has exactly one pivot move for each partition in which voter l’s
coalition contains exactly two more voters than the next largest coalition. The pivot
move is the mapping which moves voter 1 to that next largest coalition, thus creating
a "tie". Voter 1 has exactly two pivot moves for each partition in which voter l’s
coalition contains exactly one more voter than the next largest coalition. One such
pivot move is the mapping which moves player 1 to the next largest coalition; the
other is the mapping which moves player 1 to the smallest coalition. To visualize
these, it is helpful to represent each such partition by an ordered triple which lists,
in descending order, the sizes of the coalitions in the partition. We refer to such an
ordered triple as the type of the partition. For n 6m + 3, the types which yield
precisely one pivot move for voter 1 are (3m+2, 3m, 1), (3re+l, 3m-l,
3),..., (2m + 3, 2m + 1, 2m- 1). The types which yield precisely two pivot moves
for voter 1 are (3m +2, 3m +1, 0), (3m +1, 3m, 2),..., (2m +2, 2m +1, 2m).

For 1 -</’ -< m, the number of partitions of type (2m +/" + 2, 2m +/’, 2m 2/" + 1)
in which voter 1 belongs to the largest coalition is

(6m+2)(4m+l-f)2m+/’+l \ 2m+/"
Each of these partitions yields one pivot move for voter 1.

For 1 -</" -< m + 1, the number of partitions of type (2m +/" + 1, 2m +/’, 2m 2/’ + 2)
in which voter 1 belongs to the largest coalition is

(6m + 2)(4m + 2-/’)2m+/" \ 2m+/"
Each of these partitions yields two pivot moves for voter 1.

It follows that the total number of pivot moves for voter 1 is

1 (4m + 2-j 1)\ 2m +j
2 (62n +2 (6m+2 (4m+l-f

i=1 i=1 \2m +/" +

If r 4, we consider the case where n 8m.
LEMMA 2.

p(1; 8m, 4)

12-1 \2m ) ( )(4m-2f) (8m-l)+j \2m+j-1 \2m-/" 4m

%- 8m 1 6m 1 2 4m -2/’
+

i=1 2m +/" 2m "]-i k=l 2m-/’+k

32-1 (8m-1)(6m-e-f)(4m-l-2f)+ i=o 2m +j 2m+j 2m+/"- 8m-1 6m-1-/’ ; 4m-1-2/"
+3

;1 2m+/" 2m+/" ;o 2m-/’+k

where the binomial coeff:icient (’]) is understood to equal 0 if] > n.
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Proof. Let @ be a partition of the voters into four or fewer subsets. We associate
with such partition a 4-tuple which lists in descending order the sizes of the sets in
the partition.

For 1 =< =<2m and 0<-k _<-min {2/’- 1, 2m -/’}, a partition of type (2m +/" + 1,
2m +/"- 1, 2m-/" + k, 2m-/"- k) will yield one pivot move for a voter in the largest
coalition (move that voter to the second largest coalition) unless 2m +/"- 1 2m -/" + k
in which case such a partition will yield two pivot moves for that voter. (Note that
our choice of n 8m does not allow 2m +/" 1 2m -/" + k 2m -/" k.)

We must, however, exercise some care in counting the number of partitions which
yield one or two pivot moves. The number of partitions of type (2m +/" + 1, 2m +/"- 1,
2m -/" + k, 2m -/’- k) in which voter 1 belongs to the largest coalition is

2m -/" +

provided the numbers 2m +/" 1, 2m -/" + k, 2m -/’ k are all distinct. These numbers
will all be distinct unless k 0 or k 2/’- 1. If two of these three numbers are equal
and positive, then this number of partitions is only

l_(8m-1)(6m-1-])( 4m-2/" )2 2m+/" 2m+/’-I 2m-/’+k

since the order in which the sets of the partition are listed is irrelevant (e.g. the
partition {{1, 2, 3}, {4, 5}, {6, 7}, {8}} is the same as the partition {{1, 2, 3},
{6, 7}, {4, 5}, {8}}). Thus, for 0 < k < 2/- 2, each partition of type (2m +/" + 1, 2m +/"-
1, 2m-/" + k, 2m-/’-k) yields one pivot move for a voter in the largest coalition,
and there are

(8m-1)(6m-e-/)(4m-2/’)2m +/" , + 2m-/"2m /’ 1 +k

such partitions. Furthermore, each partition of type (2m +/" + 1, 2m +/’-1, 2m-/’,
2m -/’) yields one pivot move, and for/" < 2m there are

(4m -2/"1 8m-1 6m-e-f)\2m_/)2(2m +/)(2m +/’- 1

such partitions. For k 2i- 1, each partition of type (2m +/" + 1, 2m +i- 1, 2m +i- 1,
2m -3/" + 1) yields two pivot moves for a voter in the largest coalition, and there are

such partitions. We have so far counted

1- (4m -2/" 8m 1 4m 1
__

(82mm+)(6m-e-/’)\2m+]-1 2m-i)+( 4m )(4m 1)- 8m-1 6m-l-/" 2 2 4m-2/"
+

,=1 2m+/ 2m+/-1 k=l 2m-/+k

1- (8m-1)(6m-l-,)( 4m-2_./" )+2. = 2m+/’ 2m+]-1 2m+] 1

pivot moves for voter 1. We observe that the last two terms can be combined by
letting k run from 1 to 2/"- 1.
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For 0=<j <-2m 1 and 0_-<k =<min {2j, 2m 1 -/’}, a partition of type (2m +j + 1,
2m +f, 2m-j+k, 2m-f-k-I) yields three pivot moves for a voter in the largest
coalition by moving that voter to each of the other three coalitions (one of which may
be empty). Here, too, we must be careful when counting the number of partitions.
The number of partitions of type (2m+j+l, 2re+j, 2m-j+k, 2m-j-k-I) in
which voter 1 belongs to the largest coalition is

(82-1 6m-1 4m- 1-2j

+] k

provided the numbers 2m +/’, 2m-/" +k, 2m-f-k-1 are all distinct, which they
will be unless k 2j. If k 2j, the number of partitions is

(8m-1 (6m-l-f)4m-1-2/"
The partitions considered in the preceding paragraph give

1 2"-lj=o / /6m-1-/’) )( 2m+j
3 (8m 1 4m 1- 2/"

2m+j,\ 2m+j

)( )%- 8m-1 6m-1-] z 4m-1-2/
+3

i=1 2m+j 2m+j k=o 2m-/’+k

additional pivot moves for voter 1. This completes the proof of Lemma 2.
For computational purposes, it will be better to rewrite p (1; 8m, 4).
COROLLARY.

p(1; 8m, 4)

12-1 -1)6m-l-!")(4m-2])(8= i=1 (82ram+/" (2m+/’-I \2m-f
+

[(2m+1)/31 (8m-1)(6m-l-f)zl( 4m-2/" ’2m+/" 2re+i-1 k=lk2m-/’+k/
2rrt --1

]=[(2m+1)/3]+1
(82mm-1 6m-l-f):z=" 4m-2/"+/’) (2m +/’-1 (2m -/’+ k)

3 [(2m-1)/3]
y.+ i=o

(82 -1 6m-l- 4m 1-2/"

+3
[2m/3]

y.
j=l

(82-1 (6m-l-f zl -1-2/"+/’)\ 2m+/" ),=0(r-/’+k)
+3

2m --1

j=[2m/3]+l
(8m- 1)(6m- l-f)2m +j 2m +j ,=o 2m-j +

where [x denotes the greatest integer in x.
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Proof. The proof follows easily from the assumption that (7) 0 if/" > n and from
the inequalities"

2m -/+k -<4m -2/" , k -<2m -/,

2m -/-<2/’- 1 V 2m + 1 -<3/,

2m +/-< 4m 1- 2/’ , 3/" =< 2m 1,

2m -/+ k _<- 4m 1 2/" , k -< 2m 1 -/’,

2m 1 -/<- 2/" 1 , 2m -<_ 3f.

3. Three- and four-candidate presidential elections conducted under an electoral
college system. In the United States, presidents are elected via the electoral college
system. Each state is assigned a number of "electoral votes". After the voters in each
state go to the polls on election day and some time after the results are compiled, the
simple plurality winner within each state is usually awarded all of that state’s electoral
votes. If a candidate receives more than half of the total number of electoral votes,
then he or she is declared the winner. If no candidate receives more than half of the
electoral votes, then the House of Representatives chooses the president.

In order to obtain a workable model, we shall consider a simplified version of a
presidential election. We make the following assumptions"

Assumption 1. Each state is assigned a number of electoral votes.
Assumption 2. There are precisely r candidates.
Assumption 3. The candidate receiving a simple plurality of the votes cast within

a state automatically receives all of that state’s electoral votes. In case of a tie, no
candidate receives any of the state’s electoral votes.

Assumption 4. In order to win the election, a candidate must receive at least q
electoral votes. This number q is called the quota. If no candidate receives at least q
votes, then there is no winner.

If we let N be the set of all United States citizens of voting age, then we can
model this simplified presidential election as a voting game on N among r candidates.

For simplicity, we first consider the case where there are three candidates and
only two states, each with one electoral vote and voting populations n 6m + 3 and
/’/2 6m2 q" 3. TO win the election, a candidate must win in each state. We shall calculate
the number of pivot moves for voter 1 of state 1 in the presidential election. First we
need a preliminary result.

LEMMA 3. Let W(m be the number of ways of distributing 6m + 3 voters among
three "boxes" B1, BE, B3 in such a way that B1 contains more voters than either BE or
B3. Then

(1) - 2m+l 2m+l =1 2
6m+3 )(4m +2-/’)re+l+/ 2re+l+/"

Proof. The total number of ways of distributing 6m + 3 voters among three
distinguishable boxes is 36m+3. The number of ways which produce a tie (i.e. in which
the two boxes with the largest number of voters in fact contain the same number of
voters) is

T(m)=
2m+l 2m+ j--1 2

6m+3 )(4m +2-f)re+l+/ 2re+l+/
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The rest have the property that one of the boxes contains more voters than either of
the other two boxes; in one-third of these, B contains more voters than either of the
other boxes. Thus,

W(m)=1/2136m+3-T(m)].

DEFIr3:ON 7. Let 9 {$1, $2, $3} be a partition which yields at least one pivot
move for voter 1 in a three-candidate presidential election with two states. Assume
the subsets $1, $2, $3 are listed in descending order ot the number of voters of state
1 in these subsets. (It is not hard to see that if 9 is a pivot partition tor voter 1 and
if n 6ml + 3, then there is a unique such ordering of the sets in .) We can then
represent this partition by an ordered triple of ordered pairs ((v11, v12), (v21, v22),
(v31, v32)) where vii is the number of voters from state [ in $. We call this triple the
type of the partition. (Note that the term "type" is defined differently in the proof of
Lemma 1.)

LErMA 4. I]’ there are only two states each with one electoral vote, it there are
three candidates, and i]’ the number o]’ voters in state is 6mi + 3 where m is a positive
integer, then the number o]’ pivot moves ior voter 1 o]’ state 1 in the presidential election
is P(ml)W(m2) where P(ml) is the number ol pivot moves [or voter 1 in the plurality
election within state 1 and W(m) is given by (1) above. (Here we are writing P(ml)
instead o1’ the more cumbersome p(1; 6ml + 3, 3).)

Proo]’. Let {$1, $2, $3} be a partition of the voters which yields a pivot move
for voter 1 and assume $1, $2, $3 are listed in order of decreasing size of the number
of voters in state 1. Then voter 1 must pivot in the plurality election within state 1
and voter l’s candidate must win in the plurality election within state 2. Each such
partition has type ((v11, v12), (v21, v22), (v31, v32)) in which

(a) 1ESl,

(b) v21 + 1 <= vll <= v21 + 2,

(c) v2: ->- v3,
(d) vz >max {v2z, v3z}.

Such a partition yields precisely one pivot move for voter 1 if the triple (v11, v21, v31)
is one of (3m1+2, 3ml, 1), (3m1+1, 3m1-1, 3),. ., (2m1+3, 2m1+1, 2m1-1),
whereas such a partition yields two pivot moves for voter 1 if (v11, v21, v31) is one of
(3ml + 2, 3ml + 1, 0), (3ml + 1, 3ml, 2),..., (2ml + 2, 2ml + 1, 2ml).

To form all pivot partitions for voter 1 we first partition the voters of state 1 into
partitions of type (v11, v21, v31) satisfying (a), (b), (c) above, and then we distribute
the voters of state 2 among the subsets of these partitions to form partitions of all
the voters in such a way that these partitions will be of types ((v11, v12), (v21, v22),
(v31, v32)) which also satisfy (d).

Recall that the number of partitions of the voters of state 1 into partitions which
yield two pivot moves for voter 1 in the plurality election within state 1 is

j--1 \2ml+j/\ 2ml+j

After forming such a partition, we then wish to distribute the voters of state 2 among
the three subsets in such a way that voter l’s subset will receive more voters from
state 2 than either of the other subsets. This can be done in W(m2) ways. Thus, the
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number of partitions which yield two pivot moves for voter 1 is

,,+1 (6m+2)(4m+2_J) W(m2)"
= 2m+]" \ 2ml+j

Similarly, the number of partitions of the voters which yield one pivot move for
voter 1 is

-_x \2rn + 1 +j 2rn +j
W(m2).

The result follows immediately.
Using Lemma 4, we obtain the following theorem.
THEOREM 1. I there are only two states each with one electoral vote, if state has

6m + 3 voters, and if there are three candidates, then the ratio of the number of pivot
moves for a voter of state 1 to the number of pivot moves for a voter of state 2 in the
presidential election equals

(2)
P(mt)W(m2)
P(m2)W(ml)"

Remark. Each of the factors in (2) becomes quite large even for moderate values
of m or m2. For example, P(1)= 1540, W(1)= 5371. Thus it seems desirable to find
an alternate method for calculating the ratio P(m)/W(m). We write

(6m +2)(4m +2-/’) (6m +2)! + [(2m + 1)!]Z(2m)!
i= 2m +/’ 2m +/" =[(2m + 1)!](2m)! i-_1 [(2m +/’)!]Z(2m +2-2/’)!

and then let

Similarly,

,,,+a [(2m + 1)!]Z(2m)!
S(m) i= [(2m +j)!]:Z(2m +2-2/’)".

,( 6m+2 )(4re+l-j)= (6m+2),
\2m + 1 +/" \ 2m +j (2m + 2)! (2m + 1)! (2m 1)!

where

and lastly,

where

(2m + 2)! (2m + 1)! (2m 1)!
S2(m)=i=v (2m + 1 +/’)! (2m +/’)! (2m + 1-2/’)!’

y,. ( 6m + 3 4m + 2-i (6m + 3)!

i= \2m + 1+/" 2m + 1+i [(2m + 2)!]:(2m 1)!

[(2m + 2)!](2m 1)!
S’3(m)-- ]--1 [(2m + 1 +/’)!]:(2m + 1- 2/)!"

$3(m)
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Then

m
P(m 2S(m + "m + 1Su(m
W(m’---- [(2m + 1)!]2(2m)!3"+ m (6m + 3)

(6m + 2)! (m + 1)(2m + 2)
S3(m)

For m 10, the above ratio is approximately 0.0985 whereas for m 16, this
ratio is approximately 0.0776. Thus, for a nation of two states with voting populations
63 and 99, the ratio of the number of pivot moves of a voter in the smaller state
to that of a voter in the larger state is approximately (0.0985)+(0.0776) 1.27.
This ratio is fairly close to x/-+x/-- 1.25, the approximate ratio ]’or a two-
candidate presidential election in a two-state nation (see Banzhaf [1] or Lucas [4]).
(The reader is reminded that the ratio of the numbers of pivot moves is the same as
the ratio of the Banzhaf values.) This leads us to wonder if this "square-root" law
holds in general for a three-candidate election in a two-state nation. To see that this
is indeed the case, we use Stirling’s formula to approximate the factorials. We get,
for large m,

[(2m + 1)!](2m)!36"+2 47rm

(6m + 2)! 4
and

P(m) 2S(m)+S(m)
W(m) 4zrm/4-- 1 3S3(m)

28(m) S(m)

4v4 1 353(m)"

For 50,000 <- m -< 10,000,01)0,

2S(m) Su(m)
2.17

and

3S3(m)
2.16<<2.17.

For such values of m,

P(m) 2.7

W(m 4r4-/4g"
If ml and m are each in the above range,

P(ml) W(m2) 4-
P(mz)W(m) /--"

Remark. For the U.S. presidential election, the values of m are in the interval
from 50,000 to 10,000,000.
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It is not hard to see that if there are k states, if there are three candidates, if the
number of voters in state is 6mi + 3, and if the winner must carry each state, then
the number of pivot moves for a voter of state 1 is P(ml)[W(m2)W(m3)... W(mk)].

We proceed now to presidential elections in which a candidate does not have to
carry each state in order to win the election. It will be convenient to let L(m) denote
the number of ways of distributing 6m + 3 voters among three boxes in such a way
that the number of voters in box 1 is less than or equal to the number in at least one
of the other boxes. Clearly, L(m)= 36m+3- W(m).

Now suppose there are three states and three candidates and that a candidate
must carry two states to win the election. If there are 6mi + 3 voters in state i, then
the number of pivot moves for voter 1 in state 1 is P(m 1)" W(m2)L(m3) + W(m3)L(m2)]
(since that voter must pivot in the plurality election within state 1 and that voter’s
candidate must win precisely one other state in order for the voter in state 1 to have
a pivot move in the presidential election).

In general, let there be k states with electoral votes w l, w2," ", Wk and voting
populations 6m1+3, 6m2+3,’.., 6ink+3. Let [q; wl, w2,"’, Wk] denote the k-
player weighted voting game with quota q, i.e., the simple game in which a coalition

is winning ifew->q. Let c(f) denote the number of pivot sets for player/" in
this simple game and let 6e.1, Se.2,..., 6a.c(i) be a listing of the pivot sets for player/’.
A voter of state 1 will have at least one pivot move in the presidential election if this
voter has a pivot move for the plurality election within state 1 and if his candidate
carries just enough other states to make the quota, q. It follows that the number of
pivot moves for a voter of state 1 in the presidential election is

c(1)

P(ml) , 1-I W(mi) I-I L(m).

This yields the following theorem.
THEOREM 2. If there are k states with electoral votes w l, W2,’" ", Wk, if state has

6m + 3 voters, if there are three candidates, and if a candidate must receive q electoral
votes to win the election, then the ratio of the number of pivot moves for a voter of state
1 to the number ofpivot moves for a voter of state 2 is

(3)

c(1)

P(mt) E I-I W(m) l-I L(m)
i=1 i,9li, jSli

c(2)

P(m) I-[ W(m) II L(m)
]..,2i,]2

COROLLARY. If them are k states with electoral votes w t, W2,"" ’, Wk, if state
has 6m + 3 voters, if there are three candidates, and if a candidate must receive q
electoral votes to win, then for 50,000 <- m <- 10,000,000, the ratio of the number of
pivot moves for a voter of state 1 to the number of pivot moves for a voter of state 2 is
approximately

(4)

i=1

where I/’i] denotes the number of elements in the set !"i.
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Proof of the corollary. For large m,

[(2m + 1)!]=(2m)!
P(m 25(m + $2(m),

(6m +2)!

[(2m + 1)!]=(2m)! 47rm
W(m) 1 353(m),

(6m + 2)! /g

[(2m + 87rm1)!]Z(2m)!.L(m) + 1 + 3S3(m).
(6m + 2)! /

Now multiply the numerator and denominator of (3) by

E(2m + 1)!]Z(2m)! E(2m2+ 1)!]Z(2mz)! [(2m + 1)!](2m)!
(6m + 2)! (6mz + 2)! (6m + 2)!

and by /mm. m.
The ratio in (3) is then approximately equal to

(2.17)

c(2) 4 8(2.17)

Remark. Banzhaf [1] showed that in the case of two candidates, the approximate
ratio of voting powers of individuals is

c(1)
c(2)

In order to calculate the ratio in (4) for the states in a United States presidential
election, we need the numbers ]i] for each pair (i,/’). Several computer programs
are available for this computation. One such program was written by Ken Fox while
he was a student at Miami University. l lsing his program and the numbers of electoral
votes assigned to the various states for the 1972 election, we find that, for the case
of three candidates, the ratio of the number of pivot moves of a voter in California
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(45 electoral votes) to the number of pivot moves of a voter in Utah (4 electoral
votes) is approximately (12.3)(0.23)= 2.8. (The second factor on the left-hand side
of the previous equality is the ratio of the square root of the population of Utah to
the square root of the population of California.) If there were only two candidates,
then the ratio of voting powers would be approximately 12.2 times the square root
of the ratio of the numbers of voters in these two states. This indicates that with three
candidates there is slightly more bias in favor of an individual in a large state. This
raises the question as to whether the bias will increase as the number of candidates
increases. We now consider the case of four candidates.

The reasoning which led to formula (3) for the case of three candidates is still
valid for a four-candidate presidential election. However, the expressions P(m), W(m),
and L(m) will have to be modified if there are four or more candidates. Here we are
writing P(m) instead of p(1; 8m, 4). W(m) will be the number of ways of distributing
8m voters among four distinguishable boxes in such a way that box 1 will contain
more voters than any of the boxes. L(m) is the number of ways of distributing 8m
voters among four distinguishable boxes so that the number in box 1 is less than or
equal to the number of voters in some other box. Hence, L(m)=48"- W(m). The
major problem will be the computation of P(m), W(m), and L(m). If one wishes to
skip the incredibly messy details, one may proceed directly to the main result which
is presented in Theorem 3.

To compute P(rn), we let

m"- (2rn + l)!(2rn)!(2m-1)!(2rn-1)!Tl(m) 2
j=l (2m +/)! (2m +/- 1)! (2m -f)! (2m -/’)!’

T2(m)
[(2"+1)/3] 2j-1 (2m + 1))(2m))(2m))(2m -2))
=1 k=l (2m +/’)! (2rn +/-1)!(2rn-j+k)!(2rn-/-k)!’

T3(m)
2,,-1 2"- (2m + 1)’(2rn)’(2m)’(2rn -2)’E

=[(2"+1)/3]+1 k=l (2m +/)!(2m +/-1)!(2m-/" +k)!(2m-/-k)!’
[(2"-1)/3]

T4(m) 2
/--o

(2m)! (2m)! (2m)! (2m 1)!
(2m +/)! (2m +j)! (2rn +/)! (2m 1 3/’)!’

Ts(m)
[2"/3] 2i (2m+l)!(2m+l)!(2m-1)!(2m-2)!
j=l =1 (2m +/)!(2m +f)!(2m-l-f+k)!(2m-/-k)!’

T6(m)
2"-1 2"- (2rn+l)(2m+l)(2m-1)(2m-2)

.i=[2"/3]+1 =1 (2m +/)!(2m +f)!(2m-l-f+k)!(2m-f-k)!"
Then

1 (8m- 1)!
P’rn’=2-(2rn+l)!(2rn)!(2rn-1)!(2m-1)!

+3

Tl (rn

(8m- 1)!
(2rn + 1)!(2rn)!(2m)!(2m -2)!

ITs(m) + T3(m)]

(8m- 1)! 3 (8m- 1)!+-
(4m)! (4m 1)! 2 (2m)!(2m)!(2m)!(2rn 1)!

T4(m)

(8m- 1)!
(2m + 1)! (2m + 1)! (2rn 1)! (2m -2)!

ITs(m) + T6(m )].
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Thus,

(2m + 1)! (2m)! (2m 1)! (2m 1)!
P(m)

(8m -1)!

2m-11
Ta(m + (Tz(m) + T3(m ))--i 2m

(2m + 1)! (2m)! (2m 1)! (2m 1)! 3 2m + 1
+ +-T4(m)

(4m)! (4m 1)! 2 2m

2m 1
Ts(m + T6(m ))+3

2m + 1

=1/2Ta(m)+ Tz(m)+ T3(m)+T4(m)+ 3(Ts(m)+ T6(m)).

Tedious calculations show that for 40,000 _-< m _-< 3,000,000,

1 Ta(m) T2(m)+T3(m) 3 T4(m)
2 m m 2 m

3(Ts(m) + T6(m))
2.70,

m

and thus

1 (2m + 1)! (2m)! [(2m 1)!]2
(5) P(m) 2.70.

m (8m- 1)!

As in the case of 3 candidates, it is more convenient to obtain W(m) indirectly.
The total number of ways of distributing 8m voters among 4 distinguishable boxes is
48". Let T(m) be the number of these in which there is a tie (i.e., the two boxes with
the largest number of voters contain the same numbers of voters). Then W(m)=
1/4(48" T(m)).

LEMMA 5.

T(m) (mm)(r)(mm)
t2"/31( 8m )(6m-/’)/4m-2f)+4 E
’=a 2m+/" 2m+/" \2m+/’

+6 " (2m8r/.)(26 -/" (4m-2/"

2-a( 8m )(6rn-/’)2a(4rn-2/’)+12
=1 2m+/" 2m+/" k;a 2m-/’+k

Pro@ A tie can occur in the following ways:
(i) All four boxes contain 2m voters; this accounts for the first term on the

right-hand side.
(ii) For 1_-</’_-<[2m/3], three of the boxes each contain 2m +/" voters and the

other box contains 2m- 3]. There are 4 ways to choose which box gets the 2rn- 3/"
voters. The voters can then be chosen in

(2m8n/.) (6m-/" (4m-2f
2m +f )\ 2m +f )

ways.
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(iii) For 1 _-<] =< 2m, two of the boxes each contain 2m +] voters and the other
two boxes each contain 2m-] voters. There are 6 ways to choose the two boxes
which will each get 2m-/" voters. The voters can then be chosen in

ways.
(iv) For 1 _-< ] _-< 2m 1 and 1 -< k _-< 2] 1, the numbers of voters in the boxes are

2m +/’, 2m +/’, 2m-/" + k, 2m-]-k. There are 4 ways to choose the box which will
get 2m-/" + k voters, after which there are 3 ways to choose the box which will get
2m -/"- k voters. The voters can then be chosen in

8m 6m 4m -2/’(2m +/’)(2m -i

ways.
For computational purposes it will be convenient to remove from the double sum

those binomial coetticients which equal 0.
COROLLARY.

T(m) (8m 6m 4m

+ /1 (4m-2]

+6 ’ (2m8r/.)(6m -/" 4m-2]
]--1

/.; ; 2m+/" 2m+/" 2m-/’+k

+12 (2m+])(2m -]
]=[2rn/3]+1 k=l

Proof. We note that 2m -/’ + k _-< 4m 2/" k _-< 2m -]. Further, ] =<
[2m/3] => 3/" -<_2m + 1 => 2/’- 1 -<_2m -/’, whereas ]>=[2m/3]+ 1 =>3/’->_ 2m + 1=>2/’-
1 >-_2m-].

COROLLARY.

T(m) ()(26ram)(mm)
231 8m 6m (4m-2]+4 (2m+f)(2m -]
,= +j )\ 2m +j )
r.z3: 8m ) 6m ) 4m-2/’)+] ( k2m-] +]=l k--1
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Proof. Observe that

k=l 2m-f+k i=o
_2])_ (4m -2j

Then

12 2-1 z-] 8m ) 6m )(4m-2/’)
]=[2rn/3]+ (2m+j ( -J

k= 2m +k2m

=6
2m --1

i=[2m/3]+1
(2m8 6m;)( -;

2m +/" ) 24m
-6

]=[2,,/3]+ 2m +] 2m +/"
4m -2/’)2m -j

The proof is completed by writing

" (28mm+j)(6m-j 4m-2j2m+j)(2m j)]---1

[2m/3]

]--1

8m 6m 4m -2/"
2m -]

2m --1

]=[2m/3]+1
( (2m -j ) +(4m)(4m)2m8nj) 6m (4m-2j 8m 4m+j)\ 2m-j

and then combining each of these terms with the appropriate summation.
Now let N [2m/3] and

r (2m + 1) (2m + 1) (2m + 1) (2m -3)
U(m)

]= (2m +])! (2m +])! (2m +])! (2m 3])!’
N 2]-x. (2m + 1)! (2m + 1)! (2m)! (2m -2)!

U2(m)=,YI.= kz= (2m +])(2m. +/)(2m. -] + k)(2m. -]-k)’.
N (2m + 1)! (2m + 1)! (2m 1)! (2m 1)!

U3(m) =iv (2m +])!(2m +])!(2m-])!(2m-i)!
2 (2m+N+l)!(2m+N+l)!(4m_2N_2)!4+

U4(m) Z (2m +/)! (2m +])! (4m 2/)! 4

Then

(2m + 1) (2m) (2m 1) (2m 1)
T(m)

(8m- 1)!

4m + 2 16(2m 1)(2m 2) 48(2m 1)+m (2m + 1)2 Ul(m) +
2m + 1

U2(m)

48m
+
2m + 1

U3(m) + (48m)(2m + 1 )! (2m)! (2m 1)! (2m 1)! 24m-2N-2

(2m +N + 1)! (2m +N + 1)! (4m 2N- 2)!

=4+ 16U(m)+48U2(m)+24U3(m)+O. Ua(m).

Ua(m)
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Tedious calculations show that for 40,000 <-rn -< 3,000,000

4 16Ul(rn) 48U:(m) 24U3(m)
32.3<--+ + +

m m m m
<32.5,

so that for 40,000 =< m -< 3,000,000

(6)
(2m + 1)! (2m)! [(2m 1)!]: T(m)

(8m- 1)! m

Since W(m) 1/4(4s" T(m)),

(2rn + 1)! (2m)! [(2rn 1)!]2 W(rn)
(8rn- 1)! m

(2m + 1)! (2m)! [(2rn 1)!]248"-1
(7) -8

rn(8m- 1)!

4,n.3/Zm /2 8 47r3/Zm 1/2.

Similarly, since L(m 4" W(rn ),

(2m + 1)! (2m)! [(2m 1)!]2 L(m)=3(4r3/2ml/2)"(8)
(8m- 1)! m

We are now ready to state the main result for the case of four candidates.
THEOREM 3. If there are k states with electoral votes w 1, W2 Wk if state has

8rn voters, if there are four candidates, and if a candidate must receive q electoral votes
to win the election, then the ratio of the number of pivot moves for a voter of state 1 to
the number ofpivot moves for a voter of state 2 is approximately

(9)
i--, x/2

where 1,2,’" ",co) are the pivot sets for state f in the simple game
[q; wl, WE,’’’, Wk].

Proof. For the case of four candidates, we multiply and divide the ratio in (3) by

lI (2mr + 1)! (2m,)! (2mr- 1)! (2m,- 1)!
t=l rn,(8m,- 1)!

Formula (3) becomes (approximately)
c(1) c)(2.70) E 1-I (47r3/2m/2) [I (127r3/2mJ/2) 3 k-lse’’l
i=1 ,5’1i,j ._,qal i=1

c(2)

/2 /2m J/2 c)(2.70) Y’. I-I 4,a’3/2m I-[ (127r 3 3 k-1’2’l
i=1 S2i,] #2 ’2 i=1

Using the numbers of electoral votes assigned to the various states for the 1972
presidential election, we find that the ratio of the number of pivot moves of a voter
in California to the number of pivot moves of a voter in Utah is approximately 12.6
times the square root of the ratio of the number of voters in Utah to the number of
voters in California. Thus, the bias in favor of a voter in California relative to a voter
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in Utah does indeed increase as the number of candidates increases from 3 to 4.
Indeed, the bias in favor of a voter in California relative to a voter in a state with 3,
4, 5, 6, or 7 electoral votes increases as the number of candidates increases from 3
to4.

4. Conjectures concerning multicandidate presidential elections. Formulas (4)
and (9) immediately suggest the following:

CONJECTURE. If there are k states with electoral votes w, w2,..., w, if state
has vi voters, i1 there are r candidates, and if a candidate must receive q electoral votes
to win the election, then the ratio o] the numbers o] pivot moves for a voter o1 state 1
to the number ofpivot moves ]’or a voter o] state 2 is approximately

/=1 \r-l/ x/-2

i=I

Unfortunately, I have not been able to obtain formulas for P(m), W(m), L(m)
in the case of r candidates. Consequently, I have been unable to prove the above
conjecture.

However, ifthe confecture is true, then when there are ten candidates, an individual
in California has approximately three and one-half times as much voting power as an
individual in Utah. For two candidates, the ratio is approximately 2.8. (In calculating
these ratios, we used the electoral votes for 1972 and populations of the states rather
than the numbers of citizens of voting age.) It does indeed appear that as the number
of candidates increases, the bias in favor of a voter in California relative to a voter
in Utah also increases.
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Abstract. The moments of a Catalan triangle are computed. The method is similar to that used for
probability generating functions. This however does not explain the elegance of the results until further
combinatorial connections are developed. These include Eulerian numbers, runs, zig-zag permutations,
tangent numbers and a kind of nontrivial run called a slide.

Key words. Catalan triangle, runs, Eulerian numbers, moments, slides, tangent numbers, zig-zag
permutations

1. Background and motivation. This study started with a problem in computing
the moments of the Catalan triangle. This project became more interesting when the
Eulerian numbers appeared and far more so when the tangent numbers showed up.

The Catalan triangle is defined by Bnk (k/n)(2k), and its first few entries are
as follows:

()
2
3
4
5
6

2 3 4 5 6

0 0 0 0 0
2 0 0 0 0
5 4 1 0 0 0

14 14 6 0 0
42 48 27 8 0
la2 165 110 44 10 1

Many properties of this triangle are discussed in a paper entitled A Catalan
Triangle [11]. This paper will be denoted ACT. Other related papers are Epplett [4],
Moon [9], Rogers [10] and Strehl [13]. The interpretation discussed in ACT is by
pairs of nonintersecting paths, but there are several other interesting interpretations.
For example, if a coin is flipped 2n times and the running total of heads always exceeds
tails, then there are Bn possible sequences where 2k is the excess of heads over tails.
Yet another interpretation is by linear forests of rooted planar trees with k nontrivial
trees arranged in a line having a total of n edges.

An interesting observation concerning the triangle is

1.1 =1,

2.1+ 1.2 =4,

5.1+ 4.2+1.3 =4,
14.1+14.2+6.3+1.4=43

which leads to the immediate guess about first moments

kB,=4"-1 forn_->l,
k=l

* Received by the editors October 30, 1981, and in revised form February 23, 1982.
t Department of Mathematics, Howard University, Washington, DC 20001.
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or

Y. kB,, x" F(x ).
.=1 k 1-4x

In ACT a related result is proved’

k
Bnk -which can be rephrased as

Y B. x" Fo(x ).
rt=l k 2x/1-4x

We consider next the second moments"

1"12 1,

2’12+ 1"22 6,

5 12-1 4" 22+ 1 32 30,

14.12+ 14.22+6 32+ 1 42= 140.

This sequence is not in Sloane’s Handbook [12], but we observe

1 +6x +30x2/ 140x3 + (1 +4x + 16x2+64x3 / ...)

(1 + 2x + 6x 2 + 20x 3 + .),

which suggests the relationship

F2(x)=?=l k=lk2B"k X"=
X 1 X

1--4X x/1 4X (1--4x)3/2"

By computing the first few terms of each moment sequence, the following seem
reasonable’

(2)

F(x)

F4(x)

F(x)

x +2x 2

(1-4x)2’

x + 8x 2

(1-4x)5/2

x + 22x 2 + 16x 2

(1 --4X)3

and

F.(x)
Ym(n,s)x

(1 --4X) (n+1)/2"
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The numerators are the interesting feature, and if we put the coefficients in tabular
form we obtain

(3)

m(n,s)

2 3 4

1 0 0 0
1 0 0 0

2 0 0
8 0 0

1 22 16 0
52 136 0

114 720 272

At this point several observations can be made. The m (n, s) seem to be nonnega-
tive integers and thus possibly of combinatorial origin. A less obvious but more
intriguing observation is that the boldfaced entries are the first few tangent numbers,
T., where tan x Y..=o T. x2"+l/(2n + 1)!. If we divide each entry in the second column
by 2, we get some of the Eulerian numbers. In 2 we will compute some moments
in combinatorial settings. In 3 we will give a short derivation of (2) above, which
however will depend on a combinatorial setting for the m (n, s) and an identity which
will be proven in 4.

2. Moments. Let (a0) be an infinite matrix with all but a finite number of zeros
in each row. Let Dj(x) Y.i=I aoxi be the generating function for the/’th column. The
exponential generating function for the moments is given by

(4) M Dl(X) e +D2(x) e 2z + Dk(x) e kz

k=l

in the following sense: the coefficient of zk/k! is

Mk lkD(x)+2kD2(x)+ Y. mkD.(X).
m=l

This generalizes slightly the moment generating function associated with a proba-
bility density function (see Freund [7] and Feller [6]), since we have a column, Di(x),
instead of a probability, pi.

If f(x) k=O akX then define c, (f(x))= a,.
The examples given below depend on the following situation. Suppose D(x)-

[D(x)] for a given generating function, D(x). Then

D(x)e
(5) M

1-D(x)e z"

LEMMA. Letting D (x) D we have

(6)
Oz h 1-De (1-DeZ)"+1

where the A (n, k) are the Eulerian numbers.
Proof. The key recurrence is

(7) A(n + 1, k)= kA(n, k)+(n + 1-k)A(n, k 1),

which can be used to define the Eulerian numbers. ]
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Another definition of A(n, k) is as the number of permutations of In] with k
runs. This yields the same recurrence. See Knuth [8] for a good exposition of this
material.

The polynomial A,,(x) is defined as k=l A(n, k)x :

Example 1. Let D(x)= x. This simplest case goes back to Euler [5] and already
is of some interest.

O" (x_e ) k=lA(;k+)x k_..= a.(x)(8)
Oz x e =0 (1 X (1 --X)"+1- ,=1

m X

Example 2. We want to compute the moments of successive Bernoulli trials.
Consider the matrix

(9) B
p 0 0

2pq p2 0
q3 3pq2 3p2q p3

where p and q are probabilities of success and failure, respectively. Now consider the
matrix pB. For pB one obtains D1 =D =px/(1-qx) and De =D i.

Let M* =D +DE e +D3 e 2z + D/(1 -D eZ). Then

(10) OM__* De eZ
)z.Oz (1-De

Comparing this with (5) yields

O"M* DOnM forn_->l.
OZ

Thus

(11) 0"M*=D E=I A(m, k)(D e )k
Oz (l_DeZ)"+

Letting z 0 and recalling that D =px/(1-qx), we get

(12)
Y’.g= A(m, k)(px/(1-k))

(1 _x),n+x (1-qx) =M,,

Then (1/p)f,+(Mm) yields the ruth moment of (q +px)’.
Indeed

(13)
OM*
Oz

and

(14)

Similarly

(15)

D2

z=O (l-D)2
2 2 3 2X4=p x +2p2x +3p +...,

P
n+l (1 --/)2 =np.

32M*
Oz 2

z=O
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(16)
D2+D ( D )(1-D)-------x- (1 ---b)

(17) )(p2x2_p2qx 3 +p3x3) kE0=
2
n

+ k
x =v.k

Hence

1
(18) -,+,(V)=npq,

P

which is the variance.

3. The Catalan triangle. We now prove (2), which gives the generating function
for the nth moments of the Catalan triangle. We will need the following identity,
which will be proved in 4"

[n/2]
)n+l--2s(19) An(x)= A(n, k)x k ., re(n, s)xS(1 +x

k=l s=l

PROPOSITION 1. Let Fn (x be defined as in (2) in 1. Then

n/2]

=1 re(n, s)x
F,(x) (1_4x)(,+)/2

Proof. Start by noting the following facts about the generating function c c(x)
of Catalan numbers"

(20) c l xc 2, 2-c cx/1-4x,
and for the Catalan triangle D c 1, by (6),

OnMi ,[n/21
=Zk= A(n, k)(c- 1)

g

Fn(x)
Oz z=O [1-(c- 1)]n+*

= m(n,s)(c-1)(l+c-1)"+-z

(21)
(2--c)n+X

sY’=l m(n,s
-,[n/2]

__Z.as=l m(n, s)x
(1-4x)(n+/2

4. The missing identity and other results. Let ala2...an be a permutation of
In]. Following Knuth we put bars at each end of the permutation and also between

a. and aj+l whenever aj > a+l. The runs are the segments between bars. For instance,
135711689[412[ has four runs. Note that this allows runs of length one.

Start again, except now adjoin a0 o. Put asterisks at each end and also between
a and a+l whenever a. < aj+l. For instance, the same permutation gives

o3,5,71,6,8,942,.

A slide is any segment between asterisks of length at least two. Here we have
three slides o 3, 71 and 942.

Let W(n, k, s) be the set of all permutations of [n with k runs and s slides. Then
let w(n, k, s) [W(n, k, s)[. The next proposition singles out the w(n, s, s), and we
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define rn (n, s)= w(n, s, s). Since the end of any slide is the beginning of a run, we
will always have k => s.

PROPOSITION 2.

(22) w(n,k,s) (n + 1-2s) w(n,s,s).
k-s

Proof. Any permutation in W(n,s,s) has each slide of length just two. [Let
oo 2 51 3 6 84 7 9 be an example. The slides are oo 2, 51 and 84, while

the runs are 25, 1368, 479. Thus s k 3]. Counting a0 oo, there are n + 1 symbols
and n + 1- 2s that are not included in the slides. Choose k-s of these n + 1- 2s
elements, move each chosen element ak to the left into the nearest slide aaj+l
with at>ak>aj/l. [Say k-s=2 and we choose 3 and 9; then
oo 2 * 51 3 6 84 7 9 becomes * oo 9 2 531 6 84 7 ..]

Figure 1 illustrates the one-to-one correspondence.

FIG. 1

Now let A (n, k) be the number of permutations on [n with k runs. Then we have
PROPOSITION 3.

(23) A(n,k) ., w(n,k,s) y,. (n+l-2s) m(n,s).
l<_s<_k l<_sk k -s

Recall that A,,(x) Y.k--1A(n, k)x k Then we obtain
PROPOSITION 4.

(24) A,(x)= Y’. m(n,s)xS(l+x)"+1-2s.
s=l

Proof. Examining coefficients of x k yields the equation given in Proposition 3.
This is identity (19) used in 3. We can now easily confirm all the observations

mentioned in 1. Since m (n, s)= w(n, s, s), all the m(n, s) must indeed be positive
integers, for 1 -< s <- In/2].

The set W(2k + 1, k, k) gives just zig-zag (or alternating) permutations of length
2k + 1. By Andr6’s famous result on zig-zag permutations [1], [2],

X
(25) Y. Zn.. tan x + sec x.

n=0

The odd part of this is indeed tan x, which confirms that observation. One might
wonder where the secant numbers are. These arise by discarding ao
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(26)

This leads to the following:

2
3
4
5
6

0 2 3

1 1
5

1 18
1 58

543

5
61

3111 1385

For n up to 15 see David, Kendall, and Barton’s Symmetric Functions and Allied
Tables [3, Table 7.2.2].

There are some other results of interest which however have long proofs. The
proofs will be left out but are available from the authors.

Start by rearranging the rn (n, s) and putting them in a double generating function
as follows (so as to put the tangent numbers in the first column):

(27)
2
3
4
5

2 3 4 5

Ix
lx2y/2!

2x3/3 lx3y2/3!
8x4y/4! lx4y3/4!

16x5/5! 22xSy2/5! lxSy4/5!

Let M M(x, y) be the sum of all these terms.
PROPOSITION 5. M satisfies the quasi-linear partial differential equation

4My 2Mx 2 xyMx + yEMy yM.

When y 0, M tan x. Solving this P.D.E. yields

M=-+ tan r 1 +arcsin

This proposition has an interesting consequence. Let r, =Y.I m(n,s) be the
number of what we will call reduced permutations of In]. Then let R(x)=
y,oo= r, (x"/n !) be the exponential generating function for the

COROLLARY.

4 tan (/x/2)+ 1/4 1 (1/4) tan (x4/2)
R(x)=

2 1-(1//)tan (/x/2) 2 1-(1//)tan (x//2)
PROPOSITION 6. re(n, s) sm(n 1, s)+ 2(n --2s + 2)m(n 1, s 1).
If we consider the number of permutations of In with s slides, we immediately

obtain:
PROPOSITION 7. There are 2"+a-am(n, s) permutations of In] with s slides.
See David, Kendall, and Barton [3, Table 7.3]. Then summing over s yields
PROPOSITION 8. s_--1 m(n, S)2"+1-2 n!
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A MATROID ABSTRACTION OF THE BOTT-DUFFIN
CONSTRAINED INVERSE*

SETH CHAIKENt

Abstract. Let (El, E2, ) be a linking system with linking function 3’ as defined by Schrijver or
bimatroid as defined by Kung. That is, there is a matroid on the disjoint union of E1 and E2 whose bases
are E1 and (E\X)t..J Y for (XI Y) c 2 x2:. abstracts to matroid theory some properties of the
nonsingular minors of a matrix and 3" abstracts the submatrix rank function. For 1, 2 let be a matroid
on Ei with rank function ri and bases i. Suppose r(Ex) r2(E2)-R and there are bases Bi in /i such
that (B[B2)J. We show (E2, E, T) is a linking system where (Y[X)9riff there exist FicEi s.t.

El X F2 Y b, FI I,.J X 1, F2 I,.J Y 2 and (F IF2) d. The linking function

"c(Y,X)= min [rl(F11..JX)+3’(F,Fz)+r2(F21..J Y)]-R for
FIE1
F2E2

and Schrijver’s extension of Edmond’s intersection theorem are used in the proof.
As a special case, suppose :g is a matroid on E. Let E1 and E2 be disjoint copies of E, and XI, Y2

be the images of X, Y c E in E, E2 respectively. Then {(E\X1)t_J Y2[ there exists a base B in /with
X B and (B\X)I..J Y is a base in /} is the collection of bases of a matroid.

When is coordinatized by cycle space g, is coordinatized generically by matrix G and , J
satisfy the above conditions, then the Bott-Duffin inverse problem, which is to find v for io such that v -and Gv io 1, has a unique solution v T io, and conversely. We show then that matrix T coordinatizes
the linking system (E2, El, if).

1. Introduction. Matroid theory results from abstracting the following com-
binatorial properties which the collection o of linearly independent subsets of columns
in a matrix obeys. (See Welsh [6] for a general matroid theory reference.)

(I 1) If I 5 and J c I then J o.
(I2) If Ix, I2 5 and 1121 [:1[ / 1 then for some x 12\11, I [.J {x } .
Thus, a matroid v//= (E, ) consists of a finite set E and a nonempty collection

of subsets of E that satisfies (I1) and (I2). When o is the collection of independent
sets of columns in a matrix M, we say M represents (or coordinatizes) J/l. The axioms
in an equivalent definition of a matroid are the following properties of the nonempty
collection 3 of maximal independent sets. The members of are called bases. (We
will abbreviate {x } by x.)

(B 1) If B1, B2 G then [BI[ ]B2[.
(B2) If B 1, B2 and x B1, there is some y B2 such that B2\y I,.J x .
Matroid theory is also used to abstract the combinatorial properties of the

collection of nonsingular minors (i.e. square submatrices) of a matrix. If M is a matrix
with row set E1 and column set E2 (briefly, M is ElXE2; assume Elf)E2 ),
consider the matrix M’ with columns E1 LI E2 and rows E1 obtained by appending an

E1 E1 identity matrix to M:
El
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at the SIAM Conference on Applied Linear Algebra, Raleigh, North Carolina, April 26-29, 1982.
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It is easy to verify that (El\X)tA Y is a base in the matroid represented by M’ if and
only if (XIY) indexes a nonsingular minor of M. Now let :g be any matroid on E
where E E1 tA E2, E E2-- and E1 is a base in //. The above motivates us to
consider the collection A of pairs of sets (XI Y) such that X eel, Y tEE and
(E\X) Y is a base in d//. Triples (E,E2, A) associated with a matroid as above
have been studied by Schrijver [4], [5] who called them linking systems and the
elements of A linked pairs, and by Kung [2] who called them bimatroids and the
elements of A nonsingular minors. Actually, Schrijver and Kung defined linking
systems with axioms. They then proved every linking system so defined is associated
with a matroid as above and conversely.

Kung’s axioms consist of ( ) A and an axiom that is derived from the strong
base exchange property applied to the associated matroid:

(B3) If B, B2 and xB then there is some y B2 such that (B\x) kJ y e
and (B2\y) U x .

Schrijver’s axioms are
(L1) If (X] Y)A and xX then (X\x]Y\y)6A for some y Y.
(L2) If (X] Y) A and y Y then (X\x Y\Y) 6 A for some x 6 X.
(L3) If (X[ Y1) A and (X2] Y2) A then for some X, Y such that

XI cX X1 L/X2 and Y2 C Y Y1 L/Y2, (X] Y) A.
Linking systems are also characterized by their linking function A" 21 22 7/+.
A (X, Y) is the cardinality of the largest Xx =X and YI Y such that (Xx] Y1) A.
Note that these X, Y1 have equal cardinality. A is the abstraction of the rank function
of submatrices. Linking functions are functions into Z that satisfy

(El) 0 -<_ h (X, Y) _-< min {IX[, ]r[}.
(F2) If X’ X and Y’ Y then h (X’, Y’) _-< h (X, Y).
(F3) h (Xx fq X2, Yx LI Y2) + h (Xx LI X2, Yx Iq Y2) -<- h (X1, Ya) + h (X2, Y2).
These axioms were given by Schrijver. Kung’s axioms are equivalent but slightly

different.
Since linking systems are matroids with a distinguished base, in a different guise,

the reader may ask for the point of defining and using linking systems. Linking systems
are interesting because they reveal and motivate aspects of matroid theory that would
otherwise look strange and be obscure. For example, (L3) is the generalization for
linking systems of the Dulmage-Mendelsohn theorem for matchings in bipartite
graphs.

Important matroid analogies of some operations in linear algebra are clearly
described with linking systems. For example if (E,E2, A2) and (E2, E3, A23) are
linking systems then (E, E3, A13) is a linking system where

A13 {(X[ Y) there exists Z c E2 such that (X ]Z) Ax2 and (Z[ Y) A23}

(Schrijver [4], [5] and Kung [2]). A13 A12 A23 is called the composition or bimatroid
product. If matrix Mx2 represents A2, M23 represents A23, and G is a diagonal matrix
with rows and columns E2 and entries that are algebraically independent indetermin-
ates, then M3 =Mx2GM23 represents A13. This is proven using the Cauchy-Binet
theorem: (M(XIY) denotes the minor of matrix M with rows X and columns Y.)

detMa(X[ Y) Z
ZcE
Izl--Ixl

det M2(X [Z) det G(Z [Z) det M23(Z Y).

Schrijver shows that inversion of a nonsingular matrix has a linking system
analogue.
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ff (Ex, E2, A) is a linking system for which (Ex[E2) A then (E2, Ex, A-x) below
is a linking system"

(1.1) A-1 {(r [X) I(Ex\X lEE\ Y) A}.

Proof. A-1 and A have the same associated matroid.
This is an analogue of matrix inversion because Jacobi’s theorem shows that for

a nonsingular matrix M, M-(YIX) is nonsingular if and only if M(Ex\XIEE\Y) is
nonsingular.

2. Summary of results. The main result of this paper is that another construction
in linear algebra, the Bott-Duffin [1] constrained (or generalized) inverse, can be
abstracted to matroid theory in the same sense matrix multiplication and inversion
were abstracted. See also Rao and Mitra [3].

Let ://1 (Ex, ) and ’/2 (E2, o2) be matroids and (Ex, E2, c) be a linking
system. We will give a combinatorial definition (2.2) of a collection - of pairs (Y IX),
for which Y c E2 and X c Ex. We then show that when condition (2.1) holds, (2.2)
is a linking system.

We will next consider when /, /2, and respectively are "generically" coor-
dinatized by cycle spaces 1, (2 and a matrix G. The condition (2.1) then turns out
to be equivalent to the condition that the Bott-Dutiin constrained inverse problem
Gv -i c, x c has a unique solution v for all i. When this is true, we will show
that is coordinatized by the matrix T for which v Ti for all i.

Our condition for the existence of the Bott-Duftin inverse linking system of
with respect to x and 2, is

(2.1) has a base F1 and /2 has a base F2 such that (F IF2) (q.

This implies that d// and ///2 have equal rank R.
THEOREM A. Suppose //e (E,., ;), with rank function re, 1, 2 and (E, E2, c),

with linking function 3’, satisfy the above condition. Then (E2, El, ff’) is a linking system
with linking function z, where

(2.2)

ff {(Y [X)[ Y 32, X o1, and there exist F1 Ex, F2 E2 such that

Y f’qF2=X f’)FI= , YF2 52, XLJFI I, and (Fx[F2) J},

-(Y,X)= min {rl(XUF1)+’y(F,F)+r2(YUF2)}-R.
FECE2

Here F Ei \Fi.
The following two corollaries are special cases.
COROLLARY 1. If (Ex, E2, A) is a linking system with (Ex[E2)A, then

(E2, Ex, A-) where A- given by (1.1) is a linking system.
Proof. Take A and e the (free) matroid on Ei for which all subsets of Ei are

independent. Since Ei is a base (the only base) in ///i and (ExlE2) A, the corollary
follows from Theorem A.

COROLLARY 2. If rill (E, ) is a matroid, then T(M)= (E,E, ) is a linking
system where

3 {(X[ Y)IX, Y and there exists F

such thatF tq (X t.J Y) andF t.J X, F Yare bases in }.
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Proof. Take c {(X [X)IX c E} and .////1 ,///2 ,/. Clearly the hypotheses of
Theorem A hold and 3- is as claimed because (F1 IF2) 6 c_.q if and only if F1 F2.

Corollary 2 is an interesting fact about the basis exchange or pivoting operation
in matroids. Let J/= (E, 5) be a matroid on E- Eo E’ where Eo is a base. Then,
in the linking system (Eo, E’, A) associated with d, with distinguished base Eo, (X[ Y) 6

A if and only if X can be exchanged for Y in (fixed) base Eo, that is, (Eo\X)[..J Y is
a base in J/. However, in (E, E, ;Y-), (XIY) if and only if X can be exchanged
for Y in some base in //. The sets (El\X1) Y2, where Ei, 1, 2 are disjoint copies
of E and XI, Y2 are the corresponding images of X, Y when (XIY) , comprise
the bases of a new matroid on E1 U E2! Note that the rank of the new matroid equals
the cardinality of the set of points E of :///. The independent sets 5 are recovered
from , by {xl(x IX)s }.

Let us apply Corollary 2 to the polygon matroid of a (for simplicity) connected
graph with edges E. The bases are the spanning trees. We obtain a new matroid
associated with a graph.

COROLLARY 3. Let E1 and E2 be two disjoint copies of E. Let 3 be the collection
of sets of the form (El\X) (.J Y, X c El, Y E2 for which

(1) the sets of edges in f corresponding to X and Y respectively are equicardinal
forests, and

(2) there exists a forest F in f such that F f (X (.J Y)= , X UF is a spanning
tree and Y UF is a spanning tree.

Then is the collection of bases of a matroid on E1 (A E2.
Property (L3) implies the following result in graph theory.
COROLLARY 4. Suppose X1 F1, Y1 F1, X2 U F2, Yz U Fz are spanning trees

and Xi F Yi F 3 for 1, 2. Then there exist forests X, Y, and F such that
XI cX cXI U X2, Yz c y c Y1U Y2, X F Y F 3 F XI (.JX U YI (.J Yz (.J

F1 F2, and X F, Y F are both spanning trees.
The linking system in Corollary 3 turns out to be coordinatized by the open

circuit resistance matrix of the resistor network with underlying graph Y and resistors
with algebraically independent values. To explain this and introduce the Bott-Duffin
constrained inverse, we formulate the equations for the currents and voltages in a
resistive network.

Let E be the set of edges of an electrical network of resistors. Let r be the
cycle space and c- be the cocycle space of the graph of . All vectors w here will
be tuples indexed by the elements of E; w(e) is the component corresponding to
e E. Suppose current io(e) is applied across edge e in and we wish to compute
the voltages that appear across the edges as a result. Let i(e) be the current in edge
e and v (e) be the voltage across edge e.

Kirchhoff’s current law requires

i-ion%

Kirchhoff’s voltage law requires

Ohm’s law relates v to i,

i=Gv

where G is a diagonal matrix of edge conductances. (Conductance is the reciprocal
of resistance.) Thus, we have an example of a constrained inverse problem. When for
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all i0 the solution v exists and is unique, the constrained inverse T exists and

Here, T is called the open-circuit resistance or "transpedence" matrix of .
We consider the following slight generalization of Bolt and Duffin’s constrained

inverse problem.
Let El, E2 be two finite sets which are fixed coordinate sets for vector spaces

’1, t2. Let (1 and (2 be given subspaces of 1 and ’2 respectively. Let G:- 8’1
be a linear map from 2 to LI. G can be considered here to be an E1 x E2 matrix.

Given io 1 we wish to find v :’2 such that

(2.3) Gv -i0 1,

(2.4) v-
where ’+/- is the orthogonal complement of . When these relations have a unique
solution for all i0 1 then it can be shown there is a matrix T such that v Tio.

The orthogonal complement is taken with respect to the usual scalar product.
Let 1, 2 be the matroids on El, E2 respectively that are coordinatized by cycle
spaces c1, 2. (In other words, ://i is represented by chain group i.) Let B1, B2 be
bases in 1, 2 respectively. Let MB1, MB2 respectively be the fundamental cocycle
matrices of 1, z with respect to B1, Bz. That is, Mn, has rows Bi and columns
Row f of MB, is the unique vector v in - such that

v(/)= 1, v(e)=0 for all e Bif.
The following lemma is an easy generalization of the results of Bott and Duftin.
LEMMA. Equations (2.3) and (2.4) have a unique solution v for all io 2 if and

only if
det (Mn1GM’n2 O.

If so, v Tio where

T M(MnIGM)-IMB.
G represents or coordinatizes fg when (X] Y) ff if and only if submatrix G(XI Y)

is nonsingular.
Our connection between the Bott-Duflin inverse and the linking system in

Theorem A holds when G coordinatizes generically. That is, assume G has the form

hi 0
.G’.(2.5) G h2

0
hiE11

kl
k2

0

klE21

where hi and ki are algebraically independent indeterminates.
THEOREM B. When G is generic, (2.3) and (2.4) have a unique solution v Tio

for all io 1 if and only if there are bases F1 in ll and F2 in tt2 so that (F11Fz) c.
(Hence rank (t/1)= rank (/2). When G is arbitrary, the condition is necessary.) When
G is "generic" and the condition holds, T represents the linking system (E2, El, -) in
Theorem A.

Note that when G is a nonsingular, generic diagonal matrix and 1 2 the
condition holds automatically. In this case, T coordinatizes the linking system in
Corollary 2.
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3. Proof of the general matroid result. Let (El, E2, ) be a linking system with
linking function 3’. Leti (Ei, i), 1, 2 be matroids with rank functions ri respec-
tively.

If is a matroid on E, rt denotes d//’s rank function. If S c E, /S denotes
with S contracted. We take d/t/S to be a matroid on E; the elements of S are loops
in IS. Thus, for X c E,

(3.1) r/s(X) r(X 1,3 S)- rt (S).

We assume the reader is familiar with the elementary properties of matroid rank
functions, see Welsh [6]. In particular, X o if and only if r(X) [X[.

Throughout this section, assume
HYPOTHESIS. ,/1 has a base FI and /2 has a base F2 such that (F1 IF2)E . This

implies that /1 and 12 have equal rank R.
DEFINITION. Let T c E2 and S E. Denote E\F by F.

’(T, S) r2(T) +r(S)-R + min {r,/s(F,) + y(F, Fz + r_/r(F2)}.
FIE1
F2E2

Observe from (3.1) that

(3.3) z(T, S)= min {rl(F US)+ y(F,Fz )+ r2(F2 LJ T)}-R.
FIEI
F2E2

Our proof hinges upon Schrijver’s characterization of linking functions (F1), (F2),
and (F3) and his generalization of Edmond’s intersection theorem:

THEOREM (Schrijver). Let ri (E, Ji) 1, 2 be matroids with rank functions p
and let (El, E2, ) be a linking system with linking function y. Then the maximum
cardinality of sets F1 J1 and F2 J2 such that (FI IFE) equals

(3.4) min {p(H) + y(H, H. + p2(H2)}.
HcEI
H2E2

THEOREM 1. "r satisfies (F1), (F2), and (F3). Hence z is the linking function of a
linking system.

Proof. Clearly, from (3.3) z is nondecreasing in T and S, so (F2) is satisfied.
To show z(, )= 0, we note from (3.3) that

z( )= min {r(F)+y(F,F)+rE(FE)}-R
FE
F2E2

We conclude from the hypothesis that the largest F1, F2 such that Fx M1, F2 M2 and
(F]F2)E d are both bases in , 2 respectively. Hence we conclude z(, 5)=0
from (3.4) and r(dE1)= r2(d2)= R.

If we evaluate the right-hand expression in (3.3) for F El, F2 and apply
r(E) R, we obtain z(T, S) _<- r2(T). Similarly, -(T, S) <-r(S). Hence

(3.5) -(T, S)-_< min {r2(T) rl(S)}.

This stronger result establishes (F1).
Finally, we prove the submodularity property (F3) of - for given T’, T" E2 and

S’, S" Ex. Suppose F and F attain the minimum (3.3) for T’, $’, and F and F
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attain the minimum (3.3) for T", $". Then

’(T’, S’) + r(T", S") r(F’l U S’) + y(F’, FT) + r2(F U T’)-R

+rl(F’ US")+T(Fff F )+rE(F U T")-R

>- rl F’ f’) F’ t.J S’ f’) S")

+T((F f’lF’), (F’2 DF))+rE((F UF)(T’UT"))-R

+ rl((F’ (_J F’ (.J (S’ U S"))

+y((F’ UF’), (F fqF))+r2((F, fqF)U(T’ fq T"))-R

>-r(T’U T", S’ tqS")+r(T’ fq T", S’US").

The first inequality follows from the submodularity of rl, r2 and y. The second inequality
follows from (3.3). QED.

Let be the set of pairs

(3.6)
{(Y Ix)[ Y C 0’$2, X Co’$1 and there exist F1 c El, F2 E2 such that

Y fqF2=X f’IFI , YUF22,XUF I, and (FIF2) }.
THEOREM 2. z(Y, X) YI Ixl i and only if (Y IX) c 3r.
Proof. Suppose (YIX) r. Then r2(Y)= r(X)= Ixl IYI, and by (3.4)

min {rtl/x(G)+T(GCl, G)+r./y(G2)}>=IFI Ig=l
GIE1
G2E2

where F, F2 are from (3.6). Since IFll---IF=I--R-IXI we know -(Y,X)>=
IXI/IYI-R /R-IXI=IYI, By (FX), ’(Y,X)=IXI=IYI,

Now suppose ’(Y,X)= IYI--IxI. Then by (3.5), Xo and Y o2. Hence

min {r/x(F) + y(F F + ra/v(F2)} R -IX[
F1cF_.
F2cE2

By (3.4) there exist Fx, F2 with (F1 IF2) rg, Fx is independent in [1/X, F2 is indepen-
dent in ///2/Y with lEvi IF21 R -IX[. Hence F1 f’lX F2 fq Y and F UX,
F2 U Y are respectively bases in ///x, J//2. We conclude (Y IX) ’. QED.

4. Proofs of the coordinatization results. Throughout this chapter, assume G is
generic, that is, assume (2.5). Let hF1 and kF2 denote products of the indeterminates
corresponding to F1 E and F2 E2. The consequence of the assumption and the
Cauchy-Binet theorem is that

detMmGMts2 (WI U)
FE
F2cE2

det MB(WIF) det G’(F IF2) det Mn2(UIF2)hFxkF

is nonzero if and only if for some F c E1 and F2 E2, El is a base in ff/(B\W),
F2 is a base in I2/(B2\U) and (Fx IF2) .

Assume G coordinatizes and ffl, /2 respectively are coordinatized by cycle
spaces rdx, r2"

LEMMA. The Bott-Duffin inverse problem (2.3)-(2.4) has a unique solution v for
all io if and only if eRx and t[2 have equal rank R and there are bases Bx
and B2 2 such that (B [B2) (i.e. G(B [B2) is nonsingular).

Proof. Let B, B be arbitrary bases in d//, ./2 respectively and Msl, Ms be
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fundamental cocycle matrices ( 2). For every v c- there is a unique O for which

(4.1) v Mtp.
Hence (2.3)-(2.4) have a unique solution if and only if

(4.2) MBiGMnp -MnIto 0

has a unique solution p.
Suppose (4.2) has a unique solution p for all i0. Since (4.2) has a solution for all

i0, image (MBI) image (MBiGM) andso rl(E1) rank (MBI) rank (MnGM) <-
rank (MB)= r2(E2). By uniqueness, ker (MnGMs )= (O) so rl(E1)= IBII>=IB’21
r2(E2). HenceMnGM is a square, nonsingular matrix. The Cauchy-Binet theorem
implies there are bases B1, B2 as claimed.

Conversely, suppose the hypotheses about J//1, t/2 and cg are true. Then (because
G is generic) MnGM’ is nonsingular. Hence (4.2) has a unique solution. QED.

THEOREM 3. When G is generic, (2.3)-(2.4) have a unique solution v Tio for all
io 2 ifand only if the condition for the existence of the Bott-Duffin constrained inverse
linking system (E2, El, ) for ll, /t2 and is true. When the condition holds, T
coordinatizes (E2, El, -).

Proof. When the condition in the lemma is true, the unique constrained inverse
matrix T is clearly

(4.3) T Mtn2 (MBIGMtn2

B1, B2 are arbitrary bases in //1, //2 respectively.
We must show T(Y[X) is nonsingular if and only if (Y[X) T.
Suppose T(YIX) is nonsingular. X cannot contain a circuit in :///1 because

otherwise there would be a cycle i0 1 whose support (set of nonzero coordinates)
is a nonempty subset of X. Then Tio 0 so T(Y ]X)io(X) 0 with io(X) O. Likewise,
Y cannot contain a circuit in (//z. Otherwise, there would be a nonzero cycle c in
with support in Y, so cMt c (Y)Mt (YIB2) 0 so c (Y)T(YIX) 0 with c (Y) 0.
Hence there are bases B1 1, O2 2 such that X B1, and Y B2.

Let us use these bases in (4.3). We get

(4.4) T(YIx) (M,GMh)-(YIX)

because Mt31(BlIB1) and M32(B2]B:) are identity matrices. By Jacobi’s theorem,

(4.5) (MB1GM )(B \X B\Y)

is nonsingular. Therefore, by the Cauchy-Binet theorem there are bases
andF in tt2/Y such that (Fa IFz) . Hence (YIX) -.

Conversely, suppose (Y[X) . Let B1 =XUF1 and B2 YLJF2 be the bases
from (2.2). Hence T(Y IX) is given by (4.4). The Cauchy-Binet theorem implies (4.5)
is nonsingular because (F1 IF2) ff and G is generic. Jacobi’s theorem implies T(YIX)
is nonsingular. QED.

Acknowledgment. The author wishes to thank the referee for simplifications of
some of the proofs.

io(X) is the "submatrix" of the column io with rows X.
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A CLASS OF M-MATRICES WITH TREE GRAPHS*
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Abstract. A class of matrices is considered for which the directed graphs have a longest simple circuit
of length two; for an irreducible matrix this means that its undirected graph is a tree. A matrix in this class
which is both positive stable and inverse nonnegative is proved to be an M-matrix. A characterization is
given of those inverse M-matrices for which the corresponding M-matrix lies in this class. The results are
related to known theorems on tridiagonal matrices.

1. Introduction. For the class of tridiagonal matrices many results are known
regarding inverses and eigenvalues. Some of these depend crucially on the circuit
structure of the graph of the matrix. For example, Johnson [6] has recently demon-
strated that some bounds for spectral radii depend on the length of the longest simple
circuit. The aim of our work is to similarly extend known results for tridiagonal
matrices to the class of matrices having a longest simple circuit of length two. Before
stating these in more detail, some notation from matrix theory and graph theory is
essential.

Throughout this paperA -= [a0] is a square nonsingular matrix of order n. If a0 -< 0
for all/#], then A belongs to class . If A-tm [a]. has all elements a0 -> 0, then A
is inverse nonnegative (monotone), and we write A => 0. The class of matrices which
have the sign pattern and are inverse nonnegative is the well-known class of
nonsingular M-matrices, which we denote by d; for properties of these matrices see
[2]. Several recent papers (e.g. [4], [9], [12]) are concerned with characterizations and
properties of those nonnegative matrices which have inverses in d/. If A 5t we call
A- an inverse M-matrix. We are also interested in matrices which are both inverse
nonnegative and positive stable (that is, have all eigenvalues in the right half plane),
but without the sign pattern restriction. We call a monotone positive stable matrix
an N-matrix and use to denote the class of all such matrices. N-matrices were
studied in [11], where it was shown that among tridiagonal matrices the classes c and
5t are identical.

The (undirected) graph of A, denoted by G(A), has vertex set F {1, 2, , n }
and edge set 8’ {(i,/’): #/’, and at least one of ao and a is nonzero}. The valence
(degree) of a vertex denotes the number of edges incident to that vertex. Vertices
with valence greater than one are called interior vertices.

The directed graph of A, D(A), has the same vertex set as G(A), but has a
directed edge from vertex to vertex ] # i, denoted by (i,/’), if and only if ao # 0. A
path from to ] is a sequence of edges (it, i2), (i2, i3),""", (it,-1, it,), with it and
i, ]. The graph D(A) is strongly connected if there is a path from to/" for each
ordered pair i, ]. It is well known that a matrix A is irreducible if and only if D(A)
is strongly connected. A simple circuit in D(A) is a path for which i, i but
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ix, iz,’", ip-1 are distinct vertices. The length of the longest simple circuit in D(A)
is denoted by m (A); for example, an irreducible tridiagonal matrix A has rn (A)= 2.

With the notation now established, we can focus on the main results of our paper.
If A is an irreducible matrix in class W with m (A) 2, then we prove in 2 that A
is in class . Obviously d/is a subset of W, so for the matrices specified these two
classes are identical. We also give a characterization of irreducible inverse M-matrices
for which the corresponding M-matrix has a certain graph structure. In 3 the
reducible case is investigated, while 4 includes some examples and a discussion of
our work in relation to tridiagonal matrices.

2. Irredudble matrices. We are concerned with irreducible matrices A having
m (A)= 2, and we denote the class of all such matrices by ca. This class of matrices
may be defined using other graph theoretic terms; for example, Maybee [10] notes
that A ff if and only if A is combinatorially symmetric (i.e., aij # 0 implies aji # 0)
and G(A) is a tree. Our results are also related to those of [7], where the term
"tree-diagonal matrix" is used. If G(A) is a tree, then A is called a tree-diagonal
matrix; if A ca, it is clear that A is tree-diagonal.

We now prove our main result.
THEOREM 1. Let A be a nonsingular irreducible matrix with rn (A)= 2. Then the

following are equivalent"
(i) A is an M-matrix;
(ii) A is an N-matrix;
(iii) A- [ai]-> 0, and OliiOljj --Olilglji >0 for all (i, f) in the edge set of G(A).
Proof. We first prove the equivalence of (i) and (iii), and then complete the proof

by showing that (i) is equivalent to (ii).
If A is an irreducible M-matrix, then it is well known that A- >0, and since

all principal minors of an inverse M-matrix are positive (see [4]), we have (i) implies
(iii). To prove the converse, we use [7, Thm. 1], which specifies the entries of the
inverse of a matrix A which has a tree graph. Specifically, for ai 0 and j,

a det A (i, i[i, i)
(1) ai detA

where det A (i, fli, f) denotes the determinant of the principal submatrix of A obtained
by deleting rows and columns and/" from A. By a well-known formula for deter-
minants of inverse matrices (see e.g. [3, p. 21]),

detA(i,li,)
det A a"aii -aai"

Thus it follows from (1) and condition (iii) that A Z and consequently A
It is clear that (i) implies (ii); however, the proof of the converse requires several

steps. We first show that A is sign symmetric and then that A can be diagonally
symmetrized. From this it follows that all principal minors of A are positive, and this
enables us to show that A Z.

To accomplish these steps, we begin by noting that since A is irreducible with
m (A) 2, G(A) is a tree and A is combinatorially symmetric (see [10]). If we assume
that a, # 0, p # q, the combinatorial symmetry of A then implies that a # 0. Let, -= [q] be defined by

(i p and/’ q) or (i q and/" p),
otherwise.
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Then there exists a permutation matrix P such that/ ppt is the direct sum of two
square submatrices Bll and Bz2. In terms of the graph, this is equivalent to removing
the edge between vertices p and q, reducing G (A) to two disconnected subtrees. Now

B PApt [Bt B]
LB2 B22J’

where BI and B22 are as above; B2 and B2 each contain only one nonzero element.
Since B is irreducible, it now follows from the lemma in [5] that B -1 cannot be
nonnegative if B 12 0 and B2 0. Thus A- PtB-1P cannot be nonnegative unless
apqaqp > O.

With the sign symmetry of A established, we can diagonally symmetrize A (see
[10, Thm. 3]), and in fact there exists a positive diagonal matrix D such that C-
D-IAD is symmetric. As A is assumed to be positive stable, matrix C is positive
definite; thus both C and A have all their principal minors positive.

To complete the proof, we use the relationship (1) above, in which it is assumed
that aj 0 and /’. From our assumption that A- >- 0 and the fact that all principal
minors of A are positive, we obtain aj < 0. Thus we have established that A , and
hence A is an M-matrix. Iq

We note that A implies only thatA- _-> 0 and that the inverse of an irreducible
N-matrix may contain zeros (see [11]). However, it follows from Theorem 1 that if
A is an irreducible N-matrix with m (A) 2, then A- > 0.

We now give a restatement of our theorem as it relates to nonnegative matrices.
COROLLARY 1. Let A be a nonsingular irreducible matrix with re(A)= 2 and

A -x -= [aii] -> 0. Then the following are equivalent"
(i)’ A g;

(ii)’ A is positive stable;
(iii)’ auaij- aoaji > 0 for all (i, f) in the edge set of G (A).

3. Reducible matrices. If we relax the condition of irreducibility while retaining
the other assumptions, then the full strength of Theorem 1 no longer holds. If A is
a reducible M-matrix, then A s, and conditions (iii) are true. However, the example

2 -1 -3
1 2 1.5,
0 0 3

which satisfies (iii), is in A;, but is not in M, illustrates that the converses are no longer
true. Any reducible matrix is permutation similar to a block triangular matrix, say
A. If this matrix is in , then clearly the main diagonal irreducible submatrix blocks
are also in , and hence if m (A)= 2 are in M. But the off-diagonal submatrix entries
are not necessarily nonpositive, as illustrated by the above example.

In spite of this example, the following result extends Theorem 1 to certain
reducible matrices A, which have either m (A) 2 or have no simple circuits.

THEOREM 2. Let A denote a matrix obtainable by setting to zero. any number of
off-diagonal elements of a nonsingular irreducible matrix A with rn (A)= 2. Then (i),
(ii) and (iii) of Theorem 1 are equivalent ]’or A.

Proof. By virtue of Theorem 1, only the case that A is reducible needs to be
considered, and we proceed as in that proof.

It is clear that (i) implies (iii). The proof of the converse parallels that for the
irreducible case, the form of A insuring that G(A) is either a tree or a forest, so that
[7, Thm. 1] may again be applied to show that A .



A CLASS OF M-MATRICES WITH TREE GRAPHS 479

That (i) implies (ii) is also clear. To prove the reverse implication, we may assume
without loss of generality that

a =[Ao A2]
A22J’

where A 11 and A22 are square submatrices and A 12 contains at most one nonzero
element, since this form may be attained by a permutation similarity transformation.
If matrix A a Jr’, then All and A22 are in jr’; so A -1 _->0, Ai-I _->0 and A2 _->0 imply
that A 12 0. If either A or A22 is irreducible, then it is an M-matrix by Theorem
1. If either submatrix is reducible, the above argument may be repeated (as many
times as necessary) in order to show that all off-diagonal elements ofA are nonpositive,
implying that A J. [-]

Note that if the matrix in Theorem 2 is an M-matrix, then A a’ and A -, -> 0,
so that A is also an M-matrix.

4. Discussion. Our results show that all irreducible (and some reducible) matrices
A in class with a certain circuit structure must be M-matrices and thus inherit all
the properties known for this class. However, in general, J is a proper subset of
for example, there exist order 3 triangular N-matrices, and N-matrices with m (A) 3,
which are not ///-matrices (see [11]). For an irreducible matrix A with rn (A)= 2,
it is true that Ap for any positive integer p, but, in general, Ap is not an M-matrix.

Irreducible tridiagonal matrices are a well studied set of matrices with a longest
simple circuit of length two. Another set of matrices with this property consists of
those matrices with "star" graphs. An example is

$11 S12 S13 Sln

S21 $22

$31 $33 0

i,, 0 "..
S Snn

In our proof of the final implication in Theorem 1, matrix A is shown to be similar
to a symmetric matrix; thus all eigenvalues of A are real and positive. This, together
with eigenvalue simplicity, is well known for tridiagonal matrices, but the eigenvalues
of a matrix with a star graph need not be simple. Note that the matrices characterized
by Theorem 1 are invariant under permutation similarity transformations, a property
not shared by tridiagonal M-matrices.

For tridiagonal matrices, Theorem 1 may be combined with a result of Lewin 8,
Thm. 2] to obtain the following:

THEOREM 3. Let A be a nonsingular irreducible tridiagonal matrix. Then the
following are equivalent:

(i) A is an M-matrix;
(ii) A is an N-matrix;
(iii) A -1 [ci.] _-> 0,

and aiiajj- aqaji>O for all (i,/’) in the edge set of G(A);
(iv) A- is oscillatory.
The restriction of Theorem 1 to tridiagonal matrices also yields a simple inverse

M-matrix characterization. On modifying condition (iii) to reflect the fact that (i, j) ’if and only if/" + 1, we obtain the following’
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COROLLARY 2. Let A be a nonsingular irreducible tridiagonal matrix. Then A is
an M-matrix if and only irA -1 [tij] >_- 0 and

OliiOli+l,i+l--Oli,i+lOli+l, 0 for 1, 2, ", n 1.

We note that this corollary may also be proved directly using the triangle property
of Barrett [1].

In conclusion, a subclass of matrices in , namely those with tree graphs, has
been identified with those in /; and we have given a characterization of those
nonnegative matrices which are their inverses. The circuit structure is vitally important
to these results and sheds some light on the broader question of when the two classes
/( and are identical.

Acknowledgment. The authors thank M. Lewin for constructive suggestions on
the presentation of these results.
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THE ALGEBRAIC GEOMETRY OF STRESSES IN FRAMEWORKS*

NEIL L. WHITEr AND WALTER WHITELEY:

Abstract. A bar-and-joint framework, with rigid bars and flexible joints, is said to be generically
isostatic if it has just enough bars to be infinitesimally rigid in some realization in Euclidean n-space. We
determine the equation that must be satisfied by the coordinates of the joints in a given realization in order
to have a nonzero stress, and hence an infinitesimal motion, in the framework. This equation, called the
pure condition, is expressed in terms of certain determinants, called brackets. The pure condition is obtained
by choosing a way to tie down the framework to eliminate the Euclidean motions, computing a bracket
expression by a method due to Rosenberg and then factoring out part of the expression related to the
tie-down. A major portion of this paper is devoted to proving that the resulting pure condition is independent
of the tie-down chosen. We then catalog a number of small examples and their pure conditions, along with
the geometric conditions for the existence of a stress which are equivalent to the algebraic pure conditions.
We also explain our methods for calculating these conditions and determining their factorization. We then
use the pure conditions to investigate stresses and tension-compression splits in 1-overbraced frameworks.
Finally we touch briefly upon some of the problems arising when multiple factors occur in the pure condition.

The statics of bar-and-joint frameworks have been studied by mathematicians
and engineers for over a century. Two divergent traditions of analysis have evolved’
a) direct arithmetic calculations based on the specific positions of the joints and the
bars and b) general synthetic geometric algorithms. With the rise of the computer and
the decline of geometry, the arithmetic calculations became the dominant method of
understanding static behavior in frameworks.

However, there has been a recent revival of interest in underlying projective
geometric patterns of points and lines which "explain" the behavior of all the particular
arithmetric examples based on the same underlying graph [2], [4], !-21 ], [22]. Numerous
types of graphs in space have been analyzed using synthetic geometry and certain
more abstract patterns also emerge in the form of these geometric explanations.

Summarized in naive geometric terms, a count of "conditions" and "choices" is
made, based only on the number of joints and bars in certain subgraphs. For example,
in the plane a framework with V joints and E bars has, if k E- (2 V- 2), at least a
(k + 1)-dimensional space of static stresses (if k => 0) for any position of the joints, i.e.,
at least k choices of a stress, up to scalar multiple, or at most -k conditions on the
positions of the joints for a stress to exist (if k < 0) [4]. Up until now such "meta-
theorems" remained intuitive guidelines rather than precise theorems. One of our
major goals in this paper is to give precision of form and of proof to these statements
in the cases k 1 and k 0. Other cases will be investigated in later papers.

Because of the weakness of our geometric traditions, as well as the expectation
that two approaches are better than one, it is helpful to develop the middle ground
between synthetic geometry and the arithmetic algorithms--the algebraic geometry
and geometric algebra of frameworks.

As suggested by the projective invariance of static stresses and infinitesimal
motions [12, Thm. 5.10], the algebraic language which works best is the language of
projective geometric invariant theory--the language of brackets ( 2). For some of
the more geometric discussions we extend this language to the Grassmann algebra or
Cayley algebra, languages including brackets along with algebraic operations roughly
corresponding to the geometric intersection and join.
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t Department of Mathematics, University of Florida, Gainesville, Florida 32611.
Department of Mathematics, Champlain Regional College, St. Lambert, Quebec, Canada.

481



482 NEIL L. WHITE AND WALTER WHITELEY

The methods we use are primarily algebraic, and invariant theoretic, but the
questions and motivations are geometric--based on problems arising with frameworks.
In addition to the pleasures of a clean, more easily communicated foundation for
some standard practices in the study of frameworks, our motivation in undertaking
this study was an unsolved problem in the theory of tensegrity frameworks. For a
variety of reasons, in the theory of both the infinitesimal and the finite rigidity of
frameworks with cables it is important to know how the form (and signs) of the static
stress changes in the frameworks as the positions of the vertices are varied continuously
through space [3], [12]. This prior preoccupation may explain some of the topics
studied in 5 and 6.

These geometric questions, and the algebra which results, are not unique to the
study of engineering frameworks. The same geometry (and algebra) has arisen in the
fields of scene analysis and of satellite geodesy. In scene analysis, the basic problem
is to recognize the correct projections of 3-dimensional polyhedral objects--a task
which is equivalent to the detection of stresses in planar frameworks [13], [14], [21].
In satellite geodesy, the basic problem is to take certain earth-satellite measurements
and then calculate all the additional distances in the configuration--a calculation which
breaks down if this configuration, formed as a framework with bars for the measured
lengths, has even an infinitesimal motion [1]. The analysis given here also extends
and clarifies the current mathematical analysis of critical configurations in geodesy [15].

As we have pursued the basic questions arising in these fields into algebraic
geometry over the reals, we have encountered a steadily growing array of interesting
problems. Thus there is much more work to be done.

1. Preliminaries on frameworks. Our work is motivated by the study of one
essential property of bar-and-joint frameworks. This property can be described in
two equivalent ways--as infinitesimal rigidity (the absence of velocities assigned to
the joints which infinitesimally deform the structure) or as static rigidity (the ability
of the framework to absorb all suitable external forces). The essential information for
both concepts is condensed in a single rigidity matrix for the framework. However,
to study the algebraic geometry of this matrix, we must step back to a more abstract
level of the underlying graph and related polynomial domains.

A graph G is a finite set V {a, b,..., f} of vertices together with a collection
E of two element subsets of V called edges.

A bar-and-joint framework in dimension n is a coordinatization of a graph G
by a function a:a (al,..., a,, 1) for every a V, where al,..., an are elements
of a polynomial domain R k[xl,’", Xr]. (For most applications k [.) In a coor-
dinatization the edges are called bars and the points a(a) are called joints of the
frameworks.

The coordinates (al, a2,"’, an, 1) may be regarded as a vector in the vector
space R n/l, or as special homogeneous coordinates in PG(R, n) a projective space
of dimension n, and we will frequently alternate between these points of view. It is
no problem that we employ vector spaces and projective spaces over an integral
domain R instead of a field; the process is essentially equivalent to working over the
field of fractions of R but we use the integral domain to allow nontrivial homomorph-
isms of R. While most authors use simple Euclidean coordinates for the joints of a
framework, the underlying geometry is projective [21]. Thus projective coordinates
are essential to the algebraic geometry we will study.
A real framework or a realization of a graph G in dim n is a coordinatization of

G with R R.
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The rigidity matrix M(G(a )) of a framework G(a)in dimension n is an IE[ nlV[
matrix"

vertex a vertex b vertex f

edge {a, b} a bl, ab b, bx a 1, , b, a, 0, , 0
edge {a, f} ax --fl, an --fn O, 0 ]e a 1, fn an

edge {e,f} O, 0 0," 0 fl--ex, fn --en

Thus for edge {d, f} the matrix has the row with dl-fl, d, -f, in the columns
of d, fl- dl, ’, f, -d, in the columns of f and 0 elsewhere.

In the vocabulary of infinitesimal kinematics a solution to the homogeneous system
of equations M(G(a))X 0 is called an infinitesimal or instantaneous motion. Such
a motion is viewed as an n-vector for each joint (m (a), m (b),..., m (f)) where the
equation for bar {a, b} becomes

(m(a)-m(b)). (a-bl,..., a,-b,) 0

a record of the condition that the velocities preserve the length (a I-b1)2+ .+
(a,-b,)2= constant. This system of equations always has a nontrivial solution space
since the rigid motions of space (rotations, translations and their combinations) always
provide the trivial motions. A framework is infinitesimally rigid if the space of
instantaneous motions is exactly the space of trivial motions of the joints. If the joints
of the framework span at least an affine space of dimension n 1 (a full framework),
then the trivial motions form a space of dimension (n-l). For such full frameworks
infinitesimal rigidity is equivalent to the statement that

rank (M(G(a)))=n[Vl-(n + 1)2

For example, in dimension 2 we need

rank (M) 21V[- 3.

Thus a triangle (V 2, E 3) is infinitesimally rigid provided the rows of the matrix
are independent--a requirement which translates to the geometric statement that the
triangle is not collinear. If the triangle is collinear then a nontrivial instantaneous
motion exists, with a zero velocity at two of the joints, while the third joint has a
velocity orthogonal to the line of the triangle.

In dimension 3, the condition for infinitesimal rigidity is rank (M)= 31 V[- 6. For
example, a tetrahedron (V 4, E- 6) is infinitesimally rigid if and only if the rows
of the matrix are independent---or equivalently if and only if the joints are not coplanar.
By a similar count, any triangulated sphere has E 31VI- 6 and will be infinitesimally
rigid if and only if the rows of the rigidity matrix are independent [23].

In the vocabulary of statics, we directly investigate the row space of the rigidity
matrix. We write Fb for the row corresponding to a bar {a, b} E, or Fa for the
corresponding vector for any pair of joints {c, d} (even if {c, d} is not a bar). These
latter vectors are read as special static loads---forces or n-vectors assigned to the joints
of the framework. If we define the equilibrium loads on a framework as the space of
vectors orthogonal to the rigid or trivial motions, then a framework is statically rigid
if and only if the row space of the rigidity matrix (the space of the F, {a, b}E)
coincides with the space of equilibrium loads. An equivalent characterization [23,
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Thm. 2] says that: a framework is statically rigid in dimension n if and only if either
there are IVI =< n joints which span an affine space of dim IVI-1 and the framework
coordinatizes a complete graph or there are IV[ > n joints which affinely span the n-space
and all loads Fed lie in the row space of the rigidity matrix.

As noted above, the trivial motions of a full framework form a space of dim (nl)
so the equilibrium loads form a subspace of dimension n lVI- (n-l). Static rigidity, for
a full framework, is equivalent to the statement that rank (M)=nlV[-("I). Static
and infinitesimal rigidity are clearly equivalent for full frameworks, and this
equivalence also holds for smaller frameworks [12, Thm. 4.3].

Still within the language of statics, a linear dependence of a set of rows is called
a stress.

Y. hbFb 0 (sum over bars).

These scalars give a set of tensions (hb < 0) and compressions (h > 0) in the bars,
and the equations, rewritten for each joint, describe a static equilibrium of the
corresponding forces,. Aab (a b) 0 (fixed a, sum over {a, b } E).

A minimal statically rigid framework on a set of jointsa statically rigid framework
with no static stressesis called isostatic. For an isostatic framework the rows of the
rigidity matrix form a basis for the equilibrium loads on the joints, and these
frameworks are the basic objects of study in the next three chapters.

Given a framework F (G, a), the coordinatization matrix A has a row a (a) for
each joint a V,

al a2 an 1

bl b2 b, 1

1" de en 1

If the entries {al, a2,’ ’, e,} are distinct algebraically independent elements of R (in
which case we simply regard them to be distinct indeterminates over k), the framework
F is a generic coordinatization of the graph G. If this generic coordinatization is an
isostatic framework, we say that the graph G is generically isostatic in dimension n.

The small or fiat frameworks (ones for which the joints do not even span an (n 1)-
dimensional affine space) are well understood, as mentioned previously. However
such fiat frameworks would constantly clutter up the rest of our algebra in this paper,
so we will assume for the rest of the paper that the frameworks have ]V >= n which
implies, in the generic case, that the framework is full.

A full framework is isostatic if and only if it has E nlVI-("+1)2 bars, and there
is no static stress (the bars are independent). The traditional way to check that the
rows of a matrix form an appropriate basis is by taking determinants, but this is easier
when the matrix is square. Our first task is to extend the rigidity matrix to a square
matrix by adding (,1) independent rowscalled a tie-down--so that the framework
is isostatic if and only if this extended matrix has determinant # 0. There are many
possible arrangements for the tie-down--but our objective is to introduce these rows
in a natural format, as additional bars, and to later factor this extension out of the
algebra ( 3).

A tie-down of a framework G(a) in dimension n is a set of (n-l) tie-down bars
{a, x}, a V, x V, where x has m (x)= 0 for any infinitesimal motion and adds the
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row (nonzero only in the columns of a)

(a-x, a-x, 0,..., O)

to the extended rigidity matrix M(G(a), T).
We anticipate that, for an isostatic framework in dimension n, some correctly

chosen set of (n-l) tie-down bars will give an invertible matrix M(G(a), T). In the
vocabulary of kinematics, these bars must block the trivial motions or, in the language
of statics, they must generate the nonequilibrium loads. We begin with a simple proof
that such tie-downs exist.

PROPOSITION 1.1. A full framework in dimension n is isostatic if and only if there
is a tie-down T of () bars which produces an invertible rigidity matrix.

Proof. Assume the tied-down framework has an invertible matrixand hence
no nonzero motions (solutions to the homogeneous system). Removing the ("a)
tie-downs will introduce a space of infinitesimal motions of dimension ("-a). Since
this removal also introduces the rigid motions (a space of dimension (")), there are
no additional infinitesimal motions and the smaller framework is isostatic.

Conversely, assume that the full framework is isostatic in n-space. The rows of
the vlrigidity matrix form an independent set of n wl

1)
(Y)._ vectors in the vector space

R"I We can extend this independent set with vectors from the standard basis
(1, 0, 0, ., 0),.. , (0, , 0, 1) to form a basis for the entire space and an invertible
matrix.

For each standard vector chosen we define a tie-down as follows: if the standard
vector has 1 in the column for b, then the tie-down bar is {b,y} and a(y)=
(b l,’’’, bg- 1,..., bn, 1). This choice gives the desired standard vector as a row of
the extended rigidity matrix and thus is a "correct" tie-down. Q.E.D.

For any two isostatic frameworks on the same joints, the row spaces are the same,
and thus the correct tie-downs will be the same. There is a geometric characterization
of the correct tie-downs’ when (na) bars connect two infinitesimally rigid objects in
n space (e.g., the framework and the ground), then the new unit is infinitesimally
rigid if and only if the lines of the bars are independent as line segments of projective
n-space (or equivalently, the Plucker coordinates for the lines are linearly dependent)
[9, p. 659] or [21, Thm. 5.1, Corollary 5.3]. We will build this observation into the
following proposition about the form of a static stress (row dependence) in the extended
matrix.

PROPOSITION 1.2. Given a framework G(a) indimension n, with I 1- nlvl-("Y
bars, and tie-down T of () bars, then the extended rigidity matrix M(G(a), T) has
a row dependence if and only if either the tie-down bars lie on dependent lines on the
projective space or there is a row dependence omitting the tie-down bars (a nontrivial
stress on the original framework).

Proof. Assume there is a nonzero motion in the tied-down framework (i.e., a
row dependence in the square matrix). Either this motion is a rigid motion of the
framework (excluding the ground) or the original framework is not infinitesimally rigid.

In the first case the tie-down bars did not block all rigid motions and this remaining
rigid motion requires the dependence of the tie-down bars in projective space.

n+lIn the second case the framework has more than an 2 )-dmensonal space of
infinitesimal motions and the lower rank for the rigidity matrix without tie-downs
gives the desired row dependence.

Conversely, if we assume a row dependence omitting the tie-downs, then M(G, T)
has a row dependence. If we assume the tie-down bars are dependent line segments
in projective space, then the original framework has a rigid motion relative to the
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ground which does not alter any of the tie-down bars (instantaneously). The square
matrix M(G, T) has a nonzero determinantmand a row dependence. Q.E.D.

Remark. In 3, we will give a new combinatorial characterization of correct
generic tie-downs. Proposition 3.5 gives the details about these combinatorially good
arrangements.

2. The bracket ring and Cayley algebra. While we know that a framework in
dimension n, with IEI- nlVI- () bars, is infinitesimally rigid if and only if for some
tie-down T, det (M(G(a), T)) O, we also recognize that this rigidity was determined
by the rigidity matrix M(G(a)). Our essential problem is to extract from
det (M(G(a), T)) O, for some T, an algebraic condition which is independent of T
(3).

First, however, we must introduce the language of brackets, the classical language
of projective geometric invariants, which is the most suitable for efficient expression
and manipulation of det (M(G(), T)). This language has been employed in the
projective theory of frameworks 18], [21 and has reappeared in several nonprojective
studies of the rigidity matrix 11 ], 15].

For example, in [11], Rosenberg gives a direct combinatorial decomposition of
det (M(G, T)) in the case n 2. When generalized to n dimensions the basic units of
his formulae are the brackets [a, b,.. , d] which represent the volume of the n simplex
with n + 1 vertices a, b,..., d, a volume which is equivalent to an (n + 1)x (n + 1)
determinant using the affine coordinates of the points as rows of a square matrix (i.e.,
an (n + 1)x (n + 1) subdeterminant of A). In Rosenberg’s expansion the determinant
of M(G(a), T) is the sum of products of such brackets in the joints. In each product
of the sum, a joint occurs exactly (the valence of the vertex)+ 1-n times, so the
expansions belong to the language of brackets, homogeneous in occurrences of symbols
for the joints.

If a, b, , d are n + 1 joints in V, the element of R obtained as the determinant
of the corresponding n + 1 rows of A is a bracket [a, b,. , d]. The brackets satisfy
the following well-known relations, called syzygies.

1) [x0, xl,’",xn]=0ifxl=x, for some i,f within/, or ifxo, xl,...,xn are
affinely dependent.

2) [Xo, Xl,...,x,]=sign(tr)[Xo,xl,...,x,] for any permutation tr of
0,1,...,n.

3) [Xo, X1," ",Xn][Yo, Yl,’" ’, Yn]--Ei=o[Yi, X1,’" ",Xn]
[Y0, Yl,’’’,Yi-I, X0, Yi+I,’’’,Yn].

Let B be the subring of R generated by all (n + 1) (n + 1) determinants of A.
B is called the bracket ring on V. IfA is a generic coordinatization, thenB is isomorphic
to the bracket ring of the uniform matroid of rank n + 1 on V, as defined in [17],
according to Hodge and Pedoe [10, p. 315, Thm. 1].

The commutative ring B is clearly an integral domain, since it is a subring of the
integral domain R. We now wish to show that the generic bracket ring B has certain
unique factorization properties. We first need the following result on factorization of
invariants in R. Let A be generic. An element f(a 1, , e) of R is called an invariant
if there exists an integer s _-> 0 such that for each nonsingular linear transformation S
of the row space of A to itself, if S(x) denotes the image of x, normalized by a
scalar multiple so that S(x),+l 1, then f(S(a)x, S(a)2, S(e),)
(detS)f(al, a2,"" ,en). The integer s is the degree of the invariant f. Now the
invariants in R are precisely the elements of B which are homogeneous in total degree,
by the first fundamental theorem of invariant theory [7, Thin. 1].
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Remark. Although we are working with a generic coordinatization of G, any
coordinatization of G may be realized as a specialization of the generic one, by
assigning values to the indeterminates. The question which will concern us in the
following sections is, for a given graph G, which specializations of the generic coor-
dinatization induce a stress or stresses in the framework.

We now adjoint generic vertices zl, Z2, Zn+l distinct from a, b, , e, letting
V’= Vt_J{zx, z2," ", z,/x}. Letting A’ be the matrix for V’ analogous to A, R’ the
polynomial ring and B’ the bracket ring, we note that R and B are subrings of R’
and B’.

THEOREM 2.1. Let f be an invariant element of R, where A is generic. Then any
polynomial which is a factor off in R is also invariant.

Proof. We define a linear transformation S on the row space of A’ by

S(a)=([a,z,...,z,+], [z,a, z3,...,z,+],..., [z,z,...,z,, a]).

We note that detS=[z,...,Z,+l], since det(S(Zl),S(z2),"’,S(zn+))
[Zl," ", z,+l]"/. Now let f be an invariant element of R, and suppose that f factors
inR as

f(a, b, e)= I-I gj(a, b, e)rJ,
1=1

where the gj(a, b, , e) are irreducible in R. By the definition of invariant, f is also
invariant in R’ and

f(Sa, Sb, Se) =[zl, z,/l]Sf(a, b, e)

or

(*) 1-I gi(Sa, Sb,. , Se)rJ [z 1, ", z,/ 1-I gi(a, b, e)r
j=l j=l

Now, g(Sa, Sb, ., Se) is a polynomial in the coordinates of Sa, Sb, , Se, but each
such coordinate is a bracket, by our choice of S. Thus gi (Sa, Sb, .., Se) is a polynomial
in B’, hence, is invariant. Furthermore, [zl, z2," ’, Z,/l] is an irreducible polynomial
in R’, as is well known (see [6, Lemma A], where the same argument works even
though the last row of our matrix consists of l’s). Thus from (.) we see

gi(Sa, Sb, ., Se [z 1, z2, ", Z,/l]k’h(a, b, ., e ),

where hj(a,b,... ,e) has no occurrences of any of the coordinates zii, l <---- ----< n,
1 _--<j <_--n + 1, that is, hi(a, b,.. , e)R.

Now hi(a,b,...,e)=gi(Sa, Sb,...,Se)/[Zl, Z2,...,z/l]k, is a nonconstant
invariant, as may be seen by applying an arbitrary linear transformation S’, hence hi
is in B. Now

f(a, b, e)= 1-I gi(a, b, e)r I-I hi(a b, e
/=1 i=1

provides two factorizations of f, each involving the same number of nontrivial factors,
with the gi (a, b, , e) irreducible in R. But R is a unique factorization domain, hence
for every j, g(a, b,..., e) =aihi(a, b,..., e) for some and some scalar a in k. Thus
each irreducible factor of f is invariant. Q.E.D.

COROLLARY 2.2. B is an integral domain in which each homogeneous element
has a unique factorization into irreducible elements, and furthermore, the irreducible
elements involved are homogeneous.
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Another algebraic structure to which we will frequently refer is the Cayley algebra.
We will give here a brief and very informal introduction to this algebra, referring the
reader to [7] for details.

We begin with a vector space U, which for our purpose we will take to be the
row space of the matrix A considered earlier. The Cayley algebra is an extension of
U with the usual operations of addition and scalar multiplication and two additional
operations, join and meet, denoted v and ^. If u, v,..., w are m vectors, m <-n + 1,
then u v v v... v w, also denoted uv w, is called an extensor o[ step m. Computa-
tionally, uv...w may be identified with the vector of Pliicker coordinates of the
subspace span (u, v, , w), that is, the sequence of m m minors of the m (n + 1)
matrix whose rows are u, v,..., w. The m-dimensional subspace span (u, v,..., w)
is also called the support of the extensor uv...w, assuming that u,v,..., w are
linearly independent. An extensor uv...w of step n + 1 is denoted as a bracket
In, v,..., w ], and may be identified with the brackets discussed previously. The meet
of an extensor E of step m with an extensor U’ of step is an extensor of step
m + n 1, provided n + 1 -< m + 1, and its support is the intersection of the supports
of E and E’, provided the union of those supports spans U. Thus the join and meet
in the Cayley algebra correspond to the lattice operations on subspaces of U, provided
the subspaces are independent in the case of join or are sufficiently large in the case
of meet.

The condition in Proposition 1.2 that the tie-down bars {a, x}, {b, y},..., {c, z}
be on dependent lines in projective space may now be restated as the condition that
the 2-extensors ix, by, , cz are linearly dependent in the Cayley algebra.

We will denote by U" the subspace of the Cayley algebra spanned by all
extensors of step m from U. It also makes sense to use a Cayley algebra over a
projective space PG (R, n), by regarding it as the Cayley algebra over the corresponding
vector space of dimension n + 1 over R. Again, PG(R, n)" denotes the space of
step-in extensors in this case.

3. The pure condition for a stress in an isostatic framework. It follows immedi-
ately from the discussion in 1 that for a generically isostatic graph G with an
independent set T of (n-l) tie-down bars specified, the condition for the existence of
a stress in a specialization c of the generic coordinatization is that the n [VI n vl
rigidity matrix M(G(c), T) has determinant equal to zero.

Let T be a tie-down consisting of ix, by, , cz, where a, b, , c s V and are
not necessarily distinct and x, y, , z V are distinct. Let x 1, x2, , xn, y 1, , Zn,
the coordinates of x, y,..., z, be distinct indeterminants not involved in the coor-
dinatization of V. Then we say that T is a generic tie-down.

LEMMA 3.1. If G is generically isostatic with a set Tof (nl) independent tie-down
bars, then the determinant of the rigidity matrix M(G, T) equals an element C(G, T)
of the bracket ring B on the set of vertices of G U T.

Proof. Assume that G is given a generic coordinatization and that T is
also generic. Since the entries of M(C, T) are linear combinations of the
coefficients of the vertices, its determinant is an element of R
k[al, a2," ",an, bl," ",en, wl, w2," ", wn, xl," ", yn], where a,b,...,e are the
vertices of G and w,x,...,y the vertices of T which are not vertices of G.
We wish to show that detM is an invariant of degree v, where v [VI, by induction
on v.

Let N be an arbitrary n n minor in the first n columns of M(G, T). If det N # O,
each row of N corresponds to a bar incident to a. Let us denote the bars involved as
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ap, aq,. ., at, which may be either bars of G(a) or tie-down bars. Then

=+det

detN =det

al-Pl a. -p a-pl a.
al--ql an --qn

al-ql an-q,
=det

a l’l an rna -rl an -r
al an

Pl Pn 1
ql q, 1

+/-[p, q," ", r, a].
ra rn 1

a. 1

0
0

0
1

Let S be an arbitrary nonsingular transformation applied to
a, b, ., e, w, x, , y. If we now compute the determinant of SM(G, T) by a Laplace
expansion by the first n columns, each term in the expansion is an n x n minor times
an n(v-1)xn(v-1) minor, with S applied to each entry of both minors. Thus,
compared to the corresponding term in the expansion of det M(G, T) the n x n minor
has been multiplied by det S, since such a minor is a bracket by the preceding para-
graph. By the induction hypothesis, the n(v- 1)x n(v- 1) minor is multiplied by
(detS)-. Thus C(G, T)=detM(G, T) is an invariant of degree v and hence an
element of B. The lemma now follows by specializing the generic coordinatization
and the tie-down. Q.E.D.

The remainder of this section is devoted to showing that the bracket condition
C(G, T) factors as C(G, T)=C(G)C(T) in B, where C(G) is independent of the
choice of the tie-down bars T and aC(G) is zero in a given specialization a of the
coordinatization of V if and only if G(a) has a stress. We call C(G) the pure condition
for G. We prove these facts via a series of lemmas, after illustrating with an example.

Example.

a y

b e
z

Let G be the generically isostatic graph shown with 6 vertices and 9 edges in the
plane (n 2). Let us adjoin tie-down bars dx, dy, fz. We have chosen a tie-down that
will give a particularly simple form to C(T) (see Lemma 4.1). By Rosenberg’s method
11 we may compute

C(G, T) +[dxy ][dfz ][abc ][def]([adb ][ecf] [ade ][bcf]).

The sign of C(G, T) depends upon the order in which we list the bars of G U T to
index the rows of M(G, T). We note parenthetically that computation of C(G, T)
can lead to other bracket expressions which are equivalent to the given one via the
syzygies. We also note that this is a polynomial of degree 12 in 18 variables, thus we
avoid expanded notation whenever possible.
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Now we note that this tied-down framework has a trivial motion whenever dxy
or dfz is collinear. Thus the irreducible polynomials [dxy and [dfz should be factors
of C(T), and indeed it can be shown that C(T) [dxy ][dfz ].

Thus C(G)=:t:[abc][def]([adb][ecf]-[ade][bcf]). From this we can recognize
that G(a) has a stress in any coordinatization a in which abc is collinear or def is
collinear. The third factor corresponds to the Cayley algebra expression ad ^ be ^ cf
and is 0 whenever the lines ad, be and cf are concurrent or parallel. We will consider
factoring of the pure condition and the corresponding geometric meaning in 4.

LEMMA 3.2. Let T be a generic tie-down of (,-1) bars. Then the dependence of
the step-two extensors ax, by, , and cz is a bracket condition C T) O, where C T)
is a factor of C(G, T).

Proof. Each of the step-two extensors ax, by,..., cz may be represented by its
vector of Pliicker coordinates, that is, by the sequence of 2 2 minors of the (n + 1) 2
matrix with columns a and x in the case of ax, etc. Each vector of Plficker coordinates

2 ), but we have exactly IT[ (nl) of them, hence we have a squareis of length (n +
matrix N, and the dependence of the step-two extensors in PG(R, n)(z) is equivalent
to det N 0.

The entries of N are all polynomials in the coordinates of G IO T. It can be shown
directly by applying elementary linear transformations that detN is an invariant,
hence an element of B.

Let C(T)= det N. Let k be the algebraic closure of k, and let us temporarily
work in k[al, a2, , z,]. We know from Proposition 1.2 that whenever the step-two
extensors ax, by,..., cz are dependent in PG(R, n) then M(G, T) has depen-
dent rows. Thus aC(G, T)=0 for any specialization a for which aC(T)=0. Then,
by Hilbert’s Nullstellensatz, C(T)[(C(G, T)) for some integer r. But C(T) is at most
linear in each coefficient of the vectors x, y, .., z, hence C(T) has no multiple factors,
hence C(T)[C(G, T).

Since C(T) and C(G, T) both have integer coefficients, we must also have
C(T)IC(G, T) in the polynomial ring klan, az, ., z,]. Q.E.D.

We must now characterize the independent generic tie-downs. This is done in
Proposition 3.5, after some preliminary lemmas.

LEMMA 3.3. Let w 1, , wk be distinct vectors in a vector space or profective space
Wof dimension n over R k[x 1, , xr], where we assume a standard basis e 1, , e,

of W has been fixed. If d: R R’ is a k-algebra homomorphism, then we denote by

" W W’ the map obtained by applying coordinatewise. Then w 1, , Wk is linearly
independent ifand only if there exists such that w1, ",w is linearly independent
with distinct elements.

Proof. The "only if" statement is trivial. Now we suppose that (wl, , Cw is

1.inearly in.dependent with distinct elements, and we extend it to a basis B’=
w 1, ", w, e ,/1, ’, e’ where (after reindexing) e is from the standard basis

ei, then B=of W’ If we reindex el,...,e similarly so that ei=
w 1, , wg, ek /a,. , e,, is a preimage of B. But (det B) det B’ 0, hence det B 0
and w,..., w is line.arly independent. Q.E.D.

The maps and of the previous lemma are what we have previously referred
to as specialization maps.

LEMMA 3.4. Let vt,’’" ,vn/l be any distinct linearly independent points of
PG (R, n ). Then the ( +

2 lines vivi, #f, are a basis ofPG(R, n)).
We will now show that certain generic tie-downs are independent by applying a

specialization map from the tie-down to the ("-1) lines of Lemma 3.4. This specializ-
ation is no longer a tie-down in the usual sense since we are using only vertices of
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the original framework, but this is an easy configuration to use as a standard specializ-
ation.

PROPOSITION 3.5. Let F- (G, a) be a generic framework with VI--m >-n and
T a generic tie-down of (,1) bars. For vi V, let i be the number of tie-down bars
incident to vi, and assume that we have reindexed so that >-a2 >-’" >-am. Then
C(T) 0 if and only if

(*) oi <- nk- [or all k, 1 <-_ k <-_ n 1.
i=1

Pro@ We know C(T) 0 if and only if the step-two extensors of the bars in T
are linearly independent in PG(R, n)(. Let K be the subspace of PG(R, n) spanned
by v, v,..., v. Since P is generic, dim K k- 1. It is well known (and easy to
verify) that the subspace of PG(R, n)( consisting of all 2-extensors corresponding
to lines which intersect K has dimension n + (n 1) + (n 2) +. + (n k + 1)

knk-() ThusF: ,<nk-()forall],], ] distinct, and in particular, i=lOi
n (). Wc note that dimPG(R,n) (") and i--lm ai ("-) =n2--().

Conversely, suppose that the ai’s satisfy (.). To prove that the 2-extensors of T
arc linearly independent, it suffices to find a specialization in which they arc linearly
independent, by Lemma 3.3. Since the vertices in V as well as the tie-down vertices
(i.e., vertices on the "ground") all have distinct indeterminants as coordinates, we
may specialize so that any pair of vertices that we wish is identified, by specifying a
homomorphism that maps the coordinates of one to the coordinates of the other.
First we will identify various vertices in V so that exactly n + 1 distinct vertices remain.
The fact that new stresses are thus introduced in F need not concern us, since we are
presently concerned only with the independence of the tie-down bars. If we started
with [Vl- n, we add a dummy vertex to V, having no bars, so again vl--n / 1. We
then identify each tie-down vertex with a vertex of V, hence identifying each tie-down
bar with a line between two vertices in V. We will show that this can be done in such
a way that distinct tie-down bars are identified with distinct such lines, and hence by
Lemma 3.4, the specialized bars are independent, and we are done.

Now suppose that m > n + 1. We identify Vn+2 with Vn+l to form a new vertex
with a.+l +or.+2 incident tie-down bars. We choose such that a_ >a.+ +a.+2->a,
l=</-<n +1. Let ai =ai ifi<l,a=ai_l ifl<i<-n+l, ai =ai+l ifn+2<=i<=m-1
and a =a.+l+a.+2. Then a is the number of the tie-down bars incident to the ith
vertex after the identification, correctly indexed so that a => cr =>... => a,._l. If we
show that the a satisfy (.), then by induction we may assume that m n + 1 and that
(.) is still satisfied. It suffices to consider k such that <= k <= n.

k k-1Case 1. If ,i=ai<nk-()-a+2, we are done, for
k

c.+ +c.+2 <--(Ei= ai)+a..+2<nk-(2),
Case 2. Y=la>nk-() a.+2. Then z=+a =Y=I a-Y.=a <

nk + (2k) +an+2. Since the a are decreasing, a.+ +a.+2 =<2 (average {a"+=+), hence

(n-k+ 2)(a"+1 + a"+2)< 2[(n+l)=2 -nk +()"4- an+2]
(n-k+l)(a.+l+an+a)<(n= -k+2)an+l+(n-k)a,,+2<2[( 2

-nk +()]
(n k + 1)(n k),

k k-1
so a++a+2n-k. Now ’.i=ai=(,i=ai)+a++a+a<=n(k-1)-()+
n k nk () 1. Thus we may assume that m n + 1.
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Let us now form a bipartite graph on the set B consisting of copies of vi for all
i, B {v11, v12, , v11, v21, , v,/....1}, and the set E of pairs viva, <f, by letting
Vik be adjacent to viv and vvi for all i,/’, k. We will now show by Hall’s marriage
theorem (see, for example, [8, Thm. 5.1.11]) that a complete matching of B into E
exists, that is, that it is possible to assign to each Vik an adjacent vivi in one-to-one
fashion. We will then be done, for we may specialize the kth tie-down bar at v to
the line vv, obtaining the independent specialization required.

If U B, let R (U) {e E’ for some u U, e is adjacent to u }. By Hall’s marriage
theorem, it suffices to show that UI-<IR(U)I for all U _B. For U _B, let I
{i:l-<i_-<n+l, and for some f, vU} and U*={V,k:i
,zc, <--nlII--(1I) IR<U*)I IR(U)I, completing thekProof. Q.E.D.

Let us say that the tie-down T is saturated at Vk if Y.i__ c nk (2k) and unsaturated
if it is unsaturated at vg for all k, 1 _-< k-< n- 1. In showing that we could collapse
down to the case m n + 1, we actually showed that if we started with an unsaturated
tie-down, then it remains unsaturated after the collapse to m n + 1. By a virtually
identical proof we could have actually collapsed one step further to m n. However,
we then automatically get a tie-down which is saturated at v, and which can easily
be saturated at other vk as well, even if the original tie-down was unsaturated. We
did not need this further collapse for the remainder of the proof, but neither do we
need the information about unsaturation. However, we will consider unsaturated
tie-downs further in Proposition 3.12.

COROLLARY 3.6. The dependence or independence ofthe bars ofa generic tie-down
of a generic framework is determined solely by the unordered list (with repetition) of the
(") vertices to which the tie-down bars are incident.

COROLLARY 3.7. If n 2, for the generic tie-down T and the generic framework
F (G, a), C(T) 0 if and only if all three bars ol T are incident to the same vertex

of G. I] n 3, C(T)= 0 if and only if, of the six bars of T, at least 4 are incident to
one vertex, or 3 are incident to each of two vertices.

Remark. The situation is much more complicated if we take a nongeneric tie-
down. For example, in dimension 3, four bars which determine lines on a common
regulus are dependent. The indeterminate (generic) endpoints of our tie-down bars
prevent any such special position from occurring. However, we may still state the
following for nongeneric tie-downs.

COROLLARY 3.8. Condition (*) of Proposition 3.5 is a necessary condition for an
arbitrary tie-down T to satisfy C T) # O.

LEMMA 3.9. Let I
_

{1, 2, , n }, I and >-2 >-" >- ,,+ nonnegative
integers such that = <= nk -(k) for all k, 1 <= k <= n + 1. Let p be minimal such that
p L 1-<p-<n+l and let q be maximal such that q L 1-<q<=n+l.
n Itl- then ap < a,. Furthermore, q p 1 and I {1, 2,..., q}.

and

iIU{p}

II1/1

iI i=1 iI

n(ii[+l) (lll; 1) (llI)<- -hill+ 2
=n-

Olq"- 20li
iI i[ i=1
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hence ap < aq, and the rest follows immediately. Q.E.D.
LEMMA 3.10. Let T be a generic tie-down of () bars of a generic framework F,

with ag tie-down bars incident to the vertex vi, >- a2 >-" >- ,,, m VI >- n. Let T*
be the tie-down obtained from T by specializing one tie-down bar {vi, x} at vi to the line
viva, for f < l. Let dp denote the specialization map such that ’x Vl, where fixes
all vertices other than x. Then C T) 0 if and only if C T) O.

kProof. If C(T) 0 then C(T) 0 by Lemma 3.3. If C(T) 0, then Y__ a =<
nk -(2k) for all k. To prove that C(T) O, we proceed as in the proof of Lemma 3.5,
until we form the bipartite graph. Since {v., x} has already been assigned the line ViVl,
we eliminate {vi, x} from T to obtain a tie-down with incidence numbers a _>-a2 =>

>-_ ai- 1 >-_. >= am. We also eliminate/31, from B and vfl)l from E in our bipartite
graph, letting B’=B-{vi}, E’=E-{vivt}. Now if U_B’ and R(U), I and U* are
defined as before but in terms of the new graph, then if ] I and /, then ]UI < [R (U)[
as before. If/’ L then

Finally, if I and feL then by Lemma 3.9, since/" <l, E,,a, < n[II- (11). Thus

[UIIU*[--- , ainl/’l-(ll)-l--lR(U)[,
ii

and we are done. Q.E.D.
We will call a tie-down T nondegenerate if T has ("a) bars and C(T) O.
Let us return now to the problem of factoring C(G, T) for G generically isostatic.

By Lemma 3.2, C(T) is a factor, so we obtain a factorization C(G, T) C(T)CT-(G).
It remains to be shown that C(G) is independent of T and is therefore the pure
condition C(G) which we seek. Let F (G, a) be generic, with Wl --> n.

LEMMA 3.11. Let T’ be a generic tie-down offobtained from the generic tie-down
T by replacing a bar ax by dx, where ad is an edge of G. Assume T and T’ are
nondegenerate. Then CT-(G) CT-,(G).

Proof. Let us first specialize x to x*, a point in general position on the line ad
(e.g., x * =/3a + (1 -/3)d for 1, 2,.. , n, where/3 is an indeterminate). Let T*
and T*’ denote the sets of tie-down bars obtained from T and T’ (resp.) by specializing
x to x*, and the specialization map ’x x*. Since both C(T) 0 and C(T’) O,
Lemma 3.10 implies that either C(T) 0 or C(T’) O, depending on which of a
or d has more incident tie-down bars. But C(T) 0 if and only if C(T’) 0, since
T* determines the same set of lines as T*’. Thus C(T) 0 andC(T’) 0.

Now let us examine the rows of the rigidity matrix for G (_J T* corresponding to
the bars ad and ax*. These rows have nonzero entries only in columns corresponding
to the vertices a and d, namely:

a d
ad [a-dl, a2-d2,"" ", a,-d,, d-a, d2-a2,’.’, d,
ax* ,al-X*l,a -x, a,-x* O, O, 0 ]"

Since a, d and x* are collinear, the scalar 1-/3 satisfies 1-/3 (ai-x.*,)/(ai-di) for
1, 2, ., n. If we subtract 1-/3 times the row ad from the row ax*, we have

ad [al-dl, a2-d2, an -dn,
ax* 0, 0,..., 0,

dl-a, d2-a2, dn -a)al-x,a2-x,. ,an-X
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If A (1 -fl)/(-fl), h (ai-x*)/(di-x’) for 1, 2,..., n, so we now have

ad (a-d, a-da, a, -d,, dl-a, d.-a, ..., dn -a,,)ax* O, 0,..., O, h(dl-X),h(de-x), ,A(dn-x*n)

and we have used only row operations which leave the determinant of the rigidity
matrix unchanged. But these are the rows corresponding to the bars ad and dx*,
except for the factor h in the rigidity matrix for G LI T*’. Thus dpC(G, T)=
h C(G, T’). Now the vector of P1/icker coordinates for ax* is also h times the vector
for dx*, as may be easily v.erified. Hence dpC(T)= Z dPC(T’).

It then follows, since pC(T) 0 and dpC(T’) # O, that CT.(G) CT.,(G). Thus
CT(G) and CT,(G) are elements of the polynomial ring k[al,"’, z,] whose images
are equal under the specialization map ’xi-->x .’, 1, 2, ., n. But xl, x2, , xn
do not appear in CT(G) or CT,(G), hence CT(G)= CT,(G). Q.E.D.

PROPOSITION 3.12. Let G be generically isostatic in dimension n, with V] rn >- n.
Then any two nondegenerate generic tie-downs T’ and T" satisfy CT,(G)= CT-,,(G).

Proof. By Lemma 3.11, we may move a tie-down bar of a nondegenerate generic
tie-down T from any vertex to an adjacent vertex, keeping CT(G) fixed, provided we
begin and end such a move with a nondegenerate generic tie-down. We will call such
a move an edge move, and we will show that we can transform T’ to T" by a sequence
of edge moves.

We know that a generic tie-down T with incidence numbers a O2’’’ Orn
is nondegenerate if and only if

, ai<=kn
i=1

for all k, l_<-k =<n- 1, and T has (,1) bars. Thus T is unsaturated if and only if T
is nondegenerate, and if a single tie-down bar is moved from any vertex to any other
vertex, the resulting tie-down is also nondegenerate.

Now we show that if T is nondegenerate, then T may be made unsaturated by
a sequence of edge moves. Since G is generically isostatic, G is connected. (In fact,
it is not difficult to show that G must be n-connected.) Suppose that r is maximal so
that c a2 O Then it is possible to find a pathP from some v {v 1,/32, /3r}
to v, such that the path contains no other vertex besides/3 from {vl, v2," ", Vr}. We
may reindex so that v yr. We now successively do an edge move along each edge
of the path P. We must show that all the intermediate tie-downs are nondegenerate.
But at each step along P, the net effect is to have moved a single tie-down bar from
/3r to some vertex v, where s > r. But the sequence a 1, a2, Or- 1, a -1,..., c,, satisfies (.) if al,.’’, a, does. Thus the intermediate tie-downs are non-
degenerate, and by valid edge moves, we have transformed T to a tie-down T1 with
incidence numbers /31->’" /3,,, where /3r =a-1, /3 =a, + 1 for some t_--<n and

k
i ai otherwise. But < n only if at at+ a,.,, whence by Lemma 3.9, Yi= fli
,i=lai nk-(2) for t_-<k<_-n-1 and similarly for l=k=r-1. For r=k=t-1,
E/k=1 i < Eik=l Oi, and so T1 is unsaturated.

Thus we may assume that T’ and T" are unsaturated. Let al =>a2 =>" ._---a, be
the incidence numbers of T’ and/1, f12,""’,/3,, the incidence numbers of T". Thus
the vertex vi has a incident tie-down bars in T’ and fl in T". We may assume that
if a ai+l, then i i+1. We proceed now by induction on Ei=I [i--Oli] =q. If q =0,
ai--/3i for all and T’ is isomorphic to T" and CT,(G)= C,,(G). If q > 0, we consider
two cases.
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Case 1. There exist ] <1 such that/t <at > al <fit. Then we choose any path in
G from v to Vl and do a sequence of edge moves along that path for the tie-down
T’. Since T’ is unsaturated, at each step along the path the resulting tie-down is
nondegenerate, and the result is a tie-down T’" with incidence numbers a 1, ’, at 1,
’’, al + 1,..., a,,, where we may have to reindex to keep decreasing order, say

but if so, we reindex the fli in the same way.
Now we must check that T’" is also unsaturated. If at 1 at + 1, we cannot have

increased the partial sums i=1 ai. If at-1 <at+ 1, then c --at+ 1 and c--a for all
i, although a and a need not refer to the same vertex. Therefore the partial sums

k
,i= ai remain unchanged, and T’" is unsaturated since T’ is. But now T" and T’"
satisfy CT,,(G)--C-,,,(G) by the induction hypothesis, hence C-,(G)= C-,,(G)..

Case 2. There exists p such that fli->_ci for all (p and fli ai for all >_-p. Thus
fl -> ai ->- aj -> fit if p -</’. Let us now reindex so that fl >- f12 >=" >- tim and reindex
the ai in the same way. Note that the original ill,’", tip-1 remain the first p- 1
entries in perhaps different order. Since q > 0, and Y." (n-l)i= 10li Ei= i there exist
/’, such that c < fl. and cl > fit. But then/" <p and _-> p and since c _-> ct,/3. >/31. Thus
ct<flt>flt<al and we apply the argument of Case 1 with a and /3 inter-
changed. Q.E.D.

THEOREM 3.13. If G is a generically isostatic graph in dimension n with IV >-n,
then there exists an element C(G) of the bracket ring on the vertices of G such that ]’or
any specialization a of the generic coordinatization of G given by a specialization map
dp, G(ce) has a stress if and only if dpC(G)= O.

Proof. Choose a nondegenerate generic tie-down T for G (c). Then by Proposition
1.2, G(c) has a stress if and only if G(c) U T has a stress, if and only if dPC(G, T) O,
if and only if Cr(G)= 0, since C(T) O. Since Cr(G) is independent of the choice
of T, we take C(G) Cr(G). Q.E.D.

COROLLARY 3.14. Let G be an isostatic framework with vI > 3 and n 2 or 3.
With the generic coordinatization on G, let T* be an arbitrary tie-down. Then ifC(G, T*)
is the determinant of the rigidity matrix and C(T*) the bracket condition for the
dependence of the tie-down bars (now specialized to T* instead of a generic tie-down),
we still have C(G, T*)= C(T*)C(G).

Proof. To the polynomial ring k[al, a2,"’, an,"’, z,] apply the specialization
map (a ring homomorphism) taking Xl, X2,"’, x,,..., z,, to the coordinates of
the corresponding endpoints of the bars in T*. The equation C(G, T)= C(T)C(G)
for a generic tie-down T is preserved under the homomorphism but C(G) is indepen-
dent of X1, X2, Xn, Zn, hence the result. Q.E.D.

There are a number of unsolved problems regarding the pure condition. Can two
distinct isostatic frameworks on the same set of vertices have identical pure conditions?
Given a bracket expression, what frameworks have a pure condition with the given
expression as a factor? Other problems relating to the factoring of the pure condition
are discussed in the following sections.

4. Factoring pure conditions. We know that, for a graph with the correct count

IEI- n IV[ _(n-), the infinitesimal rigidity of the framework in n-space is equivalent
to the pure condition being nonzero at that coordinatization. What do these pure
conditions actually look like? Since there is no generally available collection of graphs
and their pure conditions, we begin with two tables of examplesone for the plane
and one for 3-space. Since the pure condition may change sign if the order of the
edges is changed, all conditions are given up to a global sign.

These tables require some explanation and raise certain obvious questions" How
does one determine these pure conditions? Do algebraic patterns, such as the factoring,
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reflect underlying patterns in the graph? How do we know that the factors shown are
irreducible?

The answers to all these questions are tied up together, since knowledge of the
factoring is often used to determine the pure condition given in the tables. We will
summarize the techniques we used under four headings. The first three subsections
will derive pure conditions, using certain patterns in the graph and in the factoring
of the conditions, while the fourth subsection outlines techniques to show that the
given factors are irreducible. Along the way we will explain the conditions given in
Tables 1 and 2.

TABLE
Plane frameworks

Name and graph Pure condition and geometric condition

1.1. Triangle
a

Points a, b, c, collinear

[abc]

1.2. Two triangles

a

c b

One of the triangles abc or abd is collinear

[abc][abd]

1.3. Triangular prism

a

Triangles abc, a’b’c’ are perspective from a line- Triangle abc or
a’b’c’ is collinear or the two triangles are perspective from a point

abc ][a b c ’]([abb ’][a c c [a’bb’][ac’c])

1.4. Edge linked prisms

a c e

Either one of the triangles is collinear or one of the triples aa’,
bb’, cc’ or cc’, dd’, ee’ is concurrent

[abc ][a’b’c’][cde ][c’d’e ’]

([abb’][a’c’c]- [a’bb’][ac’c])

([cda’][c’e’e]-[c’dd’][ce’e])
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TABLE (cont.)

Name and graph Pure condition and geometric condition

1.5. 3 vertex linked prisms

a a’

b

att

Either one of the triangles is collinear or one of the triples aa’,
bb’, cc’ or a’a", b’b", bc" is concurrent

[abc][a’b’c’][a"b"c"]

([abb’][a’c’c [a’bb’][ac’c ])

([a’b’b"][a"c"b ]-[a"b’b"][a’c"b ])

1.6. K3,

b c

a

The six joints lie on a plane conic

abc ][ab c ’][a b c ][a bc ’]

[a’bc ][a’b’c’][ab’c ][abc’]

1.7.

a b

Either one of the triangles is collinear or the three points ab ^ a’b’,
bc ^ b’c’ and p are collinear

[paa ’][pcc ’]([aba ’][bcb ’][b c p abb ’][bcb ’][a c p

+ [abb’][bcc’][a’b’p])

1.8. Cube with bar

a2

Either one of the triangles is collinear of the three points albl ^
azb2, aab3 ^ a4b4 and ala4 ^ a2a3 are collinear

[blbzb3][blb3b4]([a azbl][a2a3b2][a3a4b3][a4a lb4]

-[a la2b2][a2a3b3][a3a4b4][a4a bl])
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TABLE 2
Spatial frameworks

Name and graph Pure condition and geometric condition

2.1. Tetrahedron

b

a

The four points are coplanar

[abcd]

2.2. Triangular bipyramid

b

One of the quadruples abcd or abce is coplanar

[abcd][abce]

2.3. Octahedron

c b

Four alternate face planes abc, ab’c’, a’bc’, a’b’c are concurrent
in a point

abc a ’][bca b ’][cab c ’] + abc b ’][bca c ’][cab a ’]

2.4. 1-point cone on the prism

P

a a’

Projected from p onto a plane, the prism appears perspective
from a line

abcp ][a b c p ]([abb p ][a cc p a bb p ][acc p ])



STRESSES IN FRAMEWORKS 499

TABLE 2 (cont.)

Name and graph Pure condition and geometric condition

2.5. 1-point cone on K3, Projected from p onto a plane, the K3. appears to lie on a conic

[abcp][ab c’p ][a’b’cp ][a’bc’p

[a’bcp][a’b’c’p][ab’cp][abc’p

2.6. g4,

al a2 a3 a4

bl bz b3 b4 b5 b6

Either ala2a3a4 are coplanar or the 10 points lie on a quadric
surface

[ala2a3a4]2Q(al a4, bl b6)

2.7. K55-{as, bs}

al a2 a3 a4 a5

bl b_ b3 bn b5

Either aa2a3a4 or bb2bab4 are coplanar or the ten points lie on
a quadric surface

[ala2a3a4][blb2b3b4]Q(al as, b b)

2.8. K4.5 + edge

a a2 a3 a4

b b2 b3 b4 b5

Either ala2aaa4 are coplanar or the nine points a a4bl b5
and the line of the added edge lie on a quadric surface

[aaaEa3a4]Q(aa a4, ba bs, (ba + b2)/2)

[alaEaaa4]Q(a a4, bl bs, (al+a2)/2)

a a2 a3 a4

b bz b3 b4 b.s
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4.1. Direct calculation of pure conditions. It is possible to directly decompose
det (M(G, T)) as a bracket expression, using a Laplace expansion which we will return
to at the end of this section. In such a direct calculation, it is desirable to have the
tie-down condition C(T) appear as an immediate factor.

LEMMA 4.1. If an n-isostatic graph includes the vertices v, , v and the generic
tie-down T is given with a n, a2 n 1, , a, 1 and tie-down bars {vi, xi,i},
< f <= n + 1, then the tie-down factor is

C(T) [VlX1,2""’ X1,n+1][U1V2X2,3 X2,n+l]"’" [/)1/)2""" l)nXn,n+l].

Proof. The tie-down factor is independent of the n-isostatic graph which includes
the joints v 1,’", vn. For convenience we will use the complete graph on these n
joints and reshuffle the edges to give the order

{/)1, Xl,2},""", {/)1, Xl,n+l}, {Yl, /)2}, {V2, X2,3},""", {/)n-l, On}, {Un, Xn,n+l}.

We now do a Laplace expansion on the last n-columnsmthe columns of vn" The
only nonzero term uses the last n-rows and is the bracket [Vl,’’ ’, vn, xn,+x] times
the corresponding minor. We now do a Laplace expansion of this minor by the
n-columns for vn_l--giving only one nonzero term with the bracket
[/31,’’" ,Vn-X, Xn-X,n, Xn-X,n+X]. We continue this process, finding the last factor
(using the n columns for v) [va, xa,2," ’,x1,+1]. Thus C(G, T)=
[/)1, Xl,2, ’, Xl,n+l] [Ol, ", On, Xn,n+l] C(T).

The graph G has the pure condition 1 because such a complete graph on n joints
on n-space is isostatic if and only if the joints span an affine n- 1 space--and this is
true whenever C(T) 0.

We conclude that C(T) has the desired form. Q.E.D.
In any reasonable decomposition of det M(G, T), using this standard tie-down,

the given brackets will appear as factors of each monomial of the decomposition.
Thus no energy or ingenuity need be expended in pulling out this tie-down factor,
and we always choose this tie-down in actual calculations of pure conditions.

The proof of Lemma 4.1 gives the following corollary. An n-simplex is the
complete graph on n + 1 vertices.

COROLLARY 4.2. The pure condition ]’or an n 1 simplex in n-space is 1.
The pure condition for an n simplex in n-space is [Vl, , V,+l].
Proof. The n 1 simplex was directly given in the proof of Lemma 4.1.
To obtain the n simplex from the n- 1 simplex we add one vertex, Vn+l, and n

edges {vi, v,+l}, 1 -<_ -<_ n. We add n columns for V,+l, and these n rows at the bottom
of the matrix used in Lemma 4.1. A Laplace expansion by the last n columns gives
the brackets (+)[Vl V,+l] times the cofactor which is C(T). Q.E.D.

Remark. It is clear from this analysis that if any graph G’ is built from an
n-isostatic graph G by adding a new n-valent vertex p with edges {p, ai}, 1 <-i <_-n,
then the pure condition has the form C(G’)=[p, aa,..., a,]C(G).

In general det (M, T) can always be decomposed by taking a series of Laplace
expansions on the n columns for each vertex in turn (Rosenberg, [11]). Such an
expression will produce a sum of monomials, each of which has the form

1-I [ai, bi,1, ", bi,n],

where the rows {ai, bij}, 1 <-f <= n were used for the columns of ai in this term. The
following useful property follows from this expression by a simple counting argument
(using the simple tie-down).
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LEMMA 4.3. The pure condition for an n-isostatic graph G is homogeneous of
degree k / 1-n in each vertex of valence k in the graph.

4.2. Factors determined by decomposition of the graph. A second source of pure
conditions lies in certain decompositions of the graph. We begin with the simplest
result of this type.

PROPOSITION 4.4. If G is an n-isostatic graph and H is an n-isostatic subgraph
with at least n + 1 vertices, then C(G) C(H) C’ for some factor C’.

Proof. We attach the simple tie-down T to n vertices in H. The tie-down rows,
plus the rows corresponding to edges in H now give a square submatrix, with all other
entries in these rows zero, and a simple Laplace expansion, using these rows as a
block, gives

C(G, T) C(H, T). C’ C(T). C(H). C’. Q.E.D.

This result explains the illustrated factoring for examples such as the prism (Table
1, 1.3), the combinations of prisms (Table 1, 1.4 and 1.5), other planar graphs with
triangles (Table 1, 1.7, 1.8) and the 1-point cone on a prism (Table 2, 2.4).

The form of C’ depends on the pattern of the rest of the graph. When the number
of edges or vertices of attachment to H is small, then we can give more details about
C’. A number of such examples are illustrated in Table 3.

TABLE 3a
Plane

3.1

a

If H1 is 2-isostatic then C(G) C(HI) C(H2 +{a, b}). If neither

H1 nor H2 is 2-isostatic C(G)=-0

3.2

a

If H1 and H2 are 2-isostatic then C(G)= C(H1)’ [abc]. C(H2).
Otherwise C(G) 0

3.3

a bl

a3 b3

If H and H2 are 2-isostatic then C(G)=C(H). ([aba2]"
a3b3b2] [a b lb2][a3b3a2])’ C(H2). Otherwise C(G) 0
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TABLE 3a (cont.)

3.4 If H1 and H2 are
[alblb2] [a3alb3]" C(H:z)

"--.3

2-isostatic then C(G) C(nl)

3.5
ak a

a4 a3

If H is 2-isostatic C(G)=C(H).([ala:zbl]...[akalbk]+
(--1)k+[alaEbE] [akabl])

TABLE 3b
Space

3.6 a If HI is 3-isostatic then C(G) C(H) C(HE U
{{a, b}, {b, c}, {c, a}})

3.7 If H1 is 3-isostatic then C(G)--C(H1). [abcd]. C(HEU{a, b}).
If neither H1 nor HE is 3-isostatic then C(G)= 0

3.8
al

( )
If H1 and H2 are 3-isostatic then C(G)= C(H). C(H2)’ C(S),
where C(S) is the "tie down" factor for albl,’", a6b6.

3.9 a

c b

If H1 and H2 are 3-isostatic then C(G)=C(H).
C(HE) ([bca’b’][cab’c’][abc’a’]+[cab’a’][abc’b’][bca’c’]). If
one of H, H2 is not 3-isostatic then C(G)= 0.
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The simplest examples in Table 3 cover two n-isostatic subgraphs tied together
by (nl) edges (Table 3, 3.3, 3.4, 3.8, 3.9). Such a tie-together S gives a factoring

C(G) C(H1) C(S) C(H2),

where C(S) is a specialization of the tie-down factor due to any identification of the
ends of the tie-together edges. If we tie down H1, then H1 functions as a "ground"
while S gives a tie-down for H2.

A second property of a graph which is reflected in the pure condition concerns
1 point cones (Table 2, 2.4, 2.5).

DEFINITION 4.1. Given a graph G (V, E) the 1-point cone G * p is the graph
with vertices V LI {p } and edges E U {{p, Vi}ll)i E V}.

PROPOSITION 4.5. If G is an n-isostatic graph with condition C(G), then the 1
point cone G p is an (n + 1)-isostatic graph with pure condition C(G * p) C(G) p,
where (L p means extending each bracket in L by inserting an (n + 1)st entry p.

Proof. We take the standard tie-down Tn on G, at vertices a 1, ’, an, and obtain
M(G, Tn) and take the standard tie-down Tn/l of G p, at vertices p, al,." ", an to
obtain M(G p, T,+I).

We obtain det M(G, Tn)= C(Tn)" C(G) by a series of Laplace expansions, each
on the n columns of a vertex of G, and similarly detM(G,p,T,/l)=
C(Tn/I) C(G p) by a series of Laplace expansions each on the n + 1 columns of a
vertex of G, p. The term for the columns of p is part of the tie-down factor,
[pyl yn+l], and for each other vertex vi the nonzero terms will involve n rows of
G, plus the row for {p, vi}. Otherwise, some term has no occurrence of p--another
term has two occurrences of pmand we have the zero term. Since these two expansions
give the form C(G ,p, T,+I)=[pyi"" y,+l]" (C(G, Tn),p) and C(Tn+l)
[PYi y,/l] (C(T,) * p) we have the desired result. Q.E.D.

Remark. This proposition reflects the geometric theorem that a framework realiz-
ing a 1-point cone in (n + 1)-space with apex p has a static stress if and only if the
projection of the framework from p into an n-space has a stress in the n-space [19,

10]. The geometric process of projection is expressed in the brackets as a reduction
by p--placing p in each bracket as the last entry--and then deleting the p’s, thus
moving from backets of length n +2 to brackets of length n + 1.

4.3. Factors and pure conditions by geometry. Other direct analyses of the
infinitesimal and static behavior of frameworks have produced projective geometric
statements of sufficient (and necessary) conditions for nontrivial motions or stresses
in frameworks with various graphs [19], [20], [21], [22]. Either by the direct presenta-
tion, or by a simple translation, such projective conditions for n-isostatic graphs reduce
to a single polynomial F(G) such that F(G)= 0 is sufficient for a realization of G to
not be isostatic.

LEMMA 4.6. If a polynomial F in the vertices of an n-isostatic graph G has the
property that F(G) 0 C(G) O, then each irreducible factor of F is a bracket
expression which is a factor of C(G).

Proof. The analysis of C(G), and of the sufficient conditions F(G)= 0, are done
over the complex numbers. By Hilbert’s Nullstellensatze we have

(F(G)=OC(G)=O)A F(G)=(C(G))’,

where A is some bracket expression and r is a positive integer. Clearly each irreducible
factor of F is a factor of (C(G))r--and thus of C(G). Q.E.D.
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Lemma 4.6 can give us some factors of C(G), based on our geometric analyses.
When combined with Lemma 4.3, which limits the total occurrences of each vertex
in C(G), it is possible to count how many, if any, occurrences of joints remain after
this factoring. In many cases these two lemmas give a complete description of the
pure condition.

For example, the factors used in the condition for the prism (Table 1, 1.3), the
K3,3 (Table 1, 1.5), and other plane examples (Table 1, 1.7, 1.8), as well as the
octahedron in space (Table 2, 2.3) were originally calculated by a direct geometric
analysis. In each case these known factors contain all available occurrences of the
jointsmso they must be the pure condition, provided they are irreducible. In 4.4 we
will verify this irreducibility.

A more surprising class of examples includes the bipartite framework K4,6 in
3-space (Table 2, 2.6). We recall that a bipartite graph K,,n has vertices V
{a 1, , a,,, b 1, , bn } and edges {ai, b.}, 1 <- -<_ m, 1 <=/" <- n. It is a simple counting
argument to check that Kn/l,,,, where m (n-l), counts to be an n-isostatic graph/(or
at least give a square matrix M(G, T)).

PRO’OSITION 4.7. The pure condition in n-space for the bipartite graph
n+l,whereto=(2 , is

[al "’an+l O(al,"’,an+l, bl,’",bm),

where d (n + 1)(n -2)/2 and O(al, ", b,,) is the bracket expression for all the foints
to lie on a quadric surface in n-space.

Proof. By the analysis of [22] if the joints lie on a quadric surface, then there is
an infinitesimal motion. The expression for the joints to be on a quadric surface is a
projectively invariant equation of degree 2 in each joint, since picking values for all
but 1 joint must leave a general quadric equation. (This expression is irreducible, as
we will see in Proposition 4.9.) When this factor O is removed from the pure condition,
we are only left with the vertices a l,’",an/l, which still occur to degree d
(")-(n + 1). The only possible nonzero n-bracket formula with n + 1 vertices is
[al an+l], so this occurs d times. (The factor is nonzero, since the graph does have
n-isostatic realizations.) Q.E.D.

Remark 1. The factor [al" an+l] (n >_-3) was also predicted by the geometric
analysis, since [22, Thm. 1.1] guarantees a nontrivial infinitesimal motion whenever
all points al,..., an+l lie in a quadric surface of a hyperplane in n-space. In fact
[al’" an+l]=0 guarantees that these joints lie on d such quadric surfaces of the
hyperplane, thus giving d motions and d stresses to match the d identical factors. We
return to this "coincidence" in Chapter 6.

Remark 2. Since, for example, K4,6 has 2 stresses when [a... a4] 0, we also
know that removing one bar in that case will still leave at least 1 stress, regardless of
the position of the hi. Removing {a4, b6} also leaves b6 as a 3-valent joint, which will
not participate in the dependence unless b 6 is in the plane of a laa3. Thus the condition
[aa... a4]=0 actually is sufficient for a stress in the 1-underbraced frameworks
realizing K4,5. As a result, any graph G containing this K4,s as a subgraph must have
[a... a4] as. a factor of its pure condition. By a similar argument, we find Kn+l.n+2
can be a strongly (d-1) underbraced graph for n > 3 which still induces a factor
[al an+l] in the pure condition of any n-isostatic graph containing it.

Remark 3. We have previously observed ( 4.2) tflat the presence of an n-simplex
gives the factor [al"’ an+l]. We have now found that a bipartite framework with
none of these edges present can give the same factor. There is no simple correlation
between factors and subgraphs. Similar factors give a similarity in the geometric
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conditions under which a framework is critical (not-isostatic). However we conjecture
that if two graphs give the same pure condition, then the frameworks are the same.

By an argument similar to the proof of Proposition 4.7, we conclude that the
graph Ks.5-{as, bs} has the pure condition given in Table 2, 2.7. The simplest known
bracket expression for Q(al, , bs) is given in [16, p. 266] as the sum of 240 bracket
monomials! The same paper gives expressions for a quadric through 9 points and 1
line (e.g., Q(al,...,a4, b,...,bs,(a+a2)/2) in Table 2, 2.8) as the sum of 6
monomials. The pure condition for this last example follows from the geometric
analysis of [22, Thm. 4.1] by an analogous argument.

4.4. Irreducibility of factors of the pure condition. In the tables and the preceding
discussion we have offered many "irreducible" factors. However these were often
enormous polynomials in, say 40 variables (for K4,6), and it requires some proof to
see that such expressions are irreducible.

At present we have two main tools for proving this irreducibilitysymmetries
of the graph, or the corresponding geometric conditions, which would impose symmetry
on the factoring, and specializations of the coordinatization which reduce the
expression to a simpler form, which is either known to be irreducible or else factors
only in a way which is incompatible with the original symmetries or geometry of the
condition. Without being exhaustive, we illustrate these techniques on the simple
examples given in the tables.

PROPOSITION 4.8. The tie-down factor C(T) for T {{ai, Xi}]l --< _<-- ("-)} is irredu-
cible if ai, xi are distinct.

Proof. We view T as a tie-down of a rigid bodymand recognize that this factor
is independent of the n-isostatic graph used to connect the ai. We take a specialization

which identifies the ai with appropriate joints bi of the standard tie-down and gives
a homomorphism of the polynomial

ap(C(T))=[by,.., y,+][bby,.., y.,+][bl.., by,+].

From this factoring of O(C(T)) we conclude, for example that
O-(y.2),"’", O-(yl,n+) (some of the xi) must be in the same factor of C(T). But
this identification was arbitrarymso all the xi lie in the same factor. Similarly, O-(bn)
and O-(y.,+) must be in the same factor of C(T). However O-X(b,) is an arbitrary
a,--so we conclude that all at and xi are in the same factor. Since C(T) is of first
degree in all ai and x, this requires that C(T) is irreducible. Q.E.D.

If we apply this result to the tie-together of 2 bodies, we have shown the
irreducibility of the factors in the examples in Table 1, 1.3, 1.4, 1.5. The result for
1-point cones also gives the factoring of C(G. p), so we have also explained the
factors of Table 2, 2.4.

PROPOSITION 4.9. The bracket condition Q, for (n2) points to lie on a quadric
surface in n-space is irreducible.

Proof. Assume that the condition Q factors as f. g.
Case 1. f is of first degree in some point a. Since Q is of degree 2, g is also of

first degree in a. By a suitable choice of real position for all the other points (which
define, in general, a unique quadric) the condition Q can be specialized to Q(a)=
a+a=f(a), g(a). Since a+a is irreducible, we have a contradiction.

Case 2. F is of degree 2 in some set of points a,..., c, while g is of degree 2
in the remaining points d,..., fi However the geometric condition is symmetric in
all points, so if a and c share a factor, so must a and d, etc. We conclude that all
points appear in the factor f, and g 1. Q.E.D.
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If the factor being examined is small (a sum of monomials with -<3 brackets),
then any further factoring must include a factor which is a sum of single brackets.
However the factors are homogeneous, so there must be a single bracket as a
factormand thus some set of n + 1 joints which, if coplanar, would induce a stress. In
many cases this possibility can be eliminated by a direct inspection of the geometry.

Consider example Table 1, 1.7. The third factor is reducible if and only if some
triple offoints in this factor being collinear causes a stress. Since we know the geometric
condition (see the table), it is simple to check that any such triple can be collinear
while the factor is S0. We conclude that this third factor is irreducible.

The octahedron (Table 2, 2.3) also gives an irreducible factor. By Cauchy’s
theorem and its extensions [23] any set of 4 joints such as abcc’ or aba’b’ can be
made coplanar without making the condition =0. By the symmetries of the graph the
same is true for all quadruples, so the condition is an irreducible polynomial.

If we take any planar graph (1 V]- IEI / IFI--- 2) with IEI 21vl- 3, vI--> 3, a
simple counting argument shows that there must be at least one triangle. Thus a planar
graph with more than 3 vertices must have factors in its pure condition. Only nonplanar
graphs, such as K3,3, can have irreducible pure conditions.

The situation for 3-isostatic graphs is much more complicated. While the construc-
tion of general 3-isostatic graphs is an unsolved problem, some classes, such as
triangulated spheres, are well known [23].

5. Overbraeed frameworks. So far we have been considering isostatic
frameworks, which may be described as maximal frameworks which have no stress in
generic position. Let I(v)=nv-(nl). Then we know that an isostatic framework
has exactly I(v) bars. We now consider overbraced frameworks, that is, frameworks
with more than I(v) bars. Such frameworks always have a stress. Let G be such a
framework. Then every subframework G’ of G having exactly I(v) bars is either
generically isostatic, in which case we have the pure bracket condition C(G’) for the
existence of a stress of G’, or else G’ generically has a stress, in which case the rigidity
matrix of G’ has dependent rows, and we may set C(G’)= O.

If G is a 1-overbraced framework, that is, a framework with exact I(v)+ 1 bars,
we can actually compute the coefficients of a stress of G, using brackets.

THEOREM 5.1. Let G be a 1-overbraced framework with bars Eo, El, , Et such
that for some f, G-Ei is isostatic. Then there exists a nonzero stress on G whose value
on the bar Ei is (-1)’C(G -El), where the bars of G -El are taken in order of subscript
in computing C(G-Ei).

Proof. Choose a nondegenerate generic tie-down T, and let M be the generic
rigidity matrix of G U T. Since M is an (nv + 1)x nv matrix, its rows are linearly
dependent and the coefficients of any such dependence are the values of a stress. Let
Fi be the ith row of M, 0, 1, , nv + 1, and Mi the matrix M with the row Fi

nv+ldeleted. Then, by Cramer’s rule, Y=0 (-1) (det M)Fi 0. If > I + 1, so that Fi is a
row corresponding to one of the tie-down bars, then since the framework G tA T with
one tie-down bar removed is clearly stressed, Mi 0. Thus we have

I+1

(-1)ic(a -Li, T)Fg O.
i=o

Now each term has the same tie-down factor C(T), and we chose T to be nondegener-
ate, so C(T) 0. Thus C(T) may be factored out, leaving

I+1

E (-1)’C(O -E,)F O.
i=0
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Finally, we note that since G-E. is isostatic by hypothesis, the coefficient C(G-Ej)
is generically nonzero, so we have the desired stress. Q.E.D.

Example 5.2.

a Eo b

E2

d E5 c

E3

The tetrahedral framework in the plane is a 1-overbraced framework. The stress
coefficients (-1)iC(G-Ei) are tabulated below.

Eo [acd][bcd] E3 [abd][acd]

E -[abd][bcd] E -[abc ][acd]

E2 [abc ][bcd] E [abc ][abd]

The determination of the signs of the coefficients directly from the definition of
C(G-Ei) is tricky; in any case the best we can do is determine the relative signs of
two coefficients. One way to determine the signs is to recall that by the definition of
a stress, if Sab is the value of a stress on a bar ab, then for each a V,bV,,,b, S,b ab
0, where ab is the vector a-b. This is equivalent to the Cayley algebra equation
bV.,,bC(-1)gC(G-Ei)ab =0, where ab here is a step-two extensor. But this
equation must be a syzygy in the Cayley algebra, which can be determined directly.
For example,

[acd][bcd]ab [abd][bcd]ac + [abc][bcd]ad 0

is a syzygy in the Cayley algebra, and this gives the correct relative signs for Eo, Ea
and E2. Alternatively, we may specialize coordinates to any particular coordinatization
whose stress coefficients have known signs in order to determine the correct signs
generically.

Example 5.3.

a 4 d

5
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This framework G is the triangular prism with one additional bar ce, in the plane.
The stress coefficient (-1)iC(G-Ei) is given for each bar Ei, now denoted simply i.

1 [acd][bce ][cef][de]’]

2 -[abd][bce][cef][def]

3 [abe ][acd][cef][def]
4 [abc ][bee ][cef][def]
5 -[al,c ][acd][cef][delq

6 [abc][ade][bce][def]

7 [abc ][adf][bce ][cef]

8 -[abc][ade][bce][ce/]

9 [abc ]lade ][bce ][cdf]

10 [abc ][de]:]([abd][ce]’] fade ][bc]:]).

Now that we have a bracket formulation for a stress on a 1-overbraced framework
in generic position, the stress for any particular coordinatization (or realization) of
the framework in real n-space may be computed by simply plugging in the values for
the brackets for that particular coordinatization. One especially important piece of
information which can be obtained from the stress values is the split (or partition) of
tension members versus compression members. This is obtained simply by observing
which bars have a positive value in the stress, and which have negative. The fact that
we have determined only the relative signs of the stress coefficients is no problem,
since the split between tension and compression members is reversible.

Example 5.3 (continued). Let us fix the positions of a, c, d, e and f in the
framework G of Example 5.3 and think of b as moving around. The irreducible factors
which involve b and which occur in the stress coefficients are [abc ], [abd], [abe ], [bce
and ([abd][cel’]-[ade][bc]’]). The locus of points which makes each of these factors
0 is a curve; in this case each is a line, namely, ac, ad, ae, ce and (ad fq cf)e, respectively
(note that the last factor listed is equivalent to the Cayley algebra expression ad ^ be ^
cf). We will call these curves switching curves ]’or b (or switching surfaces ]’or b for
examples in 3-space).

We could more generally consider the 12-dimensional space of all affine realiz-
ations of {a, b, c, d, e, f} and consider all of the irreducible factors of the stress
coefficients, obtaining various switching hypersurfaces.

For an arbitrary framework, if a vertex b lies on one of the switching surfaces,
then some of the stress coefficients are zero and the support of the stress is a proper
subframework of G. If we move b from one side of the switching surface to the other,
the corresponding factor switches sign (assuming that we are doing our factoring over
R), thus all members having that factor to an odd power switch from tension to
compression, or vice-versa, while the remaining members do not switch. Thus a crucial
question is when an irreducible factor of a pure condition can occur to a higher power
than one, or, more precisely, what are the relative powers of a given factor in the
stress coefficients.

We illustrate in Fig. 1 the switching curves for the vertex b in one realization of
G. We also illustrate the tension compression split for several of the plane regions
determined by the switching curves. Once the split has been determined in one region,
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it may quickly be determined in all others by successively crossing switching curves,
one at a time and switching members accordingly. We show switching curves by dotted
lines, tension members by dashed lines and compression members by cross-hatched
lines.

II

d

In region I.

In region II’ only edge 3 changes
from region I, ([abe] changes sign).

d

In region III: every edge but 1, 2
and 3 changes from region II,
([abc] changes sign).

b

FIG. 1
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6. Multiple stresses. In our current list of examples, we have no example where
a factor occurs to a kth power in one coefficient of a stress and a power <k- 1 in
some other coefficient. This would seem to indicate that every factor of a pure condition
gives a switching surface for every looverbraced framework containing this subgraph,
unless this factor occurs to the same power in all coefficients (for example, K5,5).

The only examples we have of a factor occurring to higher than the first power
are in the bipartite frameworks. In these examples the multiple occurrences of a factor
are associated with a multiple stress. The following result generalizes this observation.

PROPOSITION 6.1. If, for some irreducible factor H of the pure condition of an
n-isostatic graph G, all coordinatizations a with H(a(G))=0 give at least r stresses,
then H is a factor of C(G).

Proof. For r 1, this is Lemma 4.6. We proceed by induction on r, with the
additional assumption that some a with H(a(G))= 0 give joints which span the space.
If, on the contrary, all such a gave fiat coordinatizations, thenH 0 implies [a d]
0 for each (n + 1)-tuple a,. , d, so H would be precisely such a single bracket. This,
together with an over-all flatness in G requires that G is the n-simplex, where we
know C(G)=[a d] and r 1.

Since a(G) is not flat for a generic coordinatization with H(a(G))=0, and the
complete graph is statically rigid in such coordinatizations, we can find an extra bar
E which is independent in a(G +E). We now examine the stress equation for the
1-overbraced framework G +E:

E (-1)eC(G +E-Ei)Fi +C(G)FE =0.

We assume H(a(G))= 0 gives an (r + 1)-tuple stress. This must also give a r-tuple
stress in a(G +E-Ei) and by our induction hypothesis H is an r-fold factor of all
these coefficients. We factor H out of the stress equation, leaving"

E (C)F, + C’Fz O.

Since E is independent for the generic a with H(a(G))=O, we have H =0
implies C’= 0. Over the complex numbers this gives, via Hilbert’s Nullstellensatz,
AH (C’) for some integer s. Since H is irreducible, H divides C’.

We conclude that H is an (r + 1)-fold factor of C(G). Q.E.D.
Is the converse of this proposition true? If an irreducible factor H is an r-fold

factor of C(G) do all coordinatizations a with H(a(G))=0 give r stresses? This
problem remains a basic block to a good analysis of the behavior of a stress at a
"switching surface".
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EFFICIENT OPTIMIZATION OF MONOTONIC FUNCTIONS ON TREES*

YEHOSHUA PERLt AND YOSSI SHILOACH

Abstract. The problem of optimizing weighting functions over all the k-subtrees (subtrees with k
vertices) of a given tree is considered. A general algorithm is presented that finds an optimal k-subtree of
a given tree whenever the weighting function is what we call monotonic. Monotonicity is a very natural
property, satisfied by most of the functions that one can think of.

The problem is solved for cases of both rooted and undirected trees. On the other hand, even simple
extensions of it to general graphs are NP-hard.

Key words, optimal subtrees, monotonic weighting functions, dynamic programming, polynomial
algorithms, NP completeness

1. Introduction. Let T be a rooted tree.
Henceforth a subtree of T will always mean a rooted subtree of T, and a k-subtree

will mean a subtree with k vertices. A complete subtree of T is one that contains all
the descendants of its root.

Let W be a weighting function that assigns a real number (called weight) to every
subtree of T.

A k-subtree T’ is maximal (minimal) with respect to W if it is the heaviest
(lightest) k-subtree of T. The word optimal will later be used for both maximal and
minimal. Let T, T1 and T2 be rooted trees, and let v be a vertex of T. Let T (T)
be the tree obtained by hooking T1 (T2) on T at v. We say that W is a monotonic
weighting function if for any such triple T, T, T2 and any vertex v of T,

W(T) <= W(T2) implies W(T’ <= W(T’2 ).

Optimization of monotonic weighting functions for tree partitioning is discussed in [BP].
In this paper we present a general and efficient algorithm for finding optimal

k-subtrees of a given tree, which is good for any monotonic weighting function. Since
most of the weighting functions that one can think of, including the following several
examples, are monotonic, this algorithm might be proved very applicable. Moreover,
in many cases this algorithm can be applied directly to corresponding problems in
undirected trees. Furthermore, it will be shown that even some nonmonotonic func-
tions, like the diameter, can still be optimized if monotonic auxiliary functions are
properly used.

Examples of several natural weighting functions. Let w V R and l:E R be
two real-valued functions that assign weights to the vertices and lengths to the edges
of T respectively.

Let T’= (V’,E’) be given subtree of T rooted at r’. Consider the following
weighting functions"

1. W(T’)=Eov, w(v),
2. W2(T’) Y.,, l(e),
3. W3(T’)=rninvv, w(v),
4. W4(T’) min,E, l(e),
5. W5(T’)= number of terminal vertices in T’.

* Received by the editors November 19, 1980, and in revised form December 27, 1982.
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Bar-Ilan University, Ramat-Gan, Israel.

$ IBM Israel Scientific Center, Technion City, Haifa, Israel.
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Defining the distance d (u, v) from a vertex u to its descendant v as the sum of lengths
of the edges along the path connecting them, we can further define:

6. Internal path length: W6(T’)=,vv,d(r’, v),
7. Height: W7(T’)=maxov,d(r’, v).

Similar functions can be defined for undirected trees and undirected graphs as well.
For almost all these functions, though, the corresponding problems of finding optimal
k-subgraphs or even optimal k-subtrees in general graphs are NP-hard.

In the next section we describe the algorithm and analyze its complexity.
In 3, the corresponding problem for undirected trees is defined and solved with

the aid of the algorithm below. It is also shown how the nonmonotonic diameter
function is maximized by utilizing an auxiliary monotonic function.

Section 4 contains a brief discussion on the NP-hardness of the problems of
optimizing the weighting functions above over k-subgraphs and k-subtrees of general
graphs.

2. The algorithm. The algorithm is based on dynamic programming. The common
bottom-up approach requires exponential time, and therefore an efficient variation
of it is used.

Let T be a tree rooted at r, and let rl,’’ ", rs be r’s sons. Let T1," , Ts be T’s
complete subtrees rooted at rl,"’, rs respectively. Given a monotonic weighting
function W and an integer k, assume that optimal k-subtrees T[, ..,
respectively, have already been found. The optimal k-subtree of T is either the optimal
subtree among T’I,"’, T’s or another k-subtree rooted at r. Thus, there remains to
be found an optimal k-subtree among those rooted at r. Such a subtree is called an
r-optimal subtree. It turns out, however, that in order to find an r-optimal k-subtree,
one has to find rj-optimal i-subtrees for all 1 <= -< k in each of the subtrees T, 1 _<- ] -< s.
Let T (i) denote an rj-optimal i-subtree of T/for all 1 -</" =<s and 1 -<i -<k. Adopting
a well-known dynamic programming technique, we assume that these trees are already
known and proceed to find r-optimal i-subtrees for all 1 =< =< k. At this point, the
straightforward approach requires that for each sequence ix, ’, is such that il +" +
is k-l, a corresponding sequence of T (ij), 1-<] <-s, will be considered. Since the
number of such sequences is o(kdeg(r)), this approach is intractable when r has many
sons. It turns out, however, that a left-to-right propagation will save us this time. To
this end let ., 1 _<-]-<s, be the r-rooted subtree of T, spanned by T1,’’ ’, T. and r.
As expected, let T (i) denote an r-optimal i-subtree of . for all 1 -</" -< s and 1 =< -< k.
Since T is the subtree spanned by T1 and r, it follows from the monotonicity that
T (i) can be taken as the subtree spanned by T (i- 1) and r, 1 -<i -<k. It should now
be shown that the trees T/I (i), 1 -< <-k, can be efficiently obtained from T (i) and
T/ (i), 1 < < k. Let io be a fixed integer between 1 and k. For all i, 1 < < i0, denote
by _TT./I(i, io) the io-subtree rooted at r that is spanned by T(i) and T}/(io-i)
(see Fig. 1).

The following simple theorem both motivates the algorithm below and establishes
its validity.

THEOREM. T;/ (io) can be chosen as one of the subtrees _TT’+I(i, io), 1 _-<i-<io,
that optimizes W.

Proof. Follows immediately from the monotonicity of W.
In order to translate the ideas above into a more formal algorithm, let us associate

a sequence S(v) of length k with each vertex v T. S(v)[i], the ith element of S(v),
should be by the end of the algorithm a v-optimal i-subtree. Let v be given, let
Vl,’’ ’, vs be its sons and let . be defined as above for 1 _-<] _-<s. Denote by Si(v) a
sequence whose th element is a v-optimal i-subtree of _T/rather than T.
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FIG,

If the sequences $(v 1), ’, $(v) have already been constructed, then v’s sequence
can be obtained by:

CONSTRUCT S(v).
Step 1. $1(v)[i]<-- the subtree spanned by $(vl)[i 1] and r;/" <- .
Step 2. While/’ <s, obtain Sj/l(v) from $j(v) and S(vi+) as described in the

theorem above;/’ <--/" + 1.
Step 3. $(v)$(v).

Finding an r-optimal k-subtree of T may now look like"

OPT (r, k).
Step 1. (Initialization.) For each terminal vertex v, T, S(vt)({v}, , ", ().

(The ith empty set indicates that vt has no i-subtree, 2 <= <= k.)
Step 2. Process the internal vertices of T in end-order (or any other order in

which each vertex follows its sons) constructing S(v) for each internal vertex v of T.
Step 3. Output the kth element of S(r) as an r-optimal k-subtree of T.

Since OPT (r, k) constructs the sequences S(v) for all v s V, we know the v-optimal
k-subtrees for all v s V. Thus one can easily obtain an optimal k-subtree simply by
taking the best k-subtree out of all the v-optimal k-subtrees. Thus, substituting the
following Step 3’ in place of Step 3 in OPT (r, k) yields OPT (k) that finds an optimal
k-subtree of T.

Step 3. Find a best v-optimal k-subtree over all v s V, and output it as an optimal
k-subtree of T.

Note that OPT (r, k) yields the r-optimal i-subtrees for all i, 1 =< <= k. Hence the
optimal i-subtrees for all 1 -<_ -<_ k can also be easily found.

Complexity. The complexity of the algorithm strongly depends on the time
required to compute W(T) for a given tree T. In order to eliminate this factor from
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our evaluation, it is taken as O(1). In any other case, our complexity should be
multiplied by the appropriate factor in order to obtain the right figure.

Assume that T has n vertices and that merging several disjoint subtrees into
one tree takes O(n) time. Let us first analyze the complexity of CONSTRUCT S(v).
Obviously Step 2 is the most time-consuming. For a fixed/’, obtaining Sj+l(v) from
Sj(v) and $(vi) requires O(k2n) time. This yields time of O(deg(v)xk2n) for the
whole of Step 2 and thus for CONSTRUCT $(v) too. Summing the last expression
over all v T yields a total time of O(k 2n 2) for the entire OPT (r, k) algorithm. The
same time bound applies to OPT (k) too.

It should be noted that many weighting functions, including all the examples
above, can be computed without complete information on the tree’s structure. In most
of the cases, only the weights of the optimal subtrees T(i) and T/l(i), 1-<i =<k,
together with some additional information on the root and the edges connecting it to
its sons, is really required. In such cases, one can store in $(v) just the weights of the
appropriate optimal subtrees. Additional pointers that would enable us to recover the
desired final tree should also be maintained. Both time and space can be reduced in
these cases by a factor of n. This yields an O(k2n) time bound for all the examples
above and for many other functions as well.

For example, let us take the Internal Path Length function W6. The basic step
in the construction of S (v), namely Step 2 of CONSTRUCT S(v), has in this case the
form:

Choose T;/I (io) as one of the subtrees of the form _TT./a(i, io) for which
W6(T(i))+ W6(T+I (io-i))+(io-i)xl(v, vi) is optimized. This formula shows that
in this case, as in many others, we need the weights of the appropriate optimal trees
rather than the trees themselves.

3. Applications to optimization problems in undirected trees. In this section, T
is an undirected tree and "subtrees" are undirected subtrees unless otherwise specified.
Let v be a vertex of T, and let T(v) denote the rooted tree obtained by hooking T
on v. In order to apply the algorithm above to undirected trees, we would first like
to extend the notion of a monotonic function to weighting functions that are defined
on undirected trees. Fortunately, there is a natural way to do so. If W is initially
defined only for undirected trees, it can easily be extended to rooted trees by defining
the weight of a rooted tree as that of its underlying tree. W is ud-monotonic if its
extension to rooted trees is monotonic according to the first definition. Note that if
T’ is any subtree of T, then rooting T at any vertex v turns T’ to a rooted subtree
of T, say T’(u), for some u in T’. This observation yields the following undirected
modification of OPT (k) for ud-monotonic functions:

UD-OPT (k).
Step 1. Choose a vertex v of T.
Step 2. Apply OPT (k) to T(v) yielding a k-optimal rooted subtree T’(u) of T(v).
Step 3. Return T’, the underlying undirected tree of T’(u), as an optimal k-

subtree.

It turns out that optimization of nonmonotonic functions can sometimes be carried
out by the aid of monotonic "middle" functions. This is the case of the following two
functions’

the diameter: W8(T’)= max d(u, v),
,19 V’

the radius: W9(T’) =min maxd(c, v).
cV’ vV’
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Both functions are not ud-monotonic, as one can easily verify.
In the following optimal and OPT stand for maximal.
Since UD-OPT (k) calls for OPT (k), and OPT (k) is solved via OPT (r, k), we

have only to hook T on an arbitrary root r and show that OPT (r, k) can be solved
for T(r). The "middle" function in both cases is the monotonic height function W7.
Since both cases are quite similar, only W8 will be discussed. Again, we restrict
ourselves to Step 2 of CONSTRUCT $(v), which is the heart of the algorithm.

As before, let T (i) denote an r-optimal i-subtree of ., and let T+I (i) be an
r-optimal i-subtree of T/I, 1 <= =< k, where optimality is taken with respect to the
height. Similarly, let T’ (i) be an r-optimal i-subtree of with respect to the diameter.
Assuming that the weights of all these trees are already known, and an integer io,
1 <-io<=k, is given, the next tree to be computed, namely T"+ (io) is either _TT.+I(i, io)
for some i, 1 -< <- io, that optimizes WT(T (i)) + W7(T+I (io- i)) + l(r, rj+), or T’ (io),
if W8(T’ (io)) is even better.

The validity proof for this way of choosing T"+ (i0) is straightforward.

4. Complexity o| similar optimization problems in general graphs. A k-subgraph
of a given undirected graph is a connected subgraph with k vertices.

In this section we consider the complexity of finding optimal k-subgraphs and
k-subtrees of a given graph. For most of the weighting functions mentioned above,
the corresponding decision problems are NP-complete even in their simple 0-1 forms.
For each problem claimed to be NP-complete, a corresponding NP-complete problem
which is reducible to it is listed. For the exact definitions of the source NP-complete
problems, see [GJ].

1. Maximizing Wover k-subgraphs.
WI’ The unit length Steiner tree problem.
W2" The maximum clique problem.
W5’ The maximum leaf spanning tree problem.
W8, W9" The longest path problem with unit lengths.
W3, W4. Can be solved in polynomial time.
2. Minimizing Wover k-subgraphs.
W1, W2" The unit length Steiner tree problem.
W7" The longest path problem with unit lengths.
W8" The maximum clique problem.
W3, W4, W9: Have polynomial solutions.
3. Maximizing Wover k-subtrees.
W1, W7, W8, W9: Same reductions as for k-subgraphs.
W2’ The unit length Steiner tree problem.
W3, W4: Have polynomial solutions.
4. Minimizing Wover k-subtrees.
W1, .W2, W7: Same reductions as for k-subgraphs.
W3, W4, W8, W9: Can be solved in polynomial time.
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CANONICAL FORMS AND SOLVABLE SINGULAR
SYSTEMS OF DIFFERENTIAL EQUATIONS*

STEPHEN L. CAMPBELL’t AND LINDA R. PETZOLD

Abstract. In this paper we investigate the relationship between solvability and the existence of canonical
forms for the linear system of differential equations E(t)x’(t)+F(t)x(t)=f(t). We show that if E, F are
analytic on the interval [0 T], then the differential equation is solvable if and only if it can be put into a
certain canonical form. We give examples to show that this is not true if E, F are only differentiable.

1. Introduction. Linear systems of differential equations of the form

(1) E(t)x’(t) +F(t)x (t) f(t)

with E(t) a singular n n matrix occur in a wide variety of circuit and control
applications. Many of these applications are described in some detail in [3], [4], see
also [2]. The constant coefficient case is now fairly well understood. However, the
theory for the time varying case is still incomplete. This note has several purposes.
One is to clear up some of the misconceptions and confusion in the current literature.
A second is to give some new results.

We shall say (1) is analytically solvable on the interval [0 T] if for any sufficiently
smooth (C will do) there exist solutions to (1), and solutions when they exist, are
defined on all of [0 T] and are uniquely determined by their value at any to [0 T].
It is useful to note that a system fails to be analytically solvable if it has any turning
points in [0 T] (where by turning point we mean a point where the dimension of the
manifold of solutions changes), since at these points solutions fail either to exist or
to be unique.

If (1) is in the form

(2a) y + C(t)y f,

(2b) N(t)y’ + y2 =fz,

where N(t) is nilpotent and lower (or upper) triangular, the system is said to be in
standard canonical form, SCF [7]. If, in addition, N is constant, then the system is in
strong standard canonical form, SSCF. The SSCF is the one considered in the work
of Petzold and Gear [8], [9], [11].

We shall consider transformations of the form

(3) x O(t)y, and left multiplication of the equation by P(t),

where P, are invertible on [0 T] and are as smooth as E, F. Clearly, if (1) can be
put into SCF, it is analytically solvable. Recently some authors have suggested that
analytic solvability implies SSCF except at a finite number of isolated points. In 2
we shall give a series of examples that show this is not the case unless the matrices
E(t), F(t) in (1) are analytic functions of t. In 3 we prove that if E,F are analytic
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on [0 T], then analytic solvability implies (1) can be transformed by (3) to SCF
everywhere on [0 T].

2. Examples.
Example 1. Let r(t) be an infinitely differentiable function defined on [0 T] so

that r/= 0 on [2-k-I 2-k] for k even and r/> 0 otherwise. Consider the system

0
(4) It/ f,

which has the solution

(5a) x =f,

(5b) x2 f-nf’.
Clearly (4) is solvable on [0 1] and already in SCF. However any P, Q putting (4)
into SSCF will have discontinuities at {2-k: k even} D {0}.

This example is also interesting from another point of view. Suppose r/(t) is
analytic on [0 T], r/(t*)= 0, t* [0 T] and nonzero on [0 T]\{t*}. Then (4) is trans-
formable to SSCF on any closed subinterval of [0 T]\{t*}. The point t* is not a turning
point as we defined it in 1. However, the system (4) does have, in some sense, a
structure change at t* since the coefficient of x’ changes rank and index at t*.

Example 2. Let

(6) N(t) t3[ sin (t-l) ][cos (t -1) -sin (t-l)], N(0) 0
t_cos (t-)J

Note that N’(0)= 0 and N2 -0. Thus there is an interval containing zero so that

(7) Nx’ + x f
is solvable on that interval [5]. However, if O(t) is a vector valued function so that
NO =-0, if(0) 0, then (t) is a multiple of [sin (t-), cos (t-)] and hence is discon-
tinuous at 0. In particular any P, Q putting (6), (7) into SCF must be discontinuous
at zero.

A slight modification of Example 2, along the lines of Example 1, can be used
to construct a solvable system such that any P, Q putting the system into SCF would
have an infinite number of singularities in a finite interval.

3. Analytic coefficients. The essential problem in Example 2 is that if rank
(A (t)) <_- r < n for all and A is n x n, then there need not exist any piecewise smooth,
nonzero vectors O(t) so that AO-=0. However, it is a not generally known, and
nontrivial fact, that such a exists if A is analytic. The version of the result we shall
need is the following theorem from [13, p. 335].

THEOREM 1. If A(t) is real analytic on [0 T] and r _->rank (A(t)) for all t, then
there exists real analytic P(t), Q(t) so that

(8) PAQ [Ao 00]
and A is r r.

An infinite dimensional version of Theorem 1 appears in [1, Thm. 2.2]. See also
[0].

We are now in a position to prove the main result of this section.
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THEOREM 2. If E, F are analytic on [0 T], and (1) is analytically solvable, then
there exist analytic P, Q so that the transformations (3) put (1) into SCF.

The key to proving Theorem 2 is to first show that while E may have variable
rank, solvability forces E to be always singular or always nonsingular.

LEMMA 1. /f (1) is analytically solvable on [0 T], then E is either always singular
or always nonsingular on [0 T].

ProofofLemma 1. Suppose for purposes of contradiction thatE(to) is nonsingular
and E(t) is singular. Then for any f, there are n linearly independent solutions of
(1) at to. Let be a vector so that rE(t) 0. Now multiply (1) by Or and evaluate
at tl to observe that rF(tl)X(t)=f. The case f=O implies F(tl) 0. Hence all
solutions for f=0 satisfy OrF(tl)X(t)=O and are not linearly independent at tl
which contradicts analytic solvability.

Proof of Theorem 2. Suppose Theorem 2 is not true and that E, F are analytic
on [0 T], (1) is analytically solvable, but it is not possible to transform to SCF and
E, F give a counterexample of minimum possible dimension n. Clearly E is singular
and n > 1. By Lemma 1, E is always singular on [0 T]. Let r be such that rank E r < n
on [0 T]. Let P be such that

where E is r x r and P is analytic on [0 T]. Such a P exists by Theorem 1. Multiplying
(1) by P gives the still analytically solvable system

But [F F] has full rank n-r on [0 T], since if it did not, there would exist a

0 0, such that 0r[F(t) F(t)] 0. But then

which contradicts the fact that can be an arbitrary function. Now there exists an
invertible analytic O on [0 T] so that [F F]O [0 G] where G is invertible.
Note this follows as (9) by using

r[F 0 [G2O tF: 0] 00]t 0

Making the change of variable x Qy turns (10) into

where [1 2]=[E E2]Q, [x P12]=[F F2]Q+[E E2]Q’. But (11) is
equivalent to solving

(12) y +y=f-2(Gf2)’-P2Gf2,
or

(13) yl
for arbitrary smooth Thus (13) is also an analytically solvable system. Since it has
lower dimension than n, by assumption, there exists analytic R(t), R2(t) that puts
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(13) into (upper triangular) SCF. Letting

and multiplying by

changes (11) to

(14) 0 N(t) Iz’x +
0 01 C!t) 0

I
0 a-J L_i LfJ

Now multiply this equation by

to yield

(15)

Now let

[_LI o
/ 0
Lol o

and multiply by

to get the SCF

0 I 23
0 0 022

Z I W

0

(16)
/_[ 0 0 w: t) 0 0 w: []

IN(t) + z
Io o Lj

which contradicts the assumption that (1) could not be put into SCF. 71

4. Comments. An examination of the proof of Theorem 2 shows that the analytic-
ity of E, F was used only in applying Theorem 1 to get analytic P, Q such that (8),
(9) hold. Since (8), (9) hold for many matrix functions met in practice, it seems
plausible that the nonexistence of the SCF is an exceptional event.

The approach in this paper differs from those of earlier authors, for example,
Silverman [12], in that we do not assume E(t) in (1) has constant rank. In particular,
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we include systems which cannot be put in the form

x A xl (t)x +A 12(t)x2 -t- fl(X ),

0 A 21 (t)xl +A22(t)x2 +f2(t)

by transformations of the form (3).
The proof of Theorem 2 also provides an algorithmic procedure for obtaining

the $CF. Starting with Ex’+Fx =f, compute P, Q as in (9), (10) to get (11). Now
take the subsystem xy +ff’llYl--fl of (11) and repeat the procedure again to get
again a system in the form (11). At each step we work with a smaller subsystem. At
some step we arrive at a system in the form (11) with either identically zero or
always invertible and the procedure terminates.
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ON THE POLYNOMIALS OF GRAPHS*

KAI WANGt

Abstract. For a graph G, let A(G) be its adjacency matrix. Let 0(x) be the characteristic polynomial
of G. Let J be a matrix with all entries equal to 1. Let (X)=OA_j(X)--O(X). In this paper, we show
that the characteristic polynomials of the join G +H, the complement t and the composition G[H] can
be expressed in terms of q, H, and t4.

AMS 1980 mathematics subject classification. 05C50

1. Introduction. A graph G is a pair (V(G), E(G)), where V(G) is a finite
nonempty set of elements called vertices, and E(G) is a finite set of distinct unordered
pairs of distinct elements of V(G) called edges. Two vertices u, v V(G) are said to
be adjacent, if (u, v)E(G). For each v V(G), the number of vertices adjacent to
v is called the degree of v. If all the vertices of G have the same degree d, then G
is said to be a regular graph of degree d. For a graph G with V(G)={Vl,’’ ", v,},
the adjacency matrix A (G) is defined by

1 if (vi, v)E(G),
[A (G)]0

0 otherwise.

The characteristic polynomial ,6(x) is called the characteristic polynomial of
G and is also denoted by q(x). The eigenvalues of A(G) are called the eigenvalues
of G which comprises the spectrum of G. As usual, two graphs are said to be cospectral
if they have the same spectra. The characteristic polynomials and spectra of graphs
have been studied by many authors. We refer to the book [1] of Cvetkovic, Doob
and Sachs for the results in this field.

In this paper, we will study the characteristic polynomials of the join G +H,
the complement G and the composition G[H] of graphs G and H. Recall that
the join G+H is defined by V(G+H)= V(G)t.J V(H), E(G+H)=
E(G)UE(H)U{(u, v)]u V(G), v V(H)}; the complement ( is defined by V(t)
V(G), E(()= {(u, v)l(u, v)_E(G)}; the composition G[H] is defined by V(G[H])=
V(G)V(H), E(G[H])={((u,v),(u:,v))l(u,u)E(G)}U{((u,v),(u,v))lu
V(G), (vl, v2) E(H)}.

For regular graphs G and H, it is known [1] that 6/H and can be expressed
in terms of 6 and H. However, this is not true for arbitrary graphs because the
joins and the complements of cospectral graphs are not necessarily cospectral. It turns
out that a new polynomial if6 has to be introduced so that q6/ and ca can be
expressed in terms of , , and /. Here can be defined by the equation

(x q,_(x) ,(x

where J is a square matrix of order v(G)I with all entries equal to 1. The main result
of this parer is the following:

TI-IEOEM 1.1. Let G and H be two arbitrary graphs with m V(G)I. Then
(i) /n(x) (x)n (x O(x )On (x ),
(ii) cd(x)= (-1)"((-x 1) + 4(-x 1)),

(iii) tn(x)= (4,(x))"(qn(x)/4n(x)).

* Received by the editors October 12, 1981, and in revised form December 9, 1982.

" Department of Mathematics, Wayne State University, Detroit, Michigan 48202.
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This paper is organized as follows: In 2, we will prove our main result. In 3
and 4, we will prove some corollaries. In 5, we will study the functional properties
of $(x). In 6-8, we will study the generating function for numbers of walks,
generalized characteristic polynomials and parametrized characteristic polynomials.

2. A proof of Theorem 1.1. For convenience, we use I (0, respectively) to denote
an identity (zero, respectively) matrix of appropriate size and use J to denote a matrix
of appropriate size with all entries equal to 1.

For an arbitrary square matrix X, we use X1, X2, X3 to denote the matrices
obtained from X by setting

[Xl]lj--Xlj, [X2]lj---0, [X3]lj -1

and, for > 1,

[x,], [x=], [x], x,;-x,.
It is clear that Ix,I- txl,

We will use the following identity for determinants.

(,)

all aln

al+b a+b,

anl ann

all aln

ail ain

an1 ann

all aln

bil bin

anl ann
Let K be an arbitrary graph and let n =[V(K)[. For 1<-i, j=<n, let uii=

(x! -A (K))ii. Then

qA(K)-a (X [XI A(K + tJ[

and

U+t Un +t
U11d-t Uln

U21Ull U2n Uln

Unl at- Unn -" Unl /,/11 blnn U ln

(xI -A(g))al- tl(xI -A (g))31

(by (.) and definitions of X1 and X3)

qK (x)-tl(xI -A (g))3l.
It follows from the definition of 0K (X) that

OK (X --[(XI A (K))31

IxI -A (K) + tJ[ OK(X + tOK(X ).

We shall now prove identity i. It is not difficult to see that with a suitable labelling
of vertices, the adjacency matrix of G +H is given by

A(G+H)=[A(jG) J ]A(H)
Then

O0+H(X) IxI-A(O +H)I [xI-A(G)
-J

-j

xI-A(H)



524 KAI WANG

By subtracting the top row of the top (bottom, respectively) block from all other
rows in the top (bottom, respectively) block and applying (,) twice, we obtain

xI-A(G) -J
-J xI-A(H)

(xI -A (G))I 0

-1 1 (xI-A(H))I
0

(xI-A(G))l -1 1
0

0... 0 (xI -A (H))I
0

(xI-A(G))21 -1 1
0

-1 1
0 ’,(xI-A(H))2

(xI -A (G))I O. 0
o

2i22---1 T
0 (xZ -A (H))2

The last determinant vanishes becase all entries in the top row of (xI-A(H))2
are zero. The first determinant is equal to

I(xI-A (G))I[ IxI -A (H)l[ IxI -A (G)[ IxI -A (H)[ q(X)qH(X).

The second determinant can be evaluated as follows. By switching the first row of the
top block and the first row of the bottom block, we obtain

(xI-A(G))2 -1 1
0 (xI-A(G))3 0

-1 1 0 (xI-A(H))3
0 ,(xI-A(H))2

-[(xI -A (G))3[ I(xI -A (H))31
-,(x)O(x).

Now we can put it altogether to obtain

+. (x) (x)(x) (x).(x).

The identity (ii) follows almost directly from the definition of 6(x). Note that
A(G)=J-I-A(G). Then

(x)- Ixt-A(O)l- I(x + 1)I +A(G)-][
(- 1)’l(-x 1)I-(A(G)-J)I
(--1)mqgA(G)_1(--X 1)

(-1)"((-x 1)+ O(-x 1)).

We now prove identity (iii) as follows.
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It is not difficult to show that if the vertices of G[H] are labeled lexicographically,
then the adjacency matrix A(G[H]) is given by

A(G[H])=A(G)(R)J +I(R)A(H).

Since A(G) is a symmetric matrix, there is a nonsingular matrix M such that
M-1A(G)M diag (A 1, , A,,) where {A 1, , A,} is the spectrum of G. Then

(x)= H (x-).
i=1

Then we compute tn(x) as follows.

on(x) IxI -a(G[H])I IxI -t@a(H) -a(G)@JI
[I @(xI -A(n))-A
[(M t)-1( (xt A (H)) A(G)@J)(M I)[

It (xt -A(n))- (M-1A(G)M)@J[

It (xI-A(H))-diag (h 1,’" ",

[diag (xI-A(H)-XaL..., xI-A(n)-hJ)[

H [xt-A(n)-xl
i=1

H ((x)-X.(x))
i=1

(xl)((x) .(x
This completes the proof of Theorem 1.1.

3, Corollaries, It is clear that Theorem 1.1 implies the following formula which
is due to Cvetkovic [1, p. 57].

Corollary 3.1. Let G and H be two arbitrary graphs with m =IV(G)] and
n [V(H)I. Then

CG+H(X) (-1)(x)(-x 1) + (-1)"e(-x 1),(x)

+ (-1)+"+e(-x 1)(-x 1).

COROLLARY 3.2. For an arbitrary graph G, let G + be the join of G with the
one-point graph. Then

(x x(x +(x ).

Proof. Let K be the one-point graph. Then A(K)= 0 and Cr(x)= x. This implies
that

K(x) A(C)-j(X)--0c (X)= (X + 1)--X 1.

It follows from Theorem 1.1(i) that

+(x) (x)0. (x) g, (x)g, (x) x0(x) -gm (x).
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COROLLARY 3.3. Let G andHbe cospectral graphs. Then the following statements
are equivalent.

(i) (x) H (X);
(ii) G and H are cospectral
(iii) G / and H/ are cospectral
(iv) G +K and H +K are cospectral for an arbitrary graph K.

4. Regular graphs. In this section, we will apply Theorem 1.1 to regular graphs.
We first prove the following lemma.

LEMMA 4.1. Let A be an m m matrix. IfA has a constant row sum y, then

IA + tJ[ (y + mt)[Al/y.

Proof. For convenience, let A [A 1,"’, A,,] where Ai is the th column vector
of A.

[A + tJI I[Aa + tJ, A, + tJ]]

Ai+mtJ, A2+tJ,." ,A,,, +
i=1

(y + mt)[[J, A2 + tJ,..., A, + tJ]l
(y + mt)l[J, A2, ",A,, ]l

since i= A yJ. In particular,

IAI=yI[J, A2, a,,][.
It follows that

IA + tjl y + mtlA[.
Y

PROPOSITION 4.2. Let K be a regular graph of degree d and let n V(K)I. Then

,(x) n,c(x)/(x -d).

Proof.
Or(x) OA(t,:)-(X)--Cr(X) IXI -A(K) +JI-qr(x).

Since K is regular of degree .d, xI-A (K) has a constant row sum x -d. It follows
from Lemma 4.2 that

6t (x)= (x-d +n)or(x)/(x-d)-qc(x)

no,c(x)/(x -d).

Now the following results become corollaries to Theorem 1.1.
COROLLARY 4.3 (Sachs [1, p. 56]). If G is a regular graph of degree d and

w(a)l m, then

q(x) 1).x-m+d+l
x+d+l

COROLLARY 4.4 (Finck and Grohmann [1, p. 57]). If G andH are regular graphs
of degree d and r, respectively, then

qa/(x)= 1-(x_d)(x_r) oa(x)o(x)

where m v()l and n IV(H)l.
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COROLLARY 4.5 (Schwenk [3]). ffHis a regular graph ofdegree d with V(H)I n,
then

In view of Proposition 4.2, we propose the following conjecture.
CoyJgCTUa. If Oa(x) is a divisor of a(x), then G is regular.. Further properties of Oa(x). In this section, we will state further properties

of Oa(x) which may be useful in the future studies. The proofs are left as exercises.
PROPOSITION 5.1. Let G and H be two arbitrary graphs and let m IV(G)I and

n IV(H). Then

(ii) Oa (x) (- 1)m0 (--X 1),
(iii) 0a+n(X)=a(X)On(X)+Oa(X)n(X)+2O(X )On (X ).
COrOllAry 5.2. Define ra(x)=a(x)+O(x). Then,

r/. (x r (x )r. (x ).

6. Generalized characteristic polynomials. For an arbitrary graph G, let D(G)
be a diagonal matrix such that [D(G)], is the order of vertex v. In [1], it is proposed
to study the following generalized characteristic polynomial"

(x, y)= IxI + yD(G)-A(G)I.
This polynomial includes 0e (x) e(x, 0) and some other polynomials as special cases.
In this section, we only record the formula for d(x, y), cbe/H(X, y) and leave the
derivations to the readers.

THEOREM 6.1. For an arbitrary graph G, let

0e(x, y)= (x +(m- 1)y)e(x, y)-e/(x-y, y)

where m IV(G)[. Then
(i) 0a(x, 1)= (mix)the(x, 1),
(ii) (x, y)= (-1)"(a(-x-1-(m-1)y, y)+Oa(-x-1-(m-1)y, y)),
(iii) e+n(x, y) a(x +ny, y),(x +my, y)-Oe(x +ny, y)0,(x +my, y)where

COROLLARY 6.2 ([1, p. 58]). Let Ce(x)=[xI-D(G)+A(G)I. Then
(i) Cd(x)- (-1)’(x/(x -m))Co(m -x),

(ii) Ce+,(x)= (1-(mn/(x -m)(x -n)))Ce(x -n)Ce(x -m).
We remark that Ce (x) is related to the complexity of G.

7. Generating function for number of walks. For an arbitrary graph G, let
We(t) k=o Nktk be the generating function for the numbers Nk of walks of length
k in G. The function Wa(t) has been studied extensively in [1]. Theorem 1.3 in the
Introduction was originally proved by Cvetkovic via the following formula.

THEOREM 7.1 ([1, p. 44]). Let We(t) be the generating function for the numbers
of walks in G. Then

1[ qd(-(t + l)/t) ]W(t) - (-1) 1
qe(1/t)

We refer to [1] for the proof of Theorem 7.1 and further results. The following
formula for We(t) is more compact which follows easily from Theorem 7.1 and
Theorem 1.4.
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THEOREM 7.2. Let We(t) be the generating functions ]’or the numbers of walks in
G. Then

/(/t)
We(t)

qc(1/t)"

We remark that above formula and the results in 5 can be used to deduce
formulas for Wc+,(t) and Wc,(t) [1, p. 209].

$. Parametrized characteristic polynomials. In [4], Johnson and Newman studied
the following parametrized characteristic polynomial:

Pc (t, x) IxI At
where At (t- 1)A(G)+J.

Among other things, they proved the following theorem.
THEOREM 8.1. /f tWO graphs G and H are cospectral, then pc(t, x)=pH(t,x) if

and only if G and H are cospectral.
This also follows from the following formula which can be proved by the method

of this paper.
PROPOSITION 8.2. With the above notation,

P(t,x)=(t-1) Pc -----10c -1
Independent of [4], we have studied the following parametrized characteristic

polynomial:

qc(t, x) [xI -(1 t)A (G) tA (()l.
Note that qc(0, x) pc(x) and q(1, x) q, (x).
The proof of following proposition is routine.
PROPOSITION 8.3. Let G be an arbitrary graph and let m IV(G)[. Then

x+t bc( x+tq(t,x)=(1-2t) (qC(l_2t) 1 2t -i-’/)"
COROLLARY 8.4. Let G and Hbe two graphs. Then qc (t, x) qn (t, X) i[ and only

i[ G is cospectral to H and G is cospectral to H.

ewledge. The author of this paper would like to thank Charles Johnson
for the suggestions and encouragement during the preparation of this paper and Tom
Leighton for suggesting the direct proof of Theorem 1.1 (i) which replaces a derivative-
based proof.
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GENERALIZED CONTROLLABILITY, (A, B)-INVARIANT SUBSPACES
AND PARAMETER INVARIANT CONTROL*

S. P. BHATTACHARYYAt

Abstract. In this paper a linear state space model of a control system with control and disturbance
inputs and subject to a class of structured parameter variations is considered. For this problem a geometric
condition is derived which guarantees the existence of a state feedback control law which zeros the
disturbance transfer function and maintains it zero for the class of parameter variations given. The result
involves the notion of generalized controllability and a generalization of the concept of (A, B)-invariant
subspaces due to Wonham.

1. Introduction. The geometric theory of linear time invariant state space systems
has been extensively developed by Wonham [1] with the invention of the key concept
of (A, B)-invariant subspaces. A basic problem solved via this approach is the problem
of zeroing the disturbance transfer function via state feedback. This problem character-
izes various other control problems, as can be seen from the synthesis problems dealt
with in [1]. Our objective in the present paper is to extend these results to the case
where the system model is subject to perturbations. It is well known that arbitrary
perturbations of the state space model causes any solution to break-down. However,
arbitrary perturbations are also frequently unrealistic, and therefore we consider a
class of structured parameter variations and give a sufficient condition for solvability
of this problem. This sufficient condition involves a generalization of the concept of
(A, B)-invariant subspaces and reduces to the solvability condition for the perturbation
free case in the absence of perturbations.

2. Problem formulation. Consider the linear system

(la) (t) A (ot)x (t) +B (l)u (t) +D(S) (t),

(lb) y(t) C(l)x(t),

denoted by S (or, I, /, 8), with state x, input u, disturbance sc, output y and

(2a) A (or) Ao + a 1A +" "+ apAp := A0 + AA

(2b) B (B) Bo +/31B +" +/3oBo := Bo + AB (I]),

(2c) C (’) Co + "y1C1 --" -- "yrCr :-" Co + AC (’t),

(2d) D(8) Do +8D +. +8D := Do + AD (8),

where
Ai E Rnn, 0, 1, p, Bi E R"t, 0, 1, q,

Cirnxn i=O 1 r, Di’xk’, i=O, 1,... s,

In (1) (Ao, Bo, Co, Do) represents the nominal system model, A 1, , Ds specify
the structure of the perturbations and a specific choice of x, 1, /, 8 determines a

* Received by the editors September 10, 1982, and in revised form December 2, 1982.
t Department of Electrical Engineering, Texas A&M University, College Station, Texas 77843. This

research was partially supported by the National Science Foundation under grant ECS 8200852. This paper
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1982.

529



530 s.P. BHATTACHARYYA

specific perturbation (z4 (a), AB (1), AC(/), z9 (8)). We introduce the class of linear
systems generated by the perturbations

(3) S:= U S(o, I, /, 8)
(x,l,,,8)

I rxs

and formulate the following problem.
Determine conditions under which there exists a matrix F fftn such that the

resulting disturbance transfer function
(4) C(l)(sI A (or) B ()F)-1D (8) --- 0
for every system S (x, 13, % 8) S.

The problem is not altered if S is defined by confining (ix, 13, % iS) to a neighborhood
of the origin instead of the arbitrary variations in (3); therefore for simplicity arbitrary
variations are considered.

In the following sections the notion of generalized controllability due to Carlson
and Hill [2] and a generalization of (A,B)-invariant subspaces are developed to
provide a sufficient condition for solving the above problem.

3. Generalized controllability and observability. Define the sets

A:={Ao, A, ,A,}, B:={Bo, B,""" ,B},
c:= {Co, c,..., Cr}, D:={Do, D, ,D},

and let := Im T and Ker T denote the range and null space of a matrix T. Following
Carlson and Hill [2] we introduce the following definition.

DEFINITION 1. The generalized controllability subspace generated by (A, B),
denoted (A, B), is the minimal subspace containing Y--o Im Bt which is Ai-invariant,

0, 1,..., p. The generalized unobservable subspace generated by (C, A), denoted
0 (C, A), is the maximal subspace of f"l =0 Ker Ct which is Ai-invariant, 0, 1, , p.

In Carlson and Hill [2] the orthogonal complement of (A, B) is taken as the
controllability subspace. Our definition corresponds to the more usual notion of
controllability employed in the control field [1].

LEMMA 1. The subspace (A, B) is A (ot)-invariant and contains ImB() for
every (t, ) and is the smallest subspace with this property. The subspace
0(C, A) is A (ot)-invariant and is contained in Ker C(/) for every (/, x)s Ir and
is the largest subspace with this property.

The simple proof is omitted. Let the matrices

Co
C1B:=[Bo, B,’",B], := .

Then (A, B) is also the smallest subspace containing Im/ which is A (o0-invariant
for every ot and 0(C, A) is the largest subspace of Ker " which is A (ot)-invariant
for every x ; these subspaces may also be defined as follows:

(5a) ’(A, B)= Y’. Y. Im A’KA’K2 K,
’]1 "12 Ah B,

t=0,1,... O<_Ki<n-10<-tip

K K,(5b) 0 (C, A) fq Yl fq Ker CAt
=0,1,..- 0=<Kiln-1

(Ai ...At, :=Ifort=0).
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4. Generalized (A, B)-invariant subspaces. In 1], (A, B)-invariant subspaces are
defined. We generalize this as follows.

DEFINITION 2. A subspace 7/c R is a generalized (A, B)-invariant subsgace iff
there exists real F such that

(6) (A (at) +B (I])F)V c 7# for all (at, I]) R’ x Nq.

The motivation for introducing this generalization is that if F(A(at),B(I]), 7/)
denotes the family of real matrices F satisfying A(at)+B()F)c 7/" for all
N" x Rq, then 7# is a generalized (A, B) invariant subspace iff

(ot,[l) I

Now let

(7)
7/’(A, B, C):= {FIV ", F I’(A (at) +B()F) 7/" 7/’ Ker C(/)

for all (at, I, /) R" x Nq x r}.

THEOREM 1. For every A, B, C, the family 7/’(A, B, C) has a unique maximal
element.

Proof. We are given Ai, O, 1, , p, Bi, O, 1, , q, Ci, O, 1, , r. For
each subspace 7/" of ", let

B tl[/" :--{v [r llBiv o//.}, i=l,...,q,

let := 7= [a tt Rl1B 7/’, and let Q project onto along +/- There exists an
F Rln such that

(8a) (Ao + BoF)7/" 7/’, BiFT/" 7/’, 1, , q,

iff

(8b) Aoc Im BoQ + 7/’.

To see this, if (8a) holds, thenF f’) - -1
-1 B o[/,. SO that for v 7/’, QFv Fv, and

and

(Ao +BoF)v (Ao +BoOF)v

Aor Im BoQ + 7/’.

Conversely, if (8b) holds, let v,..., v be a basis of 7# and extend to a basis, v, , v of n. By assumption, there exist r , w T’, 1, , k so that

Aov Bori + w, 1, , k.

Define F Ixn SO that

Then

-ri, 1,... ,k,
Fvi--

0, =k +1, .., n.

(Ao + BoF)vi Aovi + BoFvi Oori + wi -Bori, 1, , k

and FT/c gt, i.e., BiFT/" 7/, 1, , q.
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(9a)

(9b)

(9c)

Now subspace 7; of R" is in T’(A, B, C) itt, for some F Rln such that

(Ao + BoF) c oc Ker (,
BiFU U, 1, q,

AiO[/, o[/,, 1, q,

and by what we have just shown, iff

(10) A0U c Im BoQ +

(11) Vc Ker ,
(12) AiV c 7#, 1, , p.

It is now easy to see that 7/’(A, B, C) is closed under subspace addition (although
v and Q Qv depend on 7# we have +cv/, so that Im BoQ +

ImBoQcclmBoQ/) and by [1, Lemma 4.4] U(A, B, C) has a unique maximal
element. [3

Let the maximal element of V(A, B, C) be denoted by U*(A, B, C). This subspace
may be calculated from the following algorithm which extends the procedure given
in [1] for calculating maximal (A, B)-invariant subspaces.

1. 7/0 := Ker C
2. Ytt( := (3 -_IB Ut(
3. OK := projection of l on K along K
4. BK := BoQK

-15. 7/’t( + I/’K CI A Im B’K + 7/’K f"I A -(17/’K f’) Ap 7/’K
6. W*(A, B, C)=

The proof of convergence of this algorithm follows from the fact that the Ut( are
nonincreasing and 7/’t(/ Ut( implies that Ut( F(A, B, C). That the subspace resulting
from the algorithm is W*(A, B, C) is easily seen.

5. Parameter invariant disturbance rejection. The following result on the prob-
lem formulated in 2 can now be stated. For this let

L := [Do, D1,’’’ ,Ds].

THEOREM 2. There exists F ln [or which

(13) C(I)(sI-A(ot)-B()F)-ID()=O forallS(o, f, l, B)S

(14) Im/ W*(A, B, C).

The proof depends on the following lemma.
LEMMA 2.

(15) C(I)(sI-A(o))-ID(8) O for all (ot, , 8)e ’ X []r x []

(16a) ImD = 0(C, A)

or equivalently

(16b) C(A, D) c Ker .
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Proof. The condition (15) can be rewritten

C(/) A ()D() 0 for all (x, /, ) i

and this is equivalent to

(17) A (x)/ 0 for all a I.
Clearly (16a) or (16b) implies (17).

Proof of Theorem 2. By the definition of 7/’(A, B, C), there exists an F R" for
which (9) holds for 7/" V*(A, B, C). Let

A := {A0 + BoF, A , , Ao, B1V, B,F}.

By our definition of generalized unobservable subspace, we have

F*(A, B, C)c 0(C, A).

Suppose (14) holds. Then for the F given above,

(18) Im D c 0(C, A).

By Lemma 2, with A replaced by A, we see that (18) implies (13).

6. Concluding remarks. Generalized controllability and generalized (A,B)-
invariant subspaces are closely related to the problem of zeroing the transfer function
under parameter variations. However we note that Theorem 2 does not give a necessary
condition for this problem. The reason for this may be seen as follows. Let

r--I

7/’(t) := CI Ker ’Ai(ot).
i=0

Then (17) and hence (15) is equivalent to

ImD c fq V(x):=l,

but it is not true in general that

A(a)c " for all a Rp.

The problem of obtaining necessary and sufficient conditions for this problem therefore
remains open, and it is hoped that the results given here will prove helpful in that effort.

7. Acknowledgment. The author gratefully acknowledges many improvements
in the paper resulting from discussions with Professor David Carlson.
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RUSSELL MERRIS" AND WILLIAM WATKINS

Dedicated to Emilie Haynsworth

Abstract. In 1, we discuss symmetry classes of tensors and their dimensions in the context of the
representation theory of the general linear group. The main result is a formula for the Marcus-Chollet
index. In 2, we observe that the free vector space generated by the nonisomorphic graphs on p vertices
is a symmetry class of tensors. Thus, we are able to make use of the dimension formulas in to enumerate
the nonisomorphic graphs. For example: let rn p(p- 1)/2. Denote by :q the irreducible character of
corresponding to the partition (m-q,q), O-<-q<-m/2. Then the number of nonisomorphic, unlabelled

x-[,,/21 (m 2q + 1)(1 :q)p, where (1 q)p is the number of occurrences of the principalgraphs on p vertices is/.,q_-o
character in the restriction of ’ to the pair group .2) (i.e., the line group of the complete graph on p
vertices). In addition, we use the corresponding representation of the general linear group to catalog
distance inventories between graphs. Section 3 contains extensions to multigraphs, and 4 some com-
binatorial lemmas and proofs.

AMS (1979) subject classification. Primary, 15A69" secondary, 05C25, 05C30, 20G05.

1. Symmetry classes of tensors. Let V be a vector space of dimension n over a
field F of characteristic zero. For m an integer at least 2, denote by V"(R) the ruth
tensor power of V and write Vl(R)Va(R)" .(R)v, for the tensor product of the indicated
vectors. Then to each permutation cre S,,, there corresponds a (unique) linear operator
P(r) on V"(R) such that P(o--X)(Vl()v2() "(Vm)= V(X)()V,(2)() "()V(m), for all
v, vz, , v,. e V. If G is a subgroup of S,,, and X is an absolutely irreducible F-valued
character of G, define

0 (G, X)=
x(id)
o(G) ,,y X(r)P(cr),

where o(G) is the cardinality of G and x(id) is the degree of X. Then O(G, X) is a
projection onto its range Vx(G). The subspace Vx(G) is one variety of what has come
to be known as a symmetry class of tensors.

Let L(V) be the set of linear operators on V. Then each T eL(V) induces a
natural linear operator T" (R) e L(V" (R)) such that

(1) Tm (R) (1) (132( (X V T) () Tl) z( ( Tl3

for all v, vz, , v, e V. Since T"(R) evidently commutes with O(G, X), it follows that
V(G) is an invariant subspace of T"(R), for all TeL(V). Let K(T) denote the
restriction of T"(R) to Vx(G). When G =S,,, write K’ (T). If, for example, G =Sin
and X e, the alternating character, then V (S,, /k V, the mth exterior power of
V, and K (T) is the mth compound. If G {id} and X 1, then Vx(G)= V’(R) and
oKx (T) In general, it follows from (1) that

O O O(2) Kx (T)Kx (T) =Kx (TT),
o is a representation of the full linear groupfor all T, TaeL(V). In particular, Kx

GL(n,F) {T eL(V)" T is invertible}, provided Vx(G) # {0}. M. Marcus andJ. Chollet
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t Department of Mathematics, California State University, Hayward, California 94542. The research

of this author was supported in part by the National Science Foundation under grant MCS 77-28437.
$ California State University, Northridge, California 91330.

534



a’ENsors AND GrtAPI-IS 535

[20] defined the index of Vx(G) to be the largest value of n =dim V such that
Vx(G) {0}. In Theorem 1 (below), we give a means of determining the index.

Consider, for the moment, the special case G =S,. (Every irreducible F-
representation of S,, is absolutely irreducible.) Let r --> O(r)= (qij(r)), r S,, be an
irreducible F-representation of S,, which affords X. Define

(3) Oi(S,,,O) =X(id) qii(o’)e(o’).
m ,s.,

Then, by the Schur relations for the coordinate functions qij ([14] or [32, p. 16]),
{O(S,,, O): l=<i-<x(id)} is a set of pairwise annihilating idempotents which sum to
O(S,,, X). Since Og(S,,, O) commutes with T"(R), T eL(V), it follows that Vb(S,), the
range of Oi(S,, 0), is an invariant subspace ofK (T). In particular, the representation
T K" (T), T GL(n, F), reduces into x(id) pieces. It is proved in [29, Lemma 1]
that each of these pieces is equivalent and in [21, Chap. VIII that each of them is
irreducible. (The Young symmetrizers are of the form (3).) Denote by J.(T) the
restriction of Kx (T) (i.e., of T (R)) to Vo (S,). Then, in summary, the representation
T --> T" (R), T GL(n, F), is equivalent to the direct sum of the representations K, as
X ranges over the irreducible characters of S,,. Moreover, each of the representations

is equivalent to the direct sum ofKx o.i, 1 < < x(id). Finally, J" is an irreducible
representation of GL(n,F) and, for a fixed X, all of the representations J9,i, 1 <--i <=
x(id), are equivalent. (In particular, dim Vo(S,,)= dim V (S,,), for i,/’ 1, 2,. .,
x(id).) In an effort to keep the notation under control, we will use J to denote any
one of the equivalent representations J.. Observe that the degree of the representa-
tion Jx is the dimension of Vo(S,,) for any/every 1, 2,..., x(id) and for any
irreducible representation O of S,, which affords X. We will use the notation
dim (n, m, X) to denote the degree of Jx. Thus, in particular,

dim Vx (S,,) X (id) dim (n, m, X),

where n dim V.
We now return to the general case. Let G be a subgroup of S,. Suppose X is an

absolutely irreducible F-valued character of G. The same analysis shows (possibly
over some extension of F) that TK(T) is equivalent to a direct sum of x(id)
equivalent pieces, T-->J (T). In general, however, J is further reducible. Indeed
(see [21] and [29]), J is equivalent to a direct sum of components, each of the form
J’ for some irreducible character 3‘ of S,, with dim (n, m, 3‘)>0. Moreover, the
multiplicity of such a J’ in J is equal to the multiplicity of X in the restriction of
3‘ to G, i.e., to (X, 3‘). Since K is equivalent to a direct sum of x(id) copies of J,
we obtain the (for our purposes) fundamental formula

(4) dim Vx(G) E x(id)(x, 3‘)a dim (n, m, 3,),

where o,, is the set of irreducible characters of $,,. (See [22].)
In order to discuss dim (n, m, 3‘ ), 3‘ e o,,, we need the notion of a (proper) partition

of m. Each irreducible character of $,, corresponds to a partition (3‘)= (3‘ 1, 3‘2,’" "),
a sequence of nonnegative integers such that 3‘ -> 3‘ 2 ->" and 3‘ + 3‘ 2 + m. The
nonzero 3‘ are called the parts of (A); the number of parts is the length of (3‘), denoted
r r(3‘ ). We will sometimes write (3‘) (3‘ 1, 3‘ 2, ’, 3‘r). It is useful to draw pictures
of partitions. These pictures are called Young diagrams or Ferrers-Sylvester graphs.
The picture for (3‘) consists of r(3‘) left justified rows of boxes. The number of boxes
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in the ith row is ,i. Thus, for example, the diagram corresponding to (h)= (3, 22, 1),
an abbreviation for (3, 2, 2, 1), is shown in Fig. 1.

FIG.

Let h be an irreducible character of S,, corresponding to the partition (h)=
(h 1, h 2, ’, hr). Suppose {A (tr) (aii(tr))’ tr S,} is an F-representation of Sm which
affords h. Since Oi(Sm, A) is idempotent,

dim (n, m, h dim V (S,) trace 0 (S,,, A)

h (id) y au (o-) trace P(tr)
m

X(id) E a, (cr)O (or),
m es..

where p is the character afforded by the representation {P(r)" r e S,,}. We may use
the Schur relations to write

1
(5) dim (n, m, A . A (o’)p (o-) (A, p)s..,

o’Sm
--1the number of occurrences of , in the reduction of 0. (In S, and are conjugate.)

Since P()eL(Ve), 0 depends on n =dim V. Indeed, it is well known (see,
e.g., [19, p. 75]) that 0() n(, where c() is the number of cycles, including cycles
of length 1, in the disjoint cycle factorization of . Thus (5) may be rewritten

1
a()n c()(6) dim (n, m, h

s

Taking advantage of the corresponding partition (h) (h 1, h 2, , hr), one may give
more explicit versions of (6). The following "Frame-Robinson-Thrall type" formula
is given in [16, p. 326], [17], [18, p. 189], and [31]:

1-It=l H=I (n -t +])
(7) dim (n, m, h

1-It= ’-- hti

where hti is the "hook-length" of the (t,/’) box in the Young frame for (h). That is,
hti 1 + d + e where d At -/" is the number of boxes in row to the right of the (t,/’)th
box, and e is the number of boxes in column f below the (t,/’)th box. For example,
if (h)= (3, 22, 1), the number appearing in each box of Fig. 2 is the hook-length of
that box.

It is possible to give a similar interpretation to the numerator of (7). If (,)=
(3, 22, 1), notice that the numerator is the product of the integers in Fig. 3.
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6 4

4 2

n n+l n+
n-1 n

3 n-2 n-1

FIG. 2 FIG. 3

(8)

The Frame-Robinson-Thrall hook-length formula for the degree of A is

m!
A(id)

1-Ii_- 11-I’_- hij"

If we define
A.

(9) Px(X) lI I-I (x-i +/’),
i=lj=l

then (7) becomes

(10) dim (n, m, A
A (id)px (n)
m

One easy but important consequence of (7)/(10) is that

(11) dim (n, rn, A 0 if and only if n < r(A).

When n ->r(A), (7) may be modified to give the following "Frobenius type" formula
(see [1, p. 201], [12, p. 387] and [30, p. 129])"

(12) dim (n, m, h
t--1II,= II= ( -, + -/)

where ,, 0 for > r(h ).
We are now ready to state and prove the main result of this section. Returning

is a representation of GL(n,F) only if dim Vx(G) O. Asto (2), we recall that Kx
we remarked, Marcus and Chollet have defined the index of Vx(G) to be the largest
value of n =dim V such that Vx(G) {0}.

THEOREM 1. Let G be a subgroup ofS,c. LetX be an absolutely irreducible F-valued
character of G. Then the index of V(G) is min {r(h)-1: h o, and (X,h) 0}.

Proof. Immediate from (4) and (11).
The problem of explicitly listing all groups, characters, and values of n correspond-

ing to the degeneracy Vx(G)={0} has received extensive attention in the recent
literature. (See [3]-[6], [9] and [35].) Currently it is known exactly which groups and
characters lead to this kind of degeneracy in all cases for which rn -< 4n.

Example 1. Let m =4. Suppose G is the subgroup of $4 generated by (12) and
(13)(24). (Then G is the dihedral group 04.) Let gl through /’4 be the linear (i.e.,
degree 1) characters of G defined by Table 1, and let X5 be the irreducible character
of G of degree 2.
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TABLE

Xl

(12) (13)(24)

-1
-1 -1
-1

Then

(4)1=X1, (3,1)Io=X:+Xs, (2e)Io=XI+X4,
(2, 1)1 =x3+x, (14)1--X4,

where, e.g., (2, 1)1 is to be read as the restriction to G of the character of 5’4
corresponding to the partition (2, 1, 1). By Theorem 1, the index of Vx,(G) is
min {r(X)- 1: (A) (4) or (A) (2)}. Thus, the index of Vxl(G) is zero. Similarly,
index Vx2(G)= index Vx,(G)= index Vxs(G)= 1, and index Vx3(G)= 2.

Explicit formulas for dim Vx(G) may be obtained by substituting any one of (5),
(6), (7), (10) or (12) into (4). The best known of these arises by plugging (6) into (4)
and using the orthogonality relations of the second kind. (One may achieve the same
result more directly simply by taking the trace of O(G, X).) In any case,

(13) dim Vx(G) =X(id)
o(G) ,,’

It was probably S. G. Williamson ([39] and [40]) who first explicitly noticed the
connection between dimensions of symmetry classes of tensors and the P61ya-Redfield
theorem of combinatorial enumeration. (Also see [26].) As pointed out in [23], one
may use (10) in place of (6) to obtain an equivalent theorem. Section 2 consists of a
detailed exploration of this idea for a particular example. Part of the motivation for
writing 2 came from a recent Monthly article by H. S. Will [38].

2. The symmetry class of graphs. The purpose of this section is to apply some
of the preceding material to certain aspects of graph theory. Although our observations
will be made for "l-graphs", it should be noted that they apply to hypergraphs.

Let @ be a labelled graph on p vertices. We may describe ( by means of a
coloring of the m () edges of the complete (labelled) graph Ko. An edge of Ko is
colored 1 if it is an edge of ( and 0 if it is not. Thus, there is a one-to-one
correspondence between labelled graphs and F,,,e, the set of all functions
y" {1, 2, , m}{0, 1}.

Suppose W is a vector space over F of dimension 2. Let {eo, el} be a basis of W.
Then {e (R)

v =ev(1)(R)ev(_)(R)’’ .(R)e(,,) 1, F,,.2} is a basis of W"(R) Thus, we may view
W"(R) as the (free) vector space spanned by the labelled graphs on p vertices.

Expressed as permutations of the vertices, the group of automorphisms of Ko is

So. Expressed as a group of permutations of the edges, it is a subgroup of S,,,
m =p(p- 1)/2, called the pair group of So (or the line group of Ko). This group is
commonly denoted .(2) Consider the symmetry class of W"(R) corresponding to
G =So(2) and the principal (identically 1) character. For vectors Wl, w.,. w,, W,
denote O (.(2) 1)w (R)w (R)...(R)w,, by Wl*W2*"’*w,, and ev(1)*e(2)*’’ "*ev(,,)by,,-- p 2

Thus WI(S(2)) is spanned by {ev 1’ F,,.2}.
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If a,/3 e Fro,2, we say that fl is equivalent to a modulo .(2 and write a--fl, if
there is a permutation tr e S2 such that atr =ft. Let Am,2 be a system of distinct
representatives for the equivalence classes modulo .,(2) Multilinear algebraists will,p

A,,.2} asrecognize {ev , e a basis for W1($2)) [19, p. 97]. Indeed, e* =e if and
only if a --/. Graph theorists, on the other hand, may recognize h,,.2 as elements of
lm.2 corresponding to a complete set of nonisomorphic labelled graphs on p vertices
[13, p. 83]. The equivalence classes represented by A,,.2 are the nonisomorphic un-
labelled graphs (we will simply say graphs) on p vertices. That is, the labelled graph
corresponding to a is isomorphic to the labelled graph corresponding to/3 if and only
if a =8. In particular, we may view W(S2)) as the (free) vector space spanned by
the graphs on p vertices.

The well-known Cauchy-Frobenius-Burnside-P61ya-Redfield formula for the
number of nonisomorphic (unlabelled) graphs on p vertices follows from these remarks
by taking n 2 in (13), i.e.,

2 1 2(14) dim WI(So )=Y.
.2 [33], [10, Chap. 7], [13], [16 p. 170], [37]. Inwhere the summation is over tre .

Example 2 (below), S(42 is explicitly listed. Note, however, that (14) depends only on
the cycle structures of the permutations in

As Will [38] observes, (14) is not a polynomial-time formula. It is not inconceiv-
able that such a formula could be based on some alternate computation of the
dimension. As a possible step in this direction we present the following:

THEOREM 2. Let p be a positive integer. Let m p(p- 1)/2. Denote by q the
irreducible character of S,, corresponding to the partition (m -q, q), O<-_q <-_m/2. Then
the number of nonisomorphic, unlabelled graphs on p vertices is given by the formula

[m/2]

(15) dim Wl(S(p2))
q=o

where (1, sc)p is the number of occurrences of the principal character in the restriction
ofq to

Proof. Let m =p(p-1)/2 G =.( and X 1 in (4) Taking n 2, we see from
(11) that

Ira/2]

dim Wl(S(p2)) E (1, q)p dim (2, m, sCq).
q=0

It follows from (12) that dim (2, m, scq)= (m-2q + 1).
Of course, the missing ingredient in Theorem 2 is an analogue of "Young’s rule"

([15, p. 51], [1, Chap. 6], [12, Chap. 7] or [18, Chap. 5]) for the computation of the
"Kostka-like" coefficient (1, ). On the other hand, the characters sc are among the
easiest characters of S, to compute. For these characters, the Frobenius formulas are
particularly simple. (See, e.g., [1, p. 213], [11], [12, p. 206], [16, p. 236] [18, 8.1],
[30, p. 143], or [34].)

Example 2. Consider the case p 4. Number the vertices of K4 so that the vertex
set may be identified with {1, 2, 3, 4}. The edge set is then {{1, 2}, {1, 3}, {1, 4}, {2, 3},
{2, 4}, {3, 4}}. We number these 6 edges 1, 2, 3, 4, 5, 6, respectively. Thus, for example,
edge 3 in {1, 4}. As a group of permutations of the vertices, the automorphism group
of g4 is S4. We compute S42), the automorphism group as a group of permutations
of the edges. Let, for example, tr (1234)eS4. We denote by & the corresponding
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permutation of the edges. Then

{1, 2} {tr(1), tr(2)} {2, 3}.

Thus, d(1)= 4, i.e., d sends the first edge to the fourth. Similarly,

t{2, 3} {tr (2), tr(3)} {3, 4},

{3, 4} {tr (3), tr(4)} {4, 1} {1, 4},

t{1, 4} {tr (1), tr(4)} {2, 1} {1, 2}.

It follows that (1463) is a cycle in the disjoint cycle factorization of . Since d{1, 3}
{2, 4} and d{2, 4}={1, 3}, we have d (1463)(25). The remaining elements of S42)
may be computed in the same way, and we list them in Table 2. (The cycle structures
of the permutations in .2) may be found, e.g., in [10] and [13].)

TABLE 2

id
(12)
(13)
(14)
(23)
(24)
(34)

(123)

id
(24)(35)
(14)(36)
(15)(26)
(12)(56)
(13)(46)
(23)(45)

(142)(356)

(124)
(132)
(134)
(142)
(143)
(234)
(243)

(12)(34)

(153)(246)
(124)(365)
(145)(263)
(135)(264)
(154)(236)
(123)(465)
(132)(456)
(25)(34)

(13)(24)
(14)(23)
(1234)
(1243)
(1324)
(1342)
(1423)
(1432)

(16)(34)
(16)(25)

(1463)(25)
(1562)(34)
(2453)(16)
(1265)(34)
(2354)(16)
(1364)(25)

In the absence of a "Young’s rule" type formula for computing (1, scq)p, we proceed
directly’

1
(16) (1, q)4--- . q(().

trs4

From [30, p. 144],

(17) 1() al(t)- 1,

(18) 2(d) 1/2a x(t)(a l(t)- 3) + a2(t),

(19) sc3(t) a a(t)(a l(t)- 1)(a(t)- 5) + (al(t)- 1)a2(t) + a3(t)

where ar is the number of cycles of length r in the disjoint cycle factorization (of t).
Of course, 0 1. From the tabulated description of S(42), the computations from (16)
are

(1, 0)4 1,

(1, )4 2-[5 + 6 1 +8 (--1)+3 1 +6 (--1)] 0,

(1,C2)4=419+6X l+8X0+3X l+6X 1]= 1,

(1, 3)4 2--[5 + 6 1 +82+3 1 +6 (-1)] 1.

Putting these values into (15) yields 11, i.e., there are 11 (nonisomorphic, unlabelled)
graphs on 4 vertices.
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Example 3. Since ’o 1, (1, :o)p will always be 1 (for p >-2). From the Cauchy-
Frobenius-Burnside lemma,

(20)
1
p Y a1()=1

because S2 is transitive. It follows from (17) that (1, l)p 0 (for p => 3). Using a
TRS-80 microcomputer, one of the authors produced Table 3. The number in row

the number of occurrences of the principal character in thep, column q is (1, ;
restriction of q to Sp From (15) and the 5th row of the table (m 5(4)/2) we see
there are (11)(1)+(9)(0)+(7)(1)+(5)(2)+(3)(2)+(1)(0)=34 nonisomorphic graphs
on 5 vertices. Similarly, from row 6 we confirm that there are 156 nonisomorphic
graphs on 6 vertices. Note that the table is incomplete from row 7 down.

TABLE 3

3
4
5
6
7
8
9
10
11
12

0 2 3 4 5 6 7 8

1 0
0
0 2 2 0
0 3 4 6 6 3
0 3 5 11 20 24
0 3 6 13 32 59
0 3 6 14 38 85
0 3 6 15 40 99
0 3 6 15 41 105
0 3 6 15 42 107

32
106
197
263
295
310

THEOREM 3. Let p be an integer at least 3. Let m =p(p- 1)/2. Denote by q the
irreducible character of S,, corresponding to the partition (m-q,q), O<-_q<-m/2. If
(1, q)p is the number of occurrences of the principal character in the restriction of q to
S(2) then (1 q)p is constant for p > 2q, i.e. if Table 3 were continued, column q wouldP

be constant from row 2q on down.
We will prove Theorem 3 in 4. It follows from this result and Table 3 that

(1, 0)p 1, p_->3; (1, l)p 0, p_->3; (1, :2)p 1, p_->4; (1, 3)p 3, p_->6; (1, :4)p 6,
p _->8; (1, 5)p 15, p _-> 10; and (1, 6)p =42, p _-> 12. The sequence 1, 0, 1, 3, 6, 15,
42, is unfamiliar to us.

Example 4. Let P(s, t) be the smallest value of p such that any 2-coloring of the
edges of Kp, using the colors 0 and 1, contains either a subgraph isomorphic to Ks
each edge of which is colored 0, or a subgraph isomorphic to Kt each edge of which
is colored 1. The numbers P(s, t) are called Ramsey numbers [10]. In our context,
P(s, t) is the smallest value of p such that the system of distinct representatives can
be chosen so that every a A2., either begins with (.) zeros or with () ones.

There are other advantages to looking at graph theory through a multilinear lens.
One motivation for studying Vx(G is that it is a representation module for
{Kx (T)" T GL(n, F)}. In fact, these same operators have a graph-theoretic interpre-
tation. Before this can be demonstrated, we are obliged to introduce some additional
notation. First recall that K =Jx when x(id)= 1. We will use the notation J’p to
denoteK when G S) and X 1.

As above, let E {eo, e} be a basis of W. Then E*= {ev 3’ A,,,2} is a basis of
WI(Sp2), where rn =p(p-1)/2. Suppose TeL(W). Let A =(ai) be the (2 by 2)
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matrix representation of T with respect to E. Denote byJv (A) the matrix representation
of Jv (T) with respect to the induced base E* (with some fixed but arbitrary order).
The entries of J(A) are given by the following well-known result [19, p. 122]:

For , a.,,2, the (a, entry ofJ(A is

(21)
1

a a(,).(,),() s,=

where v(a) is the cardinality of the stabilizer subgroup of a in S(2) (i.e., v(a)=
o{a s’ a }).

THEOREM 4. Let A (o o). Then Jp(A) is a diagonal matrix. For a s A,,.2, the
(a, a) entry ofJo (A is x’-Sx, where s is the number of edges in the graph on p vertices
to which a corresponds. In particular, the trace of Jp(A) is the P61ya inventory ([13,
p. 84]), a polynomial of degree m in Xo and x. The coefficient of x-x in this
polynomial is the number of nonisomorphic, unlabelled graphs on p vertices with s edges.

Proof. In (21) the contribution corresponding to cr is nonzero if and only if
a(t) (t), 1, 2, , m, i.e., if and only if ce =/3. But, A,,.z is a system of distinct
representatives for the equivalence classes modulo S(). That is to say, for a,/3 s A,,.z,
a -/3 if and only if a =/3. Thus, Jp (A) is diagonal.

The same considerations show that the (a, a) entry of Jp (A) is

/(a) ,=1 t=l

where the summation on the left is over the stabilizer subgroup of a. The right-hand
xside of this equation is x0 where s =o{i’ a(i)= 1}, i.e., the number of edges in

the graph corresponding to a.
We see that Jp can be viewed as a bookkeeping device. This role is even more

apparent in Theorem 5, below.
DEFINITION 1. Let a, 3 E F,,.2. The distance between a and 3 is h(a, 3)

o{i a (i) [3 (i)}.
Of course, one may identify an element 3’ E F,.2 with a sequence of length m of

zeros and ones, i.e., a codeword. The distance h (a,/3) is the usual Hamming distance
from coding theory. We are interested in an inventory of the distances between
unlabelled graphs (i.e., between equivalence classes of F,,.2 modulo

DEFYITIO 2. Let a,/3 F,,.2. For 0, 1, ..., m, let

zi(a, 3)=o{o’eSv h(ad, fl) i}.

Observe that Zo(a, fl) 0 if and only if a =/3, and that Zo(a, a)= v(a), the
cardinality of the stabilizer subgroup of a. Indeed, z(a, fl)= z(fl, a) is a multiple of
both u(a) and u (/3) for all 0, 1, ..., m. Finally, we note that if a a’ and/3 -3’,
then zi(a, ) zi(a ’, B’). Define z (a,/3) Y.i=o zi(o, B)x

Example 5. Consider the graphs in Figs. 4 and 5. With respect to a clockwise
numbering of the vertices, starting with the top left corner, they correspond to
a (1, 1, 1, 0, 0, 1) and/3 (0, 0, 1, 1, 0, 1), respectively. (Here a(i) is the ith entry
in the sequence a.) We may compute

(22) z(a, fl) =4x + 16x 3 +4x 5.
From the polynomial, we see that a and/3 are not isomorphic, but are at a (minimum)
distance of 1, i.e., a is isomorphic to a graph a’ which can be transformed into/3 by
a single edge-change (the addition or deletion of a single edge). The probability is
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FIG. 4 FIG. 5

4/24 that a randomly chosen isomorphic image, a", of c is a distance 1 from /.
Finally, the expected (minimum) number of edge-changes needed to transform c" to
/3 is [4+(163)+(45)]/24= 3. (Of course, the last remark follows more easily, in
this case, because the polynomial happens to be symmetric.) Note that the stabilizer
subgroup of a is {id, (23)(45)}. Thus, (22) suffers some redundancy.

DEFINITION 3. For a,/3 F,.2, let w(,13)=z(a, 13)/u(a).
THEOREM 5. Let A (ix ). Then, for a, A,,.2, the (, ) entry of Jp(A) is

w(,).
Proof. In (21),

o{i: cd-(i)#/3 (i)}I-I a ctt(t),/3(t) x
t=l

The result follows from the definitions.
A similar concept of distance between general P61ya patterns was discussed in [27].

o O

(o, o, o) (0,0,1) (0,1,1) (1,1,1)

FIG. 6

Example 6. The four nonisomorphic, unlabelled graphs on 3 vertices correspond
to A3,2 {(0, 0, 0), (0, 0, 1), (0, 1, 1), (1, 1, 1)}. With respect to the appropriate number-
ing, these graphs are shown in Fig. 6. If we order A3.2 as shown, then

1 x X
2 X3 t) 3x l+2x 2 2x+x 3 3x 2

X22X+X31+2X2

3;]"X X
2

X

Thus, for example, w((0, 0, 1), (0, 1, 1)) is the polynomial in the (2, 3) position, namely
2x +x 3. OI course, we may write (23) as

x 2 0 1 0 1J3( 1)=J3(I2+x(0 IO))=I4+IDI(O1 10)+x D2(1 0)+x3j3(11 0]

where D1 and D2 are derivation operators [19, 3.2].
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3. Extension to edge colored graphs. The results in 2 were achieved by identify-
ing a certain symmetry class of tensors with the free vector space generated by the
nonisomorphic graphs on p vertices. This method may be extended to any situation
in which permutation groups act on colored sets. The generalities of such extensions
are straightforward. Only the details vary from case to case. In this section we indicate
how the details work out for edge colored graphs.

In Theorem 2 we counted the nonisomorphic graphs on p vertices. Our approach
was to count the inequivalent spanning subgraphs of the complete graph Ko. To count
inequivalent spanning subgraphs of an arbitrary graph on p vertices one may proceed
analogously, i.e., color the edges of using the two colors 0 and 1. (Counting
nonisomorphic subgraphs is more difficult. When Ko, inequivalent subgraphs may
be isomorphic.) Suppose we modify this approach by coloring the edges of using
the n + 1 colors, 0 through n. This is equivalent to choosing a subgraph of (consisting
of the p vertices together with the edges not colored 0) and then coloring its edges
using the n colors, 1 through n. It is also equivalent to considering multigraphs. If r
edges connect vertices and/’, then "edge" {i,/’} receives "color" r. How many
inequivalent, n-colored, spanning subgraphs does have? We may label the vertices
of (, say 1, 2,...,p. If we mimic the approach of 2, we are interested in the
subgroup of S(2) which stabilizes @. The disadvantage of such mimicry involves viewing
the automorphism group of @ as a subgroup of S,, rn =p(p 1)/2. If @ has k edges,
it may be that k is much smaller than m. In this section, we let H be the automorphism
group of (the edges of) ( as a subgroup of Sk.

Suppose U is a vector space over F of dimension n + 1. Let {e0, el,." ", e,} be
a basis of U. Then {e (R)

’3" Fk,,/l} is a basis of Uk(R), where Fk./l is the set of all
functions 3’: {1, 2,..., k} {0, 1,..., n}. With respect to a fixed labelling of the k
edges of @, each a Fk,,/l corresponds to a labelled, edge-colored subgraph of (.
Two such colored subgraphs, a and/3, are equivalent if there is a cr H such that
act =/. Thus, U(H), the symmetry class of tensors in Uk(R) corresponding to H and
the principal character, is the free vector space corresponding to the inequivalent,
unlabelled, n-colored subgraphs of . It follows that we may use (4) with V U, G H
and X=-I together with any of our formulas for dim (n +l, k, A) to answer
our question. To be specific, we state one such result.

TrEOREM 6. Let ( be a graph with p vertices and k edges. Let H be the
automorphism group of (the edges of) ( as a subgroup of Sk. The number of inequivalent
ways to choose a spanning subgraph of ( and color its edges using n colors is

A (id)(1, A )Hpx (n + 1)
(24) dim UI(H) Y.

where px (x is the polynomial defined in (9).
Results analogous to Theorems 4 and 5 are available in this context as well. If

6t Ko, we may replace "inequivalent" with "nonisomorphic".

4. Combinatorial lemmas. In this section we prove Theorem 3 from 2. To do
so we must examine how the cycle structure of a permutation cr in So on the p vertices
of the complete graph determines the cycle structure of the corresponding permutation
on the graph’s m () edges. For cr in So and r a positive integer, let br(tr) denote

the number of r cycles in the cycle decomposition of tr as a permutation in So and
let ar(t) be the number of r cycles in c as a permutation in S(p2) (22 Sin.

LEMMA 1. For each positive integer r, there are positive integers cs, t, d, e, fsuch that

a(c) d(b)) +ebb(o-)+fb2(o)+ Y’. cs,,b(o’)bt(o’)
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[or all p and all tr in So. The sum is taken over all pairs (s, t) such that s and
LCM {s, t} r.

Example 7. If r 1 or 2 then

(25) a l(d-) (bl(tr)) + b.(tr), a2(t) 2(b2(tr))+ b4(o’)+ bl(r)b(o’)2 2

A proof of Lemma 1 along with a discussion of how to compute the coefficients
cs.t, d, e, ]’ is contained in 10, pp. 283-290].

Next we define the degree of a "monomial" of the form brl(O-).., br,(o-), or
arl()’"ar, (), to be r +’" + ru. To proceed all we need from Lemma 1 is the fact
that ar() is a linear combination of monomials in bl(o’) of degree -<2r.

LFMMh 2. Every monomial arl()" aru () of degree r is a linear combination

of monomials b(tr) bo(r) of degree <-2r.
This follows from Lemma 1 since if LCM{s, t} r, then s + _-< 2r.
Example 8. From (25) in Example 7, we have the monomial

(26) a()a()=[(bx))+b(tr)][b (tr)b(tr)+2(b2(tr))+b4(tr)]2

This formula holds for all p and all tr in So. The left side of (26) is a monomial of
degree 3 and the right side is a linear combination of monomials of degrees -<2 3 6.

We have not yet discussed the main ingredient of Theorem 3, namely the
characters scq corresponding to the partitions (m-q, q) of m (). The next lemma
describes the relation between :q and the monomials bl(O’)...bu(tr) and
arl(d’)"’ "ar(d’).

LZMM 3. For each positive integer q <-m/2, o(t) is a fixed linear combination
of monomials arl() ar,() Of degrees -<q. Hence (d-) is a fixed linear combination
of monomials brl(tr) b.(tr) of degrees -<2q.

The first statement in Lemma 3 means that there are formulas for : analogous
to (17), (18) and (19). This fact is a result of formula (5.9) in [30, p. 144]. The second
statement in Lemma 3 is a result of the first and of Lemma 2.

It follows from Lemma 3 that (1, ’o)p is a linear combination of averages of the form

(27)
1
pl

br(O-)"’br,(o-)
o’Sp

with rl +" .+ru -<2q, for any p satisfying q -<p(p- 1)/4.
Example 9. From equations (17) and (25) we get

(28)

1
(1, :)p =.Y (a(t)- 1)

_1 (b x(tr)(b (o-)- 1) )-p-- E + b2(tr)- 1

=1 1 1 1 ())+( b(g))-( be ( b2(g)) 1,

for all p. (All sums are taken over tr in Sp.)
The next lemma will be used to show that averages of the form (27) are constant

for p >_- r -’b r. +. + r, and thus that (1, :q)o is constant for p _-> 2q. For b and k positive
integers, define (b)k b(b- 1)... (b- k + 1), the "falling factorial".
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(29)

LEMMA 4. Let k 1, k2, , k, be nonnegative integers. Then

1 fl 1 ,, ifp-k+2k+ +tk,,. (b(o’))t,"" (b,(o’)),= ’2 ’"
aS,

O, otherwise.

Lemma 4 and its proof appear in [16, p. 229].
Next, we prove Theorem 3. It follows from Lemma 4 that sums of the form

1 X (b(r))... (b,(r)),p! ,s
are constant for all p -> k k + 2k2 +" + tkt.

Let brl(tr).., br.(tr) be a monomial of degree r rl +’’’ +ru. A simple inductive
argument shows that this monomial is a sum of terms of the form (b(tr))kl (bt(tr))k,
where k + 2k2 +. + tkt <= r. It follows that averages of the form (27) are constant for
p =>rl+’"+r,. This fact combined with the comments before Lemma 4 proves
Theorem 3.

Example 10. From (28) and Lemma 4 we have

(1, 11,
1 1 E (b1(o’112 + E (b(o-)) 1 + 1 O,

for all p => 2.
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PERFECT STORAGE REPRESENTATIONS FOR FAMILIES
OF DATA STRUCTURES*

F. R. K. CHUNG, A. L. ROSENBERG, AND LAWRENCE SNYDER

Abstract. In this paper we investigate the problem of finding efficient universal storage representations
for certain families of data structures, such as the family Tn of n-node binary trees, where the constituent
parts of family members are labelled according to a uniform naming scheme. For example, each node of a
tree in Tn can be labelled by a binary string describing the sequence of left and right edges taken to reach
that node from the root. If one preassigns a distinct memory location to each possible distinct name, then
any member of Tn can be stored by storing the contents of each node in the location assigned to the label of
that node. However, this would require 2n--1 memory locations and is wasteful of space, since certain
labels can never occur together in a tree in Tn and hence could share a single memory location. We
consider the problem of minimizing the number of memory locations needed, viewed in the following general
form:

Consider a collection I of labelled finite graphs, where each graph has distinctly labelled vertices but
different graphs in I may share certain vertex labels. A graph U is universal for I if U contains every
graph G E F as a subgraph; f is perfect-universal for I if it is universal and there exists a perfect hash
function h that maps the labels of graphs in I to vertices of U such that h is one-to-one on the vertex
labels of each G E I.

We will show that the smallest perfect-universal graph for Tn has size roughly the square root of the
size of the name space and the vertex degree need be no more than 9. We also consider several other
families of graphs motivated by data structures: the family Tn(k) of n node k-ary trees, the family Cn of
(< n)-position two-dimensional chaotic arrays, the family Rn of (< n)-position two-dimensional ragged
arrays and the family of An of (< n)-position rectangular arrays. Sharp bounds for the perfect universal
graphs for T(nk),Cn,Rn,An are established and perfect hash functions are explicitly constructed.

Introduction. In this paper we study three questions related to the problem of
finding flexible storage representations for data structures. The formal framework
evolved from the following considerations.

Many families of graphs and of data structures admit consistent families of
naming schemes for their constituent parts (cf. [11 ]). For example, the atomic entries
of d-dimensional arrays are referenced via d-tuples of integers; entries of ragged
arrays are also often so referenced; and the "name" <i,j > refers to the same entry
of a two-dimensional array no matter what size or shape the array has. Similarly, the
leftmost grandchild of the root of an ordered binary tree is often referred to as "left,
left" or as "LL" or, in the case of LISP S-expressions, as "car(car(root))"; and all of
these naming schemes assign the same name to this leftmost grandchild no matter
what shape or size the tree has. Thus one can consistently regard these as being a
single familial naming scheme for binary trees or for d-dimensional arrays.

One consequence of the existence of these familial naming schemes is that, in
place of dynamically allocating storage for an n-element member of a family of data
structures that admits such a naming scheme, one could statically allocate storage for
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the entire subfamily of n-element structures by using the familial naming scheme:
One could set aside storage space sufficient to accommodate all names that could ever
occur together in some n-element member of the family. (For instance, the names
<1,4> and <4,1> cannot coexist in the same 8-element rectangular array and, so,
when allocating space for such arrays, one would permit these elements to share the
same space.) One would then store (and retrieve) any particular n-element structure
by hashing (with a guarantee of no collisions) to the locations corresponding to the
names of the particular elements used. Rosenberg and Stockmeyer [15] use this
strategy to allocate storage for rectangular two-dimensional arrays. The most
straightforward realization of this strategy for ordered binary trees is based on the
fact that every n-node binary tree is a subtree of the depth-n complete binary tree; or,
equivalently, the name space for n-node binary trees is a transliteration of the set of
binary strings of length less than n. Thus, by laying out the complete depth-n binary
tree in contiguous memory locations without pointers (e.g., the root is assigned to
relative location 1, location(left(x)) 2location(x), and location(right(x))
21ocation(x)+l), one has effectively stored any n-node binary tree without pointers.
The obvious flaw in this example is that one has allocated 2n--1 storage locations to
save n-1 pointers. Similar scenarios can be described using the n xn array to "store"
all n-element two-dimensional rectangular arrays or ragged arrays. The first question
we shall address in this paper is: Do more efficient static allocation strategies exist,
and if so, how conservative of storage can they be? In the course of answering this
question, we shall be extending Sprugnoli’s [16] work on collision-free hashing
schemes to data structures rather than unstructured sets; Rosenberg and Stockmeyer’s
[15] work on storage schemes for rectangular arrays of unspecified sizes to data
structures other than rectangular arrays; and Lipton, Rosenberg, and Yao’s [9] work
on hashing schemes for extendible data structures to the case where the hashing
schemes must be perfect in Sprugnoli’s sense (i.e., collision-free). (The use of
"perfect" in our title derives from Sprugnoli’s use of this term.)

A second (but closely related) use one can make of familial naming schemes is
the following. There are a variety of situations in which one wishes to view either
data structures [10], [13], [14] or circuits [17] as graphs. In such circumstances one
often wishes to deal with families of graphs but soon finds it onerous to have to deal
with each graph in the family individually: one would like to have a single "universal"
graph that contains as a subgraph each of the graphs in the family in question. In the
context of [17], for instance, one would be able, in the presence of a universal graph
for trees, to design a single circuit that can be specialized to any individual tree
circuit, rather than having to design a special circuit for each individual tree. Indeed,
F. R. K. Chung and R. L. Graham have (with coauthors) [2]-[6] studied in detail the
problem of finding universal graphs for the family of n-node trees, as well as the
special version of the problem where the universal graph must itself be a tree.
Aleliunas and Rosenberg [1] study the analogous problem for rectangular arrays.
What is not addressed in the cited works is the problem of how hard it is to find the
placement of a given graph in the universal graph. One approach to this problem is to
have the placement of each individual graph be given by a perfect hash function from
the sets of vertices of the individual graphs into the set of vertices of the universal
graph. One would not be surprised to learn that universal graphs that are perfect in
this sense must often be bigger than universal graphs that are constructed without an
eye to the layout problem, but how much bigger need they be? The second task of
this paper is to quantify the difference in the sizes of universal graphs and perfect-
universal graphs for the families of graphs that we study.
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In [10], [13] it is proposed to study the problem of finding linked storage
representations for data structures via a type of graph embedding. One problem with
the approach advocated in these papers and their successors is that they overlook the
question of programmability. Specifically, they describe the following scenario: One
has a structurally complicated graph that represents one’s logical data structure. For
reasons related to the particulars of one’s computing environment, it would prove
onerous to store this graph structure directly. Instead, one "encodes" this graph in a
structurally simpler one, replacing edges in the complicated graph by paths in the
simpler one, thereby trading traversal time for simplicity of storage management. The
problem not addressed in these studies is: When one is traversing one’s data structure
in its encoding form, how does one find the paths corresponding to the edges one
wishes to traverse. An attempt is made in 14] to resolve this problem by imposing a
notion of "uniformity" on data encodings; but the message of that paper is that
uniformity leads to insufferable time- and space-inefficiency in encodings. We make
another attempt at the programmability problem here. Say that one has a universal
graph for the family of target graphs in a data encoding siutation. Then any
ensemble of encodings of the source graphs into this target graph induces, in a natural
way, a universal graph for the source family: vertices of the universal-source are the
images (under the encodings) of the vertices of the source graphs; and edges are
induced in the obvious way by the source edges (so vertices v and v’ are adjacent in
the universal-source whenever they are the images of adjacent vertices in one of the
individual source graphs). The programmability problem is alleviated somewhat by
this use of universal graphs, since there is now only one encoding to worry about,
namely the encoding of the universal-source in the universal-target, rather than a
whole family of encodings. Of course this latter allegation is true only if the universal
graphs in question have bounded vertex-degrees, for otherwise one still has
unboundedly many edge-path associations to distinguish among at each step. Indeed,
we shall place great stock here on our universal graphs’ having bounded vertex-
degrees.

Having outlined the problems that motivated our study, let us begin to develop
our formal framework.

1. Basic definitions.
A. Perfect hash functions. Let S 1,S2,...,Sn be a collection of finite sets, and let T

be a set. The function

: SUS2U...USn T

is a perfect hash function from the collection of Si into T if is one-to-one on each
set Si.

B. Perfect universal graphs. Let I’ {Gi} be a family of finite labelled undirected
graphs. For brevity, we shall often call a graph G E F a "F-graph." The size of the
collection F, denoted Size(F), is defined to be the cardinality of the union of the
vertex-sets of all F-graphs.

An undirected graph U is universal for n-vertex F-graphs if U contains each n-
vertex F-graph as a subgraph.

An undirected graph U is perfect-universal for n-vertex F-graphs if it is
universal for these graphs and if its universality is witnessed by a perfect hash
function from the collection of vertex-sets of F-graphs into the vertex-set of the graph
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U; that is to say, there is a total allocation function

a: U 6 a (<n)-vcrtex r_graphVertices(G) Vertices(U)

satisfying the following. For every F-graph G having at most n vertices, if there is an
edge in G connecting vertices v and v’, then there is an edge in U connecting vertices
a(v) and a(v’). If the graphs in I’ have mutually disjoint vertex-sets, then the notions
of perfect and ordinary universal graph coincide; however, for the cases we shall be
studying, the graphs in each I’ will share many names, and so perfect universality will
be a much stronger property than unrestricted universality.

C. The perfection number of a family of graphs. The perfection number of the
family of graphs I’ is denoted Perf(I’) and is defined to be the size (-number of
vertices) of the smallest perfect-universal graph for I’. It is an immediate consequence
of our framework that Perf(I’) is also the size of the smallest set T into which the
vertex-sets of the graphs in I’ can be hashed perfectly.

D. The families of graphs of interest. We now present the families of graphs we
shall be studying, by formal definition and by picture (see Fig. 1). In preparation, we
present the following notational conventions.

For each nonnegative integer n, we denote
by [n] the set {0,1,...,n-I};
by {0,1}n the set of all the 2n length-n binary strings;
by {0,1}* the set of all finite-length binary strings;
and by [k ]* the set of all finite-length k-ary strings.

(a) (b)

(c) (d)

Fig. 1. Instances of the four graph families: (a) binary trees, (b) chaotic arrays, (c) ragged
arrays, (d) rectangular arrays.
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Trees. An n-node (rooted, ordered) binary tree is a graph whose vertex-set is an
n-element prefix-closed subset of {0,1}* (i.e., the string x is in the set whenever
either x0 or x is), and whose edge-set comprises all 2-element subsets of the vertex-
set of the form (x,xa) where x E {0,1}* and a E {0,1}. We denote by T, the family
of binary trees having n or fewer nodes and by Tnk) the family of k-ary trees whose
vertex sets are (<n)-element prefix-closed subsets of [k ]*.

Chaotic arrays. An n-position (two-dimensional) chaotic aray is a graph whose
vertex-set is an order-closed n-element subset of NxN (i.e., each vertex is a pair of
nonnegative integers, and for each pair <r,s > ; <0,0> in the vertex-set, at least
one of <r-l,s > and <r,s-1 > is also in the set), and whose edge-set comprises all
2-element subsets of the vertex-set of the form (p,p+6) where p NN and
t5 {<0,1>, <1,0>}. We denote by Cn the family of chaotic arrays having n or
fewer vertices.

Ragged arrays. An n-position (two-dimensional) ragged array is a chaotic
array whose vertex-set satisfies the following two conditions.

If <r,s > NxN is a vertex of the array, then so also is every element
of the set {r} Is];
if <r,0> is a vertex of the array, then so also is every element of
[rl x {0}.

We denote by Rn the family of ragged arrays having n or fewer vertices.
Rectangular arrays. An n-position rectangular array is an n-position ragged

array whose vertex-set is of the form

[a] x [b]

for some nonnegative integers a and b (perforce, ab n).
family of rectangular arrays having n or fewer vertices.

We denote by An the

2. Perfect universal graphs for binary trees and k-ary trees. The main result of
this section is that, even though Size(Tn) 2n--l, there are perfect-universal graphs
for Tn whose size is roughly only the square root of this quantity. This savings of a
square root appears to be very positive, but it contrasts unfavorably with the result by
Chung and Graham [5] to the effect that there are (unrestricted) universal graphs for
Tn (or Tnk)) of n vertices and O(n log n) edges, and with the result by Chung,
Coppersmith, and Graham [3] to the effect that there are (unrestricted) universal
trees for Tn (or Tnk)) of size roughly nOg n). For the case of k-ary trees, k > 3, the
perfect-universal graph of Tn(k) is again of size roughly the square root of
Size(Tnk)) (kn-1)/(k-1).

Notation. Let x al...trn be a binary string (each tri {0,1}). We define:

prefix(x;k) if 1 <k <n then trl...trk else X;

and

suffix (x ;k) if < k <n then an-k+l...an else X.

X here and throughout denotes the null string. We say that the string x has length
Ix] n. When x is viewed as a node in a tree, it is said to reside at level n of the
tree.
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A. Basic lemmas.
LEMMA 2.1. If the binary strings x and y satisfy

Ixl < L(n-1)/2J and lyl < Ln/2J
then x and y can coexist in the same n-node binary tree (i.e., there is such a tree
whose vertex-set contains both x and y).

Proof The path from x to the root node X to y traverses a rooted ordered
The number of nodes in this tree is at most the number of nodes encountered on the
path, namely,

Ixl+lyl+l < [(n-1)/2J+[n/2J+l- n. ra

LEMMA 2.2. Let x and y be binary strings of common length [n/2J+m, where
0 < m < [(n-1)/2J. Then x and y can coexist in the same (<n)-node binary tree

if and only if
prefix(x;2m+l-(n mod 2)) prefix(y;2m+l-(n mod 2)).

Proof We shall force x and y into the same tree and then see what happens if
we insist that the trees have at most n nodes.

Consider the tree that has unary nodes at levels 0 through k-l; a binary node at
level k; and two length-/ chains from this binary node to x and y. See Fig. 2. Now
this tree has depth l+k, and it has 21+k+l nodes. By assumption on the size of T,
then,

l+k [n/2J+m;
and by our insistence,

21+k+l < n.

LE"VEL

0
I

k-I

Fig. 2. Illustrating Lemma 2.2: the n-node tree containing both x and y.
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Now if n is even (say n=2a), the first equation becomes

while the inequality becomes

so that

l+k a+m,

21+k+l < 2a,

k > 2m+l.

Similar manipulation shows that when n is odd,

k >/ 2m.

Since k is the length of the prefix that is common to x and y, we have thus
established the lemma. El

LEMMA 2.3. The binary strings x Ox’ and y ly’ can coexist in the same
( <n)-node binary tree if and only if

Ixl+lyl < n-1.

Proof. Necessity follows from the fact that the path connecting x and y passes
through at least Ix I+ly I+1 distinct nodes (including x and y). Sufficiency follows
from the fact that the shortest path connecting x and y is a ([x l+lyl+l)-node tree.

B. The lower bound. Our lower bound on the size of a perfect-universal graph for
n-node binary trees is independent of any degree constraints: it holds for unbounded-
degree universal graphs as well as for bounded-degree ones.

THEOREM 2.4. For each integer n,

Perf(Tn) > (3-(n mod 2)).exp 2([(n-1)/2J)-l.
(Throughout this paper, exp k (a) ka.)

Proof. By definition of "perfect", the allocation function a for Tn must be one-
to-one on the set of nodes of any n-node binary tree. By Lemma 2.1, therefore, a

cannot identify (-map to the same vertex) any two strings that both have length
2 2TM<l [(n-1)/2J" this forces the target set of a to have at least o<i<

elements. When n is odd, this number cannot be raised on the basis of Lemma 2.1.
However, Lemma 2.1 informs us that any string of length [n/2J can also coexist with
any of the already mentioned strings in an n-node binary tree; and when n is even,
any string of length In/2] 1+1 can coexist with any of the strings of length <1.
According to Lemma 2.2, two strings of length 1+1 can coexist in an n-node binary
tree only if they start with the same symbol. Therefore, we need assign only 2
images for these "long" strings. Thus, when n is even, the range of a must have
2t+1-1+2 3 exp2([(n-1)/2J)-I vertices. El

C. The upper bound. Obviously, the complete binary tree of depth n-l, that is,
the tree whose vertex-set is the prefix-closure of the set of binary strings of length
n-l, is perfect-universal for n-node binary trees. However, this tree has 2n-1 nodes,
the square of the number that Theorem 2.4 asserts a perfect-universal graph must
have. In fact, Theorem 2.4’s necessary number of nodes is correct not only in order of
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magnitude, it is exactly the right number: the upper bound we derive now coincides
exactly with the lower bound of that theorem.

THEOREM 2.5. For each integer n,

Perf(Tn) (3-(n mod 2)).exp2([(n-1)/2J)-l.

Moreover, there is a perfect-universal graph for n-node binary trees having just this
many vertices and having vertex-degree < 9.

Proof We shall describe the universal graph U and the allocation function a in
tandem.

Vertices. Letting m (n-1)/2J, the vertex set of U is the set

where

and

AUB

A IdO<k<m {0,1} k

B if n even then 0{0,1}m else EMPTY.

Edges. We shall not enumerate the edges of U explicitly, choosing instead to
specify them implicitly by the rule:

Vertices v and v’ of U are connected by an edge precisely when a- (v) contains a
tree-node x E {0,1}* and a-(v ’) contains either x0 or x l, or when this situation
occurs with the roles of v and v’ reversed.

Allocation. We describe the allocation function ct by cases. Let the string
x E {0,1}* be the argument to a:

(1) if Ix [(n-1)/2J, then

(x) x;

(2) else if Ix[ [n/2J, and n is even, then

a(x) O’suffix(x; (n-1)/2]);
(3) else it" x is of the form rx’ for cr {0,1}, and i[ Ix l- [(n-1)/2J+m for

< m < [n/2J, then

a(x) (--cr).suffix(x Ln/2J -m ).

where --tr denotes the element in {0,1}-{tr}. (See Fig. 3.)
Verification. It remains to show that the function a is a perfect hash function,

i.e., is one-to-one when restricted to any n-node binary tree. This demonstration
follows simply from Lemmas 2.2 and 2.3.

First of all, by Lemma 2.2, strings x and y, both of length [n/2J+m, cannot
coexist in the same n-node binary tree unless their length-(2m+l-(n mod 2))
prefixes are identical. The first consequence of this is that, in particular, strings
x 0x’ and y y’, both of length [n/2J, cannot coexist in the same n-node binary
tree if n is even. Hence, clause (2) in the definition of a cannot keep a from being
one-to-one on n-node trees. The second consequence is that the identifications of
"long" strings in clause (3) of the definition of ct cannot keep ct from being one-to-one
on n-node binary trees. Specifically, in that clause, a identifies all length-([n/2J)+m)
strings that begin with the same symbol and have the same length-( [n /2J -m ) suffix.
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X

000-011

I000- IIII 0000-0111

I00 0
II I01 000 LOllIII 010

(b)

Fig. 3. Sample perfect-universal graphs for n-node binary trees: (a) n 4, (b) n 5.

Since the identical strings share this long suffix, they cannot share the long prefix
required by Lemma 2.2 and yet remain distinct. In other words, distinct identified
strings of length > [n/2J+m cannot coexist in the same n-node tree.

Secondly, by Lemma 2.3, strings x --0x’ and y ly’ cannot coexist in an n-
node binary tree if one of these has length [n/2J+m and the other has length
> [n/2J-m. Consequently, the ("long" string) ("short" string) identifications made
by a in clause (3) cannot prevent its being one-to-one on n-node trees: a identifies
length-( [n /2] +m ) strings with length-([n/2]-m+l) strings; and it follows directly
from Lemma 2.3 that no such long-short pair of strings can coexist in the same n-
node binary tree.

The bound on vertex-degrees in U is immediate by calculation: a vertex in U has
at most edge "entering it from above", at most 2 edges "leaving it to below", at
most 4 edges "entering it from below", and at most 2 edges "leaving it to above".
The edges of U are of course undirected, but the suggestive "entering, leaving, above,
below" should be helpful in following the enumeration.

The reader can verify easily that, at the cost of (at most) doubling the number of
nodes in U, one can make U a perfect ordered universal graph, i.e, a graph for which
every ordered n-node binary tree appears as an ordered subgraph.

Our results on binary trees can be easily generalized to the family Tk for
k>3.
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THEOREM 2.6. For each integer n,

aerf(Tnk)) (k+l-(n mod 2))exp k([(n-1)/2J)-l.
Moreover, there is a perfect-universal graph for n-node k-ary trees having just this
many vertices and having vertex-degree < +2k-l-k2.

Proof. Lemmas 2.1, 2.2, 2.3 hold for k-ary trees. Therefore, for n odd we have
Perf(Tnk)) > (kl+l-1)/(k-1) where [(n-1)/2J, since any two strings of length
< 1 can coexist in the same (<n)-node k-ary tree. For n even, we need an
additional k vertices in the perfect-universal graph for Tk), since any string of length
1+1 can coexist with any of the strings of length <1, and two strings of length 1+1
can coexist in an n-node k-ary tree only if they start with the same symbol. Thus we
have

Perf(Tnk)) > (k+l-(n mod 2))kt-1

To prove the equality we need a perfect hash function a which can be defined the
same way as that in Theorem 2.5 except for replacing (3) by (3’).

(3’) else if x is of the form rx’ for a [k], and if Ixl- [(n-1)/2J+m for
< m < [n/2J, then

a(x) (tr+l (mod k)) suffix(x;[n/2J-m)

It is straightforward to check that a is indeed a well-defined perfect hash function.
The bound on vertex-degree in the perfect universal graph U can be calculated as
follows: a vertex in U has at most edge "entering it from above", at most k edges
"leaving it to below", at most k2 edges "entering it from below", and at most k edges
"leaving it to above". Therefore, U has vertex-degree no more than l+2k+k2. []

3. Perfect universal graphs for chaotic arrays. The main result of this section is
that no material compaction of chaotic arrays is possible as it was with binary trees.
In particular, Size(Cn)- n(n+l)/2; and any perfect-universal graph for Cn must
have at least roughly half this number of vertices. The (unrestricted) universal graph
for Cn has O(n) vertices and O(n3/2) edges [2]. (In fact, this is the bound for the
universal graph for the family of planar graphs on n vertices.)

Notation. Let p <pl,p2> be an ordered pair of nonnegative integers. The
pair p is said to have size ,(p) PI+P2. When p is viewed as a position of a chaotic
array, it is said to reside at level Z(p) of the chaotic array. If q <q,q2> is
another pair of nonnegative integers, then we denote by M (p,q) the third pair

M(p ,q) <max(p 1,q 1),max(p2,q 2) >
A. The basic lemma.
LEMMA 3.1. The integer pairs p and q can coexist in the same ( <n)-position

chaotic array if and only if Z,(M (p,q)) < n.
Proof Sufficiency. Consider the graph whose vertex set consists of lattice points

encountered in the following walk: start at the origin and proceed as directly as
possible to the point <t,v >, where

# min(pl,ql)
and

v min(p2,q2).
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Now go as directly as possible from <tz,v > to p, backtrack to <tt,v > using no new
vertices, and go from <tz,v> as directly as possible to q. A straightforward
calculation shows that the number of distinct points encountered along this walk is

+#+v+(pl-/)+ (q l-#)+(pE-v)+(qE-v).

But this quantity is just +(M(p,q)), which by assumption is at most n. Therefore,
if we take this set of lattice points and augment it by a set of edges using the rules
determining the edges in chaotic arrays, then we find that we have a (<n)-position
chaotic array holding both p and q. The sufficiency of the lemma’s condition follows.

Necessity. Necessity of the lemma’s condition is obvious, for any path including
the "origin" <0,0> and both p and q must encounter at least

+ max(p l,q )
distinct lattice points while "moving up" and another

max(P2,q2)

while "moving across" (viewing the points as first-quadrant lattice points). By the
order-closure of the set of vertices of a chaotic array, any two points in a chaotic array
are connected to the origin via a path encountering only the points in the array.
Hence the number of points encountered cannot exceed n in number, since p and q
are assumed to reside in the same n-position chaotic array, o

B. The lower bound.
THEOREM 3.2. For all integers n,

Perf(Cn) >/ In/2] ([n/2J+l).

Proof By Lemma 3.1, two points p and q can coexist in the same n-position
chaotic array whenever Y,(M(p,q)) < n. It follows that a perfect hash function a

cannot identify any two points p and q for which

max(Pi,qi) < In/2]
and

max(pj,qj) < [n/2J

where {i,j} {1,2}. Therefore, the image space of a must contain enough points to
give all these pairs distinct images. O

C. The upper bound. As was the case with trees, we establish here an upper
bound on the perfect number for chaotic arrays that coincides exactly with the lower
bound.

THEOREM 3.3. For each integer n,

Perf (Cn) < In/2] ([n/2]+l).
Moreover, there is a perfect-universal graph for n-position chaotic arrays having just
this number of vertices and having vertex-degree < 5.

Proof The graph U. The universal graph U will have for vertices the set

[[n/2]] x [[n/2J+ll.
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U’S edges will be induced by the allocation function a as follows: there will be an edge
connecting vertices v and v’ of U just when a-l(v) contains a point p E NxN and
a-l(v ’) contains either p+<0,1> or p+<l,0>. It remains only to describe and
validate the function a.

Allocation. The allocation function a is defined by cases:

(1) ifp E [[n/2]l [[n/2J+I],then

(2) ifpl > rn/2], then

(3) if p2 > [n12], then

a(p)- <p2,n-p>;

or(p) <n--P2,Pl>.

Verification. We must show that the function a is both well defined and one-to-
one on n-position chaotic arrays. Both tasks are immediate by Lemma 3.1. By
hypothesis, each p in the domain of a resides in some n-position chaotic array; hence,
(p) < n. Thus, if p (resp., P2) is big, in the sense of case (2) (resp., (3)) above,
then neither of P2 (resp., p) or n-pl (resp., n-p2) can be big. It follows that the
mapping a is well defined in the sense that it maps positions of n-position chaotic
arrays into vertices of U. Now, each vertex v of U is the image of either one or two
chaotic array positions. If v receives only one position, then it cannot prevent a from
being one-to-one. If v receives two positions, then one has the form <ql,q2> where
q < In/2] and q2 < [n/2], and the other has the form <pl,P2> where either
P q2 and P2 n-q, or vice-versa. In either case, ,(M(p,q)) n, so p and q
cannot coreside in the same n-position chaotic array. Thus a is one-to-one on all such
chaotic arrays and so is a witness to U’s being a perfect-universal graph for such
arrays, as was claimed. It can be easily verified that most of the vertices in U have
degree < 4. Only those vertices <pl,P2> with Pl . {[n/2]-l,[n/2]} or
P2 fi In/2J, In/2] + are of degree

4. Perfect universal graphs for ragged arrays. Although ragged arrays seem to be
closer to rectangular than to chaotic arrays in terms of the amount of uniformity in
their structure, they behave for the purposes of our study much more like chaotic
arrays. Specifically, we shall see in the next section that rectangular arrays have a
perfection number of n. In contrast, we have seen in the last section that chaotic
arrays have a perfection number that is only half of the number of vertices in the most
naive possible universal graph for chaotic arrays. We shall see now that ragged
arrays’ perfection number is roughly n2/6, while Size(R.) n (n+ 1)/2.

A. The basic lemma.
LEMMA 4.1. Let p- <Pl,P2> and q-, <q,q2> be integer pairs with

P ql. The pairs p and q can coexist in the same (<n)-position ragged array if
and only if

max(p,q)+p2+q2 < n

Proof Sufficiency. The ragged array with vertices
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([max(pl,q)+l]x{0}) tJ ({p}x[p2+l]) t9 ({q}x[q2+l])

contains both <pl,P2> and <ql,q2> and has precisely max(p,q)+p2+q2+l
vertices.

Necessity. Follows directly from the fact that, by definition, if the point
<pl,P2> is in the ragged array R, then ([pl+l]x{0}) LI ({pl}X[p2+l]) R. E!

B. The lower bound.
THEOREM 4.2. For all integers n,

aerf(Rn) > ([n/aJ+l)(a[En/3]-n)/2.

Proof We consider the set S of all points (x,x2) satisfying

Xl-]-x 2 < [2/3 n], 0 < X2 In/3], 0 < x.
There are ([n/3J+l)(312n/3]-n)/2 such points. Suppose (Pl,P2) and (ql,q2)

are ins andp < ql. Then

max(pl,ql)+pE+q2 < pE+ql+q2 < n.

Thus by Lemma 4.1 any two points in S can coexist in the same (<n)-position
ragged array and a perfect hash function a cannot identify any two points in S.
Therefore we have

Perf(Rn) > Isl ([n/3J+l)(312n/3]--n)/2. El

C. The upper bound. We will establish here an upper bound on the perfect
number for ragged arrays that coincides exactly with the lower bound.

THEOREM 4.3. For each integer n,

Perf(Rn) ([n/3J +1) (3 [2n/3]-n)/2.
Moreover, there is a perfect-universal graph for n-position ragged arrays having just
this number of vertices and having vertex degree < 16.

Proof Consider the graph U with vertex set S as defined in Theorem 4.2. The
edges of U will be induced by the allocation function a which maps points in
{(x 1,x2): 0 < x ,x2, 0 < x+x2 < n to S as defined by cases as follows:

(1) Ifp E S, thena(p)-p.
(2) If XI+X2 >, [2/3 n], x > [n/3], then

a(x 1,x2) (x2,n-x -x2).
(3) If x2 > [n/3J and Xl < [n/3J, then

a(x ,x2) (n-x-x2,x 1).

It is straightforward to verify that the function a is well-defined in the sense that
it maps positions of n-position ragged arrays into vertices of U. Now, each vertex v
of U is the image of at most three ragged array positions. It can be easily checked
that a is one-to-one on any n-position ragged array using Lemma 4.1. A vertex

P (Pl,P2) in U is adjacent to vertices (pl+,p2+’) for any , ’ E {0,1,-1} and ,’
not both 0 if (pl+,p2+’) is in V(U)-{p}. In fact most vertices of U have degree 8
except for a few with degree < 16. El
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5. Perfect universal graphs for rectangular arrays. This section contains two main
results. First, in common with trees, rectangular arrays admit significant compaction:
Size(An) is roughly n log n [12], yet there is a perfect-universal graph for An having
only n vertices. Second, although the universal graphs just mentioned have vertex-
degrees that are not bounded, independent of n, there are perfect-universal graphs for
An having only 2n vertices whose vertex-degrees do not exceed 4.

We shall present the initial results about perfect-universal graphs for An in a
somewhat cursory manner, since these graphs were studied under a different guise by
Rosenberg and Stockmeyer [15].

A. The basic lemma.
LEMMA 5.1. [15] (a) The point <pl,P2> E NxN resides in some (<n)-

position rectangular array if and only if
(pl+l)(p2+l) < n.

(b) The points p <pl,P2> and q <ql,q2> can coexist in the same (<n)-
position rectangular array if and only if the point M (p,q) resides in some n-position
rectangular array.

B. Upper and lower bounds.
THEOREM 5.2. 15] For each integer n,

Perf(An) n.

Proof. The lower bound on Perf being immediate by the pigeon-hole principle,
we turn to the upper bound.

The graph U. Fix on n, let the graph U have for vertices the set [n], and let U’s
edges be induced by the allocation function

a: o ENNl(pl+l) (p2+l) <n} Vertices(U)

as in the previous sections.
Allocation. Define the function

a: {pNxNl(pl+l)(p+l)<n} [nl

as follows:
(1) For each m E [n], a(<m,0>) m;
(2) for each m [n]-{0}, a "assigns" to the points in [[n/(m+l)J]x{m} the

first [n/(m+l)] integers in increasing order in the set [n]-a([ [n/(m+l)J ]x[m]).
Verification. The fact that a is indeed an allocation function for a perfect-

universal graph for the family An of rectangular arrays follows immediately from the
proof in 15] that the function a is one-to-one on all rectangular arrays having n or
fewer positions, t2

C. A bounded-degree perfect-universal graph for An Although the perfect-
universal graph constructed in Theorem 5.2 is optimal in size, it is deficient in one
major respect: the maximum degree of the vertices of the graph grows with the size of
the array-graphs being imbedded. We believe that this growth is inevitable, but we
have been unable to verify or refute the following.

CONJECTURE. Let the family of graphs U1,U2 each Unl--n, be perfect-
universal for the collections AI,A2 respectively. There is no constant c such that



562 E R. K. CHUNG, A. L. ROSENBERG AND LAWRENCE SNYDER

every graph Un has vertex-degree < c.
We do know, however, that one can attain the (n log n)-to-n compactification of

Theorem 5.2 together with bounded degrees if one is willing to suffer a modest
increase in the number of vertices in the perfect-universal graph.

THEOREM 5.3. For each integer n, there is a perfect-universal graph U for An
having[U[ 2n vertices and vertex-degree 4.

Proof. We describe the graph U explicitly.
Vertices. The graph U has the vertex-set

Vertices(U) {p ENxN[0 < both(p) < [,f’J or [,d’J < both(p) <2[,fh"J}
where references to both(p) indicate that the inequalities govern both Pl and P2.
Thus, when pictured as a plane set, U looks like two square blocks joined at one
corner; see Figure 4(a).

As usual, we shall let the edges of U be induced by our specification of the
allocation function

or: {19 .NXNI (pl+ I) (p2+ I) <n} Vertices(U).

Allocation. The function a will be symmetric in the sense that, if
a(<pl,p2>) <al,a2>, then a(<pg_,pl>) <a2,al>; hence, in defining a(p), we
shall assume with no loss of generality that p. < [,fn"J (since by Lemma V.1, at least
one of p l,P2 must be this small). Let p NxN satisfy the following conditions.

(1) (pl+l)(P2+l) < n;
(2) P2 < t’J’J;
(3) Lpl/(2t,fJ Xk6k 2k.
Then, letting

rl Pl mod 2[,fnj,
and

we have

a(p) --if rl < [r-j then <rl,r2> else <rl,r2+[f-J >.

Verification. We have three things to verify: that the function a is well-defined,
that it is a perfect hash function for An, and that the resulting graph U has vertex-
degrees < 4. We treat each issue in turn.

First, let

a "-[log2Lol/(2[xnJ)JJ.
By condition (1), we must have

P2 < n/(2+lL’fn-J+l).
It follows, therefore, that r2 < [,f’J moreover, it is immediate by definition that rl,
which is the first coordinate of a(p), is less than 2[,d"J. Hence, when rl < [t’j,
both coordinates of a(p) are nonnegative but less than [’J; and when rl >/ [,"J,
both coordinates of a(p) are at least L4n-J but less than 2 [/"nJ. In other words, for
every vertex p of a (<n)-position rectangular array, a(p) Vertices(U).

Second, assume that there are distinct pairs p and q of the right form such that
a(p) a(q). Trivially, we must have P ; q l, since p and q are assumed to be
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distinct. Assume that q > P l, and let

a- tlogEtq/(2LVJ)JJ.
Since ct identifies p and q, it must be that

P2 [’-J/2+.
But simple calculation now demonstrates that

(p2+l)(ql+l) > n

so that the point M(p,q) cannot reside in any n-position rectangular array (by
Lemma 5.1a), so the points p and q cannot coreside in the same n-position such array
(by Lemma 5.1b). It follows that the function a is a perfect hash function for An, as
was claimed.

It is easy to verify that the vertex degrees in U are bounded by 4 since any edge
e of U is in one of the following types (see Fig. 4):

(1) e {<pl,P2>, <p,p2+l >};
(2) e {<p,L-/’J-l>, <p+L4h-J, L4h-J >} wherep satisfies a < Pl < L4VJ;
(3) e {<pl,0>, <pl,2Lvn-J-l>} where

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

(b)

lii ’1111111 ’1"’

Fig. 4. lllustrating how the 2n-vertex degree-4 perfect-universal graph for rectangular
arrays "covers" short wide arrays: (a) a schematic view of the graph U; (b) U covering arrays
with < 2 Ln columns and [] rows; (c) U covering arrays with < 4 Ln columns and
0.5 [n rows; (d) U covering arrays with < 8 Ln columns and 0.25 LJ rows.
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p L Ln-J/2k+J,
k

P2 tSk [nJ/2k+lj
k

tk 2
k + tk2

k

(4) e {<pl,P2>,<ql,q2>} where

e’ <p2,p >, <q2,q >" is of type 1,2, or 3.

6. Summary. We summarize our results in Table 1.

Tn()

All

Size

2n--1

kn-1

n(n+l)/2

n(n+l)/2

n log n

TABLE

The order of the
universal graph

O (n log n)

O (n log n)

O(n 3/2)

O(n 3/2)

The order of the
perfect universal graph

(3-(n mod 2))2(t(n-)/2])-I

(k+l-(n mod 2))k(t("-)/2])-I

[n/2](tn/2]+l)

(In/3] +1) (3 [2n/3]-n)/2

n

where

Tn: The family of (<n)-position binary trees,

Tnk): The family of (<n)-position k-ary trees,

Cn: The family of (<n)-position chaotic arrays,

Rn The family of (< n)-position ragged arrays,

An The family of (< n)-position rectangular arrays.
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